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Figure 7. Shock-wave (SW) therapy suppresses transforming growth factor (TGF)-81 expression after acute myocardial infarction.
(A-C) The mRNA expression levels of TGF-31 on day 3 (A), day 6 (B) and day 28 (C). (D-F) Immunohistochemical staining of
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flammatory responses might enhance tissue degradation and
LV fibrosis with a resultant LV remodeling in the chronic
phase.’>-17 Also, Nahrendorf et al reported the functional con-
sequence of orchestrated mobilization of monocytes/macro-
phage subtypes during the healing of AMI.Y In the present
study, infiltration of neutrophils and macrophages early after
AMI was significantly attenuated by SW therapy, while the
number of infiltrated M2 macrophages was higher in the SW
group than in the control group early after AMI. These results
suggest that SW therapy exerts anti-inflammatory effects not
only by suppressing the infiltration of inflammatory cells but
also by inducing the shift of the macrophage phenotypes to
anti-inflammatory M2 subtype. SW therapy significantly sup-
pressed the production of pro-inflammatory cytokines at day
6. Also, the production of pro-inflammatory cytokines increased
with time (day 3 vs. day 6) in the control group, which was
suppressed by SW therapy. Indeed, anti-inflammatory effects
of low-energy SW therapy has also been reported in cultured
cells,’ murine skin isografts'? and patients with inflammatory
orthopedic diseases, such as tendinitis and plantar fasciitis.™
Stojadinovic et al reported that low-energy SW therapy affects
the expression of a variety of chemokines (CXCL1, CXCL2,
CXCL5, CCL2, CCL3 and CCL4) and cytokines towards an
anti-inflammatory direction in murine skin isografts.!> Although
we did not examine these chemokines in the present study, it
is conceivable that SW therapy affected not only the cytokines
mentioned above but also these chemokines. Taken together,

these results raise the possibility that SW therapy suppresses
post-MI LV remodeling, at least in part, by suppressing inflam-
matory responses early after AMI. Further studies are needed
to elucidate the inhibitory effects of SW therapy on the infil-
tration of inflammatory cells after AMI.

Attenuation of LV Fibrosis After AMI by SW Therapy
TGF-f1, which is known to promote LV fibrosis, is released
from fibroblasts and infiltrated macrophages after myocardial
injury, and excessive infiltration of macrophages might pro-
mote LV fibrosis and thus deteriorate LV function.’3-1720 In
the present study, SW therapy attenuated macrophage infiltra-
tion, TGF-f1 expression and LV fibrosis. These results sug-
gest that the anti-fibrotic effects of SW therapy are related to
the suppression of macrophage infiltration and TGF-1 expres-
sion. However, it remains to be examined whether the reduced
expression of TGF-f1 is attributed to the reduction of macro-
phage infiltration and TGF-f1 production from macrophages
and other cells.

Mechanisms for the Inhibitory Effects of SW Therapy on LV
Remodeling After AMI

We and others have previously demonstrated angiogenic
effects of low-energy SW therapy in several animal mod-
els, 710121416, 21-25 a5 well as in humans.3°2¢32 In the present
study, we have demonstrated that SW therapy attenuates in-
flammatory responses and LV fibrosis in a rat model of AMI.
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Figure 8. Shock-wave (SW) therapy upregulates anti-inflammatory cytokines and downregulates pro-inflammatory cytokines after
acute myocardial infarction. The production of inflammation-related cytokines in left ventricular homogenates from the border zone.
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These results suggest that SW therapy ameliorates post-MI
LV remodeling not only through angiogenesis but also through
suppression of inflammatory responses and LV fibrosis
(Figure S2). The low-energy SW therapy, when applied to
ischemic tissues, has been reported to enhance the expression
of stromal-derived factor 1, a key regulator of stem cell migra-
tion to the site of tissue injury during the process of tissue re-
pair.33% In addition, SW therapy has also been reported to
promote migration and differentiation of bone marrow-de-
rived mononuclear cells (BMDMC).33? Furthermore, macro-
phages could modulate the activity of stem cells.*’ In the
present study, we also showed that macrophage infiltration
was ameliorated by SW therapy. Thus, SW therapy might di-
rectly and/or indirectly affect the function of stem cells, such
as BMDMC s, residential cardiac stem cells, and multilineage-
differentiating stress-enduring (Muse) cells.33%4142 Addition-
al studies are needed to clarify the contribution of stem cells
to the beneficial effects of SW therapy.

Study Limitations

Several limitations should be mentioned for the present study.
First, in the present study, we chose the condition of SW ther-
apy (eg, energy levels, number of shots) based on our previous
studies”™ 118 and did not test other therapeutic conditions. It is
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unknown whether different levels, numbers and protocols of
SW therapy could be more effective than that used for the
present study. Second, in the present study, we had to apply
SW to the whole rat heart due to the focus size of the SW
machine, whereas we were able to selectively apply SW to the
border area in our previous studies in pigs.'®!! Interestingly,
however, in the present study, the SW therapy increased capil-
lary density only in the border area. Thus, SW therapy might
enhance angiogenesis and exert anti-inflammatory effects
mainly in the border area in an AMI model even when the SW
was applied to the whole heart. The detailed molecular mech-
anisms for the different effects of SW therapy between isch-
emic and non-ischemic areas remain to be examined. Third,
the detailed molecular mechanisms of the anti-inflammatory
effects of SW therapy also remain to be elucidated in future
studies. Fourth, in the present study, we did not show whether
the anti-inflammatory action mediates the beneficial effects of
SW therapy on LV remodeling. To clarify this issue, an ad-
ditional approach such as gene deletion or selective inhibition
of candidate molecules might provide further insights into the
effects of SW therapy. Finally, in the present study, we fo-
cused on neutrophils and macrophages as inflammatory cells;
however, other types of cells, such as fibroblasts, myofibro-
blasts, natural killer T cells and regulatory T cells, have been
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reported to affect the inflammatory state and L'V remodeling
after AML%7 Also, we did not examine the effects of SW
therapy on functional aspects of inflammatory cells. Further
studies are needed to clarify these issues.

Conclusions

In the present study, we demonstrated that low-energy SW
therapy suppresses post-MI LV remodeling in rats in vivo,
which is associated with anti-inflammatory effects in addition
to its angiogenic effects, thus demonstrating a novel aspect of
the therapy for AMI (Figure S2). Because SW therapy is non-
invasive and safe, it could be a novel option for the prevention
of LV remodeling after AMI in humans.
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