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TM5484 ameliorates collagen IV deposition in CNS of EAE mice, it could be also related to its
anti-inflammatory effects. For instance, van Horssen and colleagues showed that excessive de-
position of collagen IV in CNS of patients with MS might be caused by increased production of
cytokines [34]. TM5484 did not affect on the amount of fibrin deposition in spinal cord, sug-
gesting that PAI-1-enhanced by EAE might affect on the infiltration of inflammatory cells to a
higher degree than extra cellular matrix components.

There are a number of ways in which PAI-1 may contribute to the development of inflam-
mation and demyelination in the CNS. For instance, PAI-1 can act as a chemoattractant for
macrophages [10]. In the present study, gene expression and histological analyses consistently
indicated that TM5484 treatment attenuated macrophage migration and microglia activation
into the spinal cord, thereby attenuating demyelination and axonal damage.

Neurotrophic factors are known to protect neurons against various pathological insults.
For instance, BDNF is a growth factor that plays important roles in the development and main-
tenance of the nervous system and induces neuronal survival [35]. In this study, EAE mice ex-
hibited decreased mRNA expression of BDNF compared to control animals, while TM5484
treatment its BDNF expression. Inhibition of PAI-1 is predictably associated with a reciprocal
increase in the activity of its target serine protease, t-PA, with secondary increases in net plas-
min generation. Both of these serine proteases are known to convert secreted proBDNF to ma-
ture BDNF in the synaptic cleft [14]. In addition to its effects on demyelination and axonal
degeneration, TM5484 may also accelerate neuronal repair in diseases linked to decreased
BDNF levels. Although we only found differences of BDNF expression at the gene level, these
findings suggest that TM5484, directly or indirectly modulate BDNF expression in neurons
and thus might provide an additional mechanism for neuroprotection. To reinforce this,
TM5484 also up-regulated the expression of ChAT, meaning a reduction of neuronal loss in
spinal cord of EAE mice. This suggests that the effect of PAI-1 inhibitor TM5484 goes beyond
blockage of inflammation, as it also induces prevention of damage and preservation of neuro-
nal tissue. In contrast to previous studies using a mice model of Rett syndrome [36], our data
showed that fingolimod did not restore the expression of mRNA BDNF in EAE mice.

Finally, the observed benefits of TM5484 were extended experimentally in rats. Admitting
that the paralytic behavior seen in EAE rats is usually induced by infiltrating cells as well as by
edema caused by blood-brain barrier disruption rather than by demyelination [37], when
TM5484 was initiated at the time of onset of signs, motor paralysis was reduced to levels ob-
served in untreated control, indicating that TM5484 also benefits the rat model of MS.

The mechanistic understanding of MS has advanced considerably over the past decade and
has provided the rationale for the application of anti-inflammatory and immunomodulatory
treatments that can actually reduce the severity and frequency of new demyelinating episodes
[38]. Since TM5484 appears to influence several important pathogenic mechanisms in MS, it
merit further investigation and consideration as a novel therapeutic modality for the treatment
of MS.

In conclusion, we report evidence in this study that inhibition of PAI-1 with a low-molecu-
lar compound protect mice against EAE-induced inflammation, demyelination and axonal de-
generation. TM5484 represents thus a novel therapeutic approach for MS and, perhaps, other
CNS disorders.

Supporting Information

S1 Fig. Flow-chart of the identification of PAI-1 inhibitors efficiently penetrating thru the
BBB. Based on virtual screening and i silico docking simulation we first developed a new
group of oral, low molecular PAI-1 inhibitors. Among over 500 derivatives of the lead
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compound TM5275 we searched for a PAI-1 inhibitor that could efficiently penetrate into
BBB. About 50 compounds, which met the criteria for a good CNS penetration, i.e., a low MW
with a lipophilicity (clogP) < 4 and a surface area (TPSA) > 75, were selected and tested for
CNS penetration, using an in vitro model that corresponds to the anatomical situation of cere-
bral microvessels. The penetration ratio (Papp) was finally measured. TM5484 (M.W., 384.7;
clogP, 3.07; TPSA, 108.6), a derivative of TM5441 (Boe et al 2013), exhibited the highest pene-
tration ratio across the BBB (Papp of 67.6 x 107 cm/s). It was selected for subsequent experi-
ments,

(EPS)

S2 Fig. Gene expression. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis
of Tnf-1, IL-1b, IL-6, IL-10, IL-17 and IFNy in spleen. EAE mice show an increased expression
of proinflammatory cytokines as well as a decreased expression of IL-10. TM5484 and fingoli-
mod were able to modulate these inflammatory effects. Expression levels of all markers are nor-
malized to b-actin. Data are shown as the means and corresponding SEM. **P<0.01 by 1-way
ANOVA and Dunnett test, n = 6-7

(EPS)

S3 Fig. Gene expression. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis
of ChAT in spinal cord. TM5484 as well as Fingolimod up-regulated ChAT expression com-
paring to EAE untreated mice. Expression levels of all markers are normalized to b-actin. Data
are shown as the means and corresponding SEM. **P<0.01 by 1-way ANOVA and Dunnett
test,n = 5-6

(EPS)

S4 Fig. In spinal cord of control mice, expression of Iba-1 marker shows low levels of
microglia activation, as demonstrated by none ramified branches. EAE mice show an im-
portant number of microglia activated with ramified branches (green). However, this was ame-
liorated by TM5484 and fingolimod. Nuclear Dapi staining (blue) confirmed the presence of
viable cells.

(PDF)

85 Fig. Immunostaining. Fibrinogen deposition in spinal cord of EAE mice shows no differ-
ence in comparison to control. In addition, no changes were observed after treatment with
TM5484 or fingolimod. Red asterix indicates central canal.

(PDF)
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