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Figure 5 Evaluation of serum creatine kinase level and renal and hepatic toxicity in the blood fest at the end-point of 2 weeks after
the last of nine systemic injections of 6 mgfkg 10-vPMO cocktail at 2-week intervals. Blood biochemical tests were performed for serum
creatine kinase (CK), blood urea nitrogen (BUN), creatinine (Cre), total bilirubin (T-bil), and y-glutamy! transpeptidase (v-GTP) in wild-type
(WT), nontreated (NT), and treated mdx52 mice (n=4inWT, n=6in NT and n= 4 in treated group). Data are presented as mean = SE.

no overt toxicity due to the chemical components of vPMO
was recorded at up to 15-20mg/kg in mice.?4 However,
the presence of dose-dependent and delayed side effects by
long-term treatment must be determined to use this chemis-
try as a clinical grade. Neither the current 18-week regimen of
6 mg/kg vPMOs (0.6 mg/kg each vPMO) every 2 weeks, nor
the previous study using the vPMO cocktait at a higher dose
of 12mg/kg, lead to any deterioration of the serum parame-
ters that were tested.?® Notably, we found a significant reduc-
tion in BUN, an indicator of progression of protein catabolism,
to the normal range observed in WT mice. Mussini et al. also
have shown that catabolism in DMD muscles is increased.*®
A relatively higher level of BUN is reported in mdx mice
compared with WT C57BL/6 mice.*® The reduced BUN level
with no significant change in the creatinine level may result
from amelioration of muscle degeneration by the treatment.
In addition, we confirmed that our vPMO cocktail does not
induce a detectable immune response of T cells. Although
pathological and immunological side effects for long-term
treatment with vPMOs need to be more closely examined in
various tissue types of animal models, these results indicate
that this regimen may have clinical potential for DMD patients
who require repeated administration over the course of their
lifetime.

In summary, we demonstrated that long-term repeated intra-
venous injections of the 10-vPMO cocktail at a lower dose than
described previously was both effective and safe in the DMD
animal model. However, further investigations of vPMO cock-
tails will need to be conducted at the preclinical stage, such
as dose-escalation and -reduction studies, as well as acute
and chronic toxicity assessments, since multiexon skipping has
more potential for off-target effects due to the repeated admin-
istration of many different AOs. Intermediate products induced
by AO cocktails also should be considered a potential side
effect, as shown in this study. Multiexon skipping with a number
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of AOs is likely to generate a variety of dystrophin mRNA/pro-
tein types including in-frame and out-of-frame franscripts due
to the unequal skipping efficiency of individual AOs.? Reducing
the number of AOs used in a cocktail—depending on muta-
tion patterns in the patients—or developing a new strategy with
fewer AOs to induce skipping of the entire exons 45-55 region,
regardless of the mutation patterns, may prevent unexpected
effects and lead to formation of intended dystrophin proteins
more effectively. Such advancements would aid in forwarding
this strategy and other multiple exon skipping strategies into
clinical application.®® In addition, sequence-specific AO cock-
tails optimized for the human DMD gene will need 1o be tested
with human DMD patient skeletal muscle cell lines. Currently,
the drug regulatory authorities consider individual AOs target-
ing different sequences to be separate drugs. This stance may
need to be changed for developing cockiail drugs. Neverthe-
less, the results of this study should contribute not only to the
clinical development of an exon 45-55 skipping therapy for
DMD, but should also open up the possibility of using antisense
drug cocktails for other genetic diseases in which long-term
administration is required.

Material and methods

Animals. Eight-week-old male exon 52-deficient mdx52
mice were used in this study. As a control in the systemic
treatment, male WT C57BL/6J mice at 6 months old were
used for comparing to treated mdx52 at the end-point of the
treatment. All mice were housed in an individually ventilated
cage system with a 12-hour light-dark cycle; they received
standard mouse chow (Harlan Teklad, Madison, WI) and water
ad libitum. All mice were allowed to rest for at least 7 days in the
facility before acclimatizing them on the instruments and taking
baseline readings for behavioral assays. All mice were handled
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according to local Institutional Animal Care and Use Committee
(IACUQ) guidelines (University of Alberta, Edmonton, Canada
and Children’s National Medical Center, Worthington, DC).

Antisense oligonucleotides. Ten AOs targeted to exons 45-51
and 53-55 in mouse dysirophin gene were designed using
ESEfinder software to anneal to the exon-splicing enhancer
sites of each exon or exon/intron boundary, as previously
described (Table 1).25% Specificity of the designed AOs was
confirmed by NCBI blast software (https://www.ncbi.nlm.nih.
gov/), which shows that our AO sequences theoretically do
not bind any untargeted RNA sequences in 100% identity.
All sequences were synthesized using vPMO backbeones
(Gene-Tools, LLC, Philomath, OR).?!

Vivo-Morpholino injections. Animals were anesthetized by
inhalation of isoflurane (Baxter, Deerfield, IL) for injections.
A total of 0.3 pg of vPMOs targeting exons 45-55 in a total
volume of 36 pl of saline were injected into the TA muscle
of mdx52 mice. Muscle samples were obtained 2 weeks
after the intramuscular injection. For long-term systemic
treatment, a total of 6mg/kg per injection of 10-vPMOs
(0.6mg/kg for each) in 150 pl of saline was injected into
the tail vein of mdx52 mice, nine times at 2-week intervals.
The mice were examined 2 weeks after the final injection.
Muscle samples were obtained immediately after the mice
were killed. The samples were snap frozen in liquid nitrogen—
cooled isopentane and stored at —-80 °C before use.

RT-PCR. Total RNA from muscle sections of WT, nontreated
mdx52, and treated mdx52 mice were extracted as
previously described.” Total RNA template (200ng)
was used for a 25 pl RT-PCR with the SuperScript I
One-Step RT-PCR System (Invitrogen, Carlsbad, CA)
and 0.2 pmol/l of each primer, in accordance with the
manufacturer’s instructions. Primer sequences for the PCR
were designed with Primer3Plus software: Exon 44_F
CAGTTGAAAAATGGCGACAC and Exon 56_R, GTAACA
GGGGTGCTTCATCC. The cycling conditions were as follows:
55 °C for 30 minutes; 94 °C for 2 minutes; 35 cycles at 94 °C for
15 seconds, 60 °C for 30 seconds, and 68 °C for 1.2 minutes;
and 68 °C for 5 minutes. PCR products were separated on
a 2% agarose gel and then visualized by SYBR Safe DNA
Gel Stain (Invitrogen). Skipping percentage was calculated
Exons 45 - 55 skipped transcript
Native + skippedtranscripts
software (NIH). Bands of the expected size for the transcript
were extracted with a gel extraction kit (Promega, Madison,
WI). The sequencing reactions were performed with Big Dye
Terminator v3.1 (Applied Biosystems, Foster City, CA).

x100 using ImageJ

Immunohistochemistry. Sections (7 pm thickness) of the TA
muscle after single intramuscular injection were incubated
with two anti-dystrophin antibodies: mouse monoclonal
DYS1 against peptides encoded by exons 26-30 (1:200;
Novocastra Laboratories, Newcastle upon Tyne, UK) and
rabbit polyclonal P7 against peptides encoded by exon 57
(1:200; Fairway BioTech, Shrewsbury, UK). For quantification
of the number of dystrophin-positive fibers, we made several
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tissue sections and selected representative sections of TA
muscles, then stained these sections with DYS1 antibody
(n = 3). The number of dystrophin-positive fibers were
counted in sections having at least 200 total muscle fibers
using a BZ-9000 fluorescence microscope (Keyence, Osaka,
Japan), as previously described.® In systemic treatment
with the 10-vPMO cocktail, the diaphragm, biceps femoris,
quadriceps, gastrocnemius, tibialis anterior, biceps brachii,
triceps brachii, and heart muscles were examined 2 weeks
after the final injection using anti-dystrophin (P7) antibody
and antibodies against dystrophin-associated proteins: anti-
a1-syntrophin rabbit polyclonal antibody (1:200, Abcam,
Cambridge, UK}, anti-nNOS rabbit polyclonal antibody (1:100,
Invitrogen), anti-o-sarcoglycan mouse monoclonal antibody
(1:10, Novocastra Laboratories), and anti-B-dystroglycan
mouse monoclonal antibody (1:5, Novocastra Laboratories).
To detect the primary antibodies, Alexa Fluor 594—conjugated
goat antimouse or rabbit IgG (1:2,000; Invitrogen) were used
as secondary antibodies. To examine IgG accumulation in
muscle fibers and immune response to the vPMO cocktail,
anti-mouse IgG F(ab’)2 (1:750, Invitrogen) and anti-CD3
rabbit monoclonal (1:25, Abcam) antibodies were used
on nonfixed and 4% PFA-fixed sections (7 pm thickness),
respectively. The number of IgG-positive fibers and sporadic
CDg3-positive cells as pan T cells were counted in 10 section
areas randomly selected through a 20x objective lens. In
immunostaining against CD3 antigen, cells were regarded as
positive when more than half the membrane circumference
was stained on cross-sections.

Hematoxylin and eosin staining. For counting CNFs, muscle
sections (7 pm thickness) were stained with Mayer’s hematoxylin
and eosin (H&E) solutions and images were taken with a DMR
microscope (Leica Micro-systems, Newcastle upon Tyne,
UK) with a 20x objective lens, as previously described.*® The
percentage of CNFs was calculated in 400-1,100 fibers in DIA,
BF, QUA, GC, and TA muscles of nontreated (n= 4) and treated
mdx52 mice (n = 6-7).

Western blotting. Protein extraction from frozen muscle
sections and Western blot analysis were performed as
previously described.*” In brief, 10 and 1% (4 and 0.4 g of
protein, respectively) of the TA muscle from WT mice were
used as a positive control, 40 ug of protein of the TA muscle
from nontreated mdx52 mice were used as a negative
control, and 40 ug of protein from the indicated muscles of
treated mdx52 mice were loaded onto a NuPAGE Novex
3-8% Tris-Acetate Midi Gel (Invitrogen) and separated by
sodium dodecyl sulfate—-polyacrylamide gel electrophoresis
at 150V for 75 minutes. The proteins were transferred onto
an Immobilon PVDF membrane (Millipore, Billerica, MA) by
semidry blotting at 20V of constant voltage for 70 minutes.
The membrane was blocked with phosphate-buffered saline
containing 0.05% Tween 20, 0.1% casein, and 0.1% gelatin,
then incubated with the DYS1 monoclonal antibody (1:400 in
blocking solution) at 4 °C overnight. Using Imaged software,
the intensities of the bands were compared with those from
WT muscles, as previously described.*® Myosin heavy chain
(MyHC) stained by Coomassie Brilliant Blue was used as a
loading control.



Muscle function test. The grip strength test for hind and
forelimbs of the mice was performed 2 weeks after the eighth
of the every 2 weeks intravenous injections, as previously
described.s°

Biochemical blood test. Serum samples were collected from
WT mice, nontreated and treated mdx52 mice 2 weeks after
the final injection of vPMO cocktail. Serum biochemical
parameters of creatine kinase, blood urea nitrogen,
creatinine, total bilirubin, and v-GTP were assayed with the
Fuji Drychem system (Fuji Film Medical, Tokyo, Japan).

Statistical analysis. For analysis of dystrophin-positive fibers
in the locally injected TA muscle and CNFs in the systemic
treatment, statistical differences were assessed by F test
and Student’s ttest. Mann—Whitney U-test was performed to
analyze the number of lgG-positive fibers and CD3-positive
cells. One-way analysis of variance with a Tukey-Kramer
multiple-comparison test was performed for statistical
analysis of the serum biochemical test. Data are reported as
mean values = SD or + SE. The level of significance was set
at P < 0.05.

Supplementary material

Figure S1. Intramuscular (i.m.) injection of the 10-vPMO
cocktail at 0.3 pg (0.08 pg of each vPMO).
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