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where i1 : [0, o0) — R is a bounded function. Note that oz ( - )[/] is the Fisher
information (Murphy 1995, p. 189) with & being the index of infinite-dimensional
parameters. Appendix B1 shows that /n( a (t) — F(t) ) converges weakly to a
Gaussian process G g (t) with E[ Gp(t) | = 0 and

E[ GFr(s)Gr(r) | = / ws ()07 (we) (x)d F (x),

where w (x) = I(x < s) and o' (w,) solves o (xX)[1] = w; (x) for /.
Consider the empirical estimator of op(x)[1] as

A 1 n 1 1 I .
Gr@)lhl =~ Z;I(Ui <x<WV) l ?fh(x) "7 ,; Jikhi f t
where hj, = h(Ty). Then, the plug-in covariance estimator is
n
E[ Gr()Gr() | = / w0 W) WAF(x) = D wi(T)é ;! (w)(T)) f-
j=1

After some matrix calculations given in Appendix B2, one can verify

-1
} Wl )

where W, = (I(T(y < 1) = I(Tgy < 1), ..oy W(Tuoyy < 1) — 1Ty < 1) )T and
i, (f) is given in Eq. (2). Therefore, we obtain a plug-in covariance estimator

n . . .n f.
> wi(TH&; (w(T)) f; = W { l ,i )

j=I

A ~ A 1 1 —1
Cov{ F(s), F(t) } = W! [D {diag (’fE) — JVdiag (i«’?) Jl DT] W,, 3)
and a variance estimator
- T (1 T (1 ]
Vinfol F(t) } = W, | D 1 diag f—Q— — J diag ﬁ Jt D W;. 4)

Remark: Murphy (1995), Zeng and Lin (2006), Chen (2010), and Emura and Wang
(2012) use similar techniques to derive variance estimators. However, none of them
results in an explicit form like Egs. (3) and (4).

4 Inference based on the asymptotic covariance estimator

This section examines various inference procedures based on the proposed covariance
estimator.
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4.1 Pointwise confidence interval

Applying the variance estimator Vinfol F ()} in Eq. (4) and the asymptotic normality,
we propose a pointwise confidence interval. Log-transformation and arcsine-square
root transformation are known to improve the coverage performance over the linear
confidence interval (Klein and Moeschberger 2003, pp. 104-108). Here, we apply the
log-transformed interval based on log F (t)—logF(t) ~ N(O, VMO{ F )}/ F (1)?).

Hence, the (1 — «)100% confidence interval for F(¢) is

(F @) expl —zapp Vol AFOY @) 1, (@) expl zapa VEAE O E0) 1),

where 74/ is the (1 — «/2)100% point of the standard normal distribution.

4.2 Goodness-of-fit test
We consider a goodness-of-fit test for
Hy: F=UFyvs.H: F # Fy,

where Fy is a known continuous distribution function. Applying the continuous map-
ping theorem to the results of Sect. 3.2, we have

Jasup| F(t) — F(6)| -2 sup |G (1)].
I3 t

The asymptotic distribution can be easily simulated after estimating the covariance
structure of G g, () with Eq. (3). Ideally, the asymptotic distribution is approximated
by that of max; |G gy (¢;)| for fixed fine grids ¢; : j = 1, ..., N with large N. Here,
we suggest a practically convenient choice of #; = Ty, j = 1, ..., n—1, whichleads
to a simple algorithm and achieves good finite sample performance. The algorithm is
stated as follows:

Kolmogorov—Smirnov test for Hy: F = Fyvs. Hy : F # Fy;

Step 1: Calculate K = sup,| F (1) — Fo(r)| and i,,(£).

Step 2: Generate G? = (G, ..., G ) ~ N©,_1, Hi, )" 'HT) for b=1,
., B, and compute K(b):maxizl,._’,l_llGi(b)l, where H = ( Wr,,...,

WT(/z—l))T‘

Step 3: Reject Hy : F = Fy withlevel a if >0 I(K® > K )/B < a.

Similarly, we can test Hy : F = Fp using the Cramér—von Mises statistic

C=n [ (F®0) - Rw) Par,o) = ST B - Rt
0

j=l1

where F,,(t) = Z’}___l I(T; < t)/n is the empirical distribution function.
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Cramér—von Mises test for Hy : F = Fovs. Hy : F # Foy;

Step 1: Calculate C = 3"'_ | { F(T;) — Fo(T;) }? and i, (F).
Step 2: Generate G® = G\, ..., ¢P)) ~ N@©,_1, Hi,d®)"HT) for

b =1, ..., B,and then compute C® = (GHTG®),
Step 3: Reject Hy :  F = Fy with level « if 211;3:1 I(C?® >~ C)B<a.

4.3 Confidence band

The confidence band covers the true function F(¢) at all # for a specified confidence
level (1 — «). We follow the construction of two most well-known confidence bands
for the survival function under right-censoring, namely, the equal precision (EP) band
and Hall-Wellner (HW) band (Nair 1984; Klein and Moeschberger 2003, Sect. 4.4).

Let v (1) be a nonnegative continuous function. Applying the continuous mapping
theorem to the results of Sect. 3.2, we have

Visup | YLF@ JF@ = F@ ) N sup Y/ { F (1) 1G ().

Then, the confidence bands are obtained by solving
I —a= PI{SUP\ Y{FOHF@O) —F® Y < Cl—a(llf)} :
t

where ¢j_q () is the (1 — «)100% point of sup |y { F (1) YGr(t)//n).
1

The EP band correspondsto ¢y (u) = { u( 1 —u ) 4712 In practice, it is desirable to
make 1 (1) bounded. Following Nair (1984), we alternatively use Y pp(u) = { (u Vv
1)L —unpy))~ 2,0 < p; < py < 1, to yield the EP band

FO) £ era@ep L EON pi )1 — @) Apa ).

We set p;1 =0.1 or 0.2 and pr =0.8 or 0.9 as suggested by Nair (1984).
The HW band corresponds to ¢y gw () = 1, which is the version of Kolmogorov—
Smirnov band for uncensored data. The HW band is

F(t) % c1—o(Uuw),

where ¢1_q (¥ w) 1s obtained as the (1 — ) 100% point for { K®: b=1, ..., B }
in Step 2 of the Kolmogorov—Smirnov test.

The bootstrap is useful to validate the coverage performance of the confidence
bands above. First, the bootstrap NPMLESs, denoted as { F > b=1, ..., B},
are computed (see Step 1 of Appendix A). Then, approximately (1 — «)100% of
the bootstrap NPMLEs should fall inside the band. This validation scheme will be
illustrated with real data analysis.
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5 Simulations

Extensive simulations have been conducted to investigate the performances of the
proposed methods and to compare them with the bootstrap and jackknife methods.

We adopt the same design used in Moreira and Ufia-Alvarez (2010). They con-
sider models U* ~ Unif(0, a), T* ~ Unif(0, 1), and V* ~ Unif(b, 1), where
(a, b) = (0.25, 0.75), (0.5, 0.5) or (0.67, 0.33). The corresponding sample inclu-
sion probabilities are Pr(U* < T* < V*) = (1 —a + b)/2 =0.75, 0.5 and 0.33,
respectively. They also consider a model U* ~ Unif(—5, 15), T* ~ Unif(0, 15),
and V* = U* + ¢, where ¢ =5. This model is important since it yields a situation
similar to the childhood cancer example.

Based on simulated samples, we compute the relevant quantities (NPMLE, confi-
dence interval, goodness-of-fit statistic, and confidence band) for 500 repetitions. We
choose B = 1000 for the number of resamplings.

5.1 Performance of the covariance estimator

Forr (=1, ..., 500 )-th repetition, we compute the NPMLE F ) F (t)(r and
the covariance estimator C ov{ F(s), F (t) }(» in Eq. (3). We compare the average of
the estimated covariance

500

] s e
. ; Cov { Fs), B }m

with the sample covariance

EC . . -
) [F©0 ~ F& H Fow - Fo).

where F (s) = ZSOO F (s)(»/500. As shown in Table 1, the differences between the
estimated covariance and the sample covariance are very small for all configurations.
The sample covariance between F (s)() and ja (t) () increases as the distance | — s]
decreases, which is a similar behavior to that of the empirical distribution function
from un-truncated data.

5.2 Comparison with the bootstrap and jackknife methods

We compare the performance of the proposed variance esumator (VInfO{F (t)}), the
bootstrap estimator (Vgoot{ F (t)}) and the jackknife estimator (Vjack{F (1)}) for fixed
t. We compute the average of the estimated standard deviation (SD)

500

500 \/ VIF(0)
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Table 1 Simulation results of the proposed covariance estimator based on 500 replications

n =100 n =250
(s, 1) Sample Estimated Sample Estimated
covariance covariance covariance covariance
a=0.25,b=0.75 (0.2,0.5) 0.00565 0.00595 0.00195 0.00180
(0.4,0.5) 0.00655 0.00668 0.00234 0.00215
(0.2,0.8) 0.00279 0.00366 0.00112 0.00110
a=0.5,b=0.5 (0.2,0.5) 0.00641 0.00704 0.00266 0.00258
(0.4,0.5) 0.00833 0.00877 0.00335 0.00336
(0.2,0.8) 0.00378 0.00450 0.00184 0.00169
a=0.067,b=0.33 (0.2,0.5) 0.00366 0.00374 0.00157 0.00141
(0.4,0.5) 0.00677 0.00645 0.00283 0.00245
(0.2,0.8) 0.00356 0.00350 0.00159 0.00130
c=5 3.0,7.5) 0.01166 0.01291 0.00525 0.00511
(6.0,7.5) 0.02027 0.02068 0.00860 0.00845
(3.0,12.0) 0.00558 0.00654 0.00269 0.00260

Data are generated from U* ~ Unif(0, a), T* ~ Unif(0, 1), and V* ~ Unif(b, 1) in the first three cases,
and from U™* ~ Unif(— 5 15), T* ~ Unif(0, 15),and V* = U* + c in the last case

Sample covariance = b5 2500 F(s)(, 3 = F&)HF® @y — Ft)y )
Estimated covariance = SOO ZS Cov F(s) F(t) Yoy

where V{ﬁ (1)} is a variance estimator for the rth repetition, and compare it with

SD{ﬁ (1)}, the sample standard deviation (SD) for 2 )y, r =1, ..., 500. The
performance of the three methods are measured with the mean squared error

500

1 — . 2
MSE = 500 ( VVIF ()} — SD{F (1)} ) .

r=1

We also compare the performance of the three methods in terms of the coverage
performance of the 95% confidence interval.

Tables 2 and 3 show the results under the models U* ~ Unif(0, a), T ~
Unif(0, 1), and V* ~ Unif(b, 1), where (a, b) = (0.25, 0.75) and (0.5, 0.5),
respectively. All the three variance estimators correctly capture the estimates of
SD{F (1)}. Among the three estimators, the jackknife has the smallest bias. In terms of
MSE, the bootstrap is the best for small samples, while the proposed method tends to
be the best for large samples. For instance, the bootstrap is the best for n = 100, while
the proposed method is the best for n =200, 250 and 300 (Table 2). The jackknife has
the largest MSE in most configurations.

All the three methods generally produce the nominal 95% coverage performance
att =0.5 (F(t) =0.5). However, at the tail t = 0.2 (F(¢) = 0.2), the bootstrap method
often results in serious under-coverage. The magnitude of the under-coverage of the
bootstrap is similar to that reported in the simulation results of Moreira and Uia-
Alvarez (2010). Both the proposed and the jackknife methods alleviate the under-
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Table 2 Simulation results under U* ~ Unif(0, a), T* ~ Unif(0, 1), and V* ~ Unif(b, 1) with a=
0.25 and b = 0.75 based on 500 replications

n =100 n =150 n =200 n =250 n =300
F@) =05
SD 0.083 0.064 0.053 0.050 0.046
ESD Proposed 0.070 0.057 0.050 0.045 0.042
Bootstrap 0.070 0.059 0.051 0.046 0.043
Jackknife 0.075 0.061 0.053 0.047 0.044
MSE Proposed 0.00219 0.00086 0.00033 0.00028 0.00026
Bootstrap 0.00104 0.00070 0.00048 0.00038 0.00035
Jackknife 0.00296 0.00185 0.00094 0.00075 0.00073
95%Cov Proposed 0.930 0.942 0.950 0.946 0.938
Bootstrap 0.920 0.938 0.950 0.942 0.948
Jackknife 0.930 0.950 0.948 0.946 0.940
F(t) =02
SD 0.090 0.065 0.057 0.052 0.048
ESD Proposed 0.069 0.056 0.049 0.045 0.041
Bootstrap 0.069 0.058 0.051 0.046 0.042
Jackknife 0.074 0.061 0.053 0.047 0.043
MSE Proposed 0.00394 0.00091 0.00073 0.00052 0.00044
Bootstrap 0.00213 0.00113 0.00094 0.00067 0.00055
Jackknife 0.00522 0.00248 0.00189 0.00115 0.00103
95%Cov Proposed 0.938 0.942 0.946 0.932 0.942
Bootstrap 0.898 0.910 0.928 0.908 0.924
Jackknife 0.940 0.948 0.952 0.938 0.950

1 <500 [, 7
ESD = =55 2501  VIF®O) )

MSE = ks 322% (JVIF )}y — SDIE (1)} )?

95%Cov = Empirical coverage probability of the 95% confidence interval

coverage at the tail. Interestingly, the jackknife is quite competitive with the proposed
method in terms of coverage performance despite the poor performance of the MSE.

Table 4 shows the results under the model U* ~ Unif(—5, 15), T* ~ Unif(0, 15),
and V* = U*+5. All the three variance estimators are nearly unbiased and their MSEs
are very similar. Although the bootstrap seems to provide the best result in terms of
the MSE, the three methods are quite competitive. In terms of coverage probability,
the bootstrap tends to be the best.

Although we found no single best method across all criteria, the advantage of
the proposed method over other methods appears for larger samples (n = 250 and
300). The MSE of the proposed method is smallest in majority of cases. Unlike the
bootstrap that may exhibit serious under-coverage at the tails, the proposed method
can alleviate the problem for large sample sizes. As for the computational cost among
the three methods, the proposed method is the lowest since it merely performs the
matrix algebra in Eq. (4). On the other extreme, the bootstrap requires performing the
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Table 3 Simulation results under U* ~ Unif(0, a), T* ~ Unif(0, 1), and V* ~ Unif(b, 1) witha=0.5
and b = 0.5 based on 500 replications

n =100 n =150 n =200 =250 n =300
F@) =0.5
SD 0.093 0.078 0.068 0.059 0.055
ESD Proposed 0.084 0.070 0.060 0.054 0.049
Bootstrap 0.086 0.071 0.061 0.055 0.050
Jackknife 0.092 0.076 0.063 0.057 0.051
MSE Proposed 0.00237 0.00227 0.00141 0.00069 0.00059
Bootstrap 0.00125 0.00104 0.00061 0.00054 0.00040
Jackknife 0.00385 0.00326 0.00161 0.00150 0.00087
95%Cov Proposed 0.932 0.934 0.950 0.952 0.958
Bootstrap 0.934 0.944 0.954 0.952 0.958
Jackknife 0.934 0.944 0.950 0.964 0.962
F(t)=02
SD 0.093 0.074 0.065 0.059 0.052
ESD Proposed 0.080 0.066 0.058 0.052 0.048
Bootstrap 0.084 0.069 0.060 0.054 0.049
Jackknife 0.090 0.073 0.061 0.055 0.050
MSE Proposed 0.00270 0.00132 0.00077 0.00055 0.00035
Bootstrap 0.00237 0.00152 0.00087 0.00071 0.00046
Jackknife 0.00551 0.00366 0.00138 0.00119 0.00051
95%Cov Proposed 0.932 0.938 0.946 0.928 0.926
Bootstrap 0.908 0.902 0.934 0.924 0.910
Jackknife 0.944 0.950 0.952 0.942 0.938

ESD = 555 2021  VIF Oy
MSE = b5 500 ([ VIF®) () — SDIF () )

95%Cov = Empirical coverage probability of the 95% confidence interval

self-consistency algorithms over B = 1,000 resamplings. Hence, the proposed method
would be useful when the sample size is large.

5.3 Performance of the goodness-of-fit test

First, we examine the type I error of the goodness-of-fit tests introduced in Sect. 4.2.
For each run, we record the rejection/acceptance status of the goodness-of-fit tests
at the 100a% level, and calculate the rejection rates among 500 repetitions. We also
compare the null means of the tests (denoted by E[C] and E[K ]) with the resampling
means (denoted by E[C (®)] and E[K D).

As shown in Table 5, the rejection rates (type I error rates) are in good agreement
with the selected nominal sizes (o =0.01, 0.05, and 0.10). In addition, the sample means
E[C] and E[K] are close to the resampling means E[C ®)]and E[K @7, respectively.

@ Springer — 440 —



Statistical inference based on the NPMLE

Table 4 Simulation results under U* ~ Unif(-5, 15), T* ~ Unif(0, 15), and V* = U™ + 5 based on
500 replications

n =100 n =150 n =200 n =250 n =300
F(t) =05
SD 0.146 0.121 0.103 0.096 0.086
ESD Proposed 0.146 0.120 0.105 0.094 0.086
Bootstrap 0.147 0.120 0.105 0.094 0.086
Jackknife 0.156 0.125 0.108 0.096 0.088
MSE Proposed 0.00064 0.00023 0.00013 0.000065 0.000046
Bootstrap 0.00048 0.00020 0.00010 0.000069 0.000046
Jackknife 0.00089 0.00026 0.00014 0.000067 0.000047
95%Cov Proposed 0.904 0.932 0.946 0.928 0.928
Bootstrap 0.940 0.944 0.950 0.950 0.930
Jackknife 0.910 0.936 0.946 0.940 0.936
F() =02
SD 0.101 0.084 0.071 0.064 0.057
ESD Proposed 0.100 0.081 0.070 0.062 0.057
Bootstrap 0.106 0.083 0.072 0.063 0.058
Jackknife 0.107 0.084 0.072 0.064 0.058
MSE Proposed 0.00109 0.00048 0.00027 0.00018 0.00012
Bootstrap 0.00097 0.00044 0.00024 0.00017 0.00012
Jackknife 0.00133 0.00053 0.00028 0.00018 0.00013
95%Cov Proposed 0.938 0.944 0.946 0.942 0.948
Bootstrap 0.958 0.946 0.954 0.944 0.948
Jackknife 0.956 0.954 0.952 0.942 0.954

1 <500 [O7
ESD = 555 2721  VIFO} )

MSE = b5 322% ((/V{E(®)}() — SDIF ()} )?

95%Cov = Empirical coverage probability of the 95 % confidence interval

However, under (a, b) =(0.67, 0.33), the Cramér—von Mises test leads to somewhat
higher rejection rates than the nominal sizes. Overall, the Kolmogorov—Smirnov test
produces a slightly conservative result.

Next, we examine the power under alternative hypotheses. We focus on the case of
(a, b) = (0.5, 0.5) under the null Fp(r) = tI(0 < t < 1) and alternatives

(1) Fi() =710 <t < 1), y=1/18,1/1.6,....1,...,1.6,1.8.
(2) Fr(t) =110 <t < y)/y, y=1,0975,095, ...,0.75, 0.725.

As shown in Fig. 2, the power increases as y departs from the null model of y = 1.
The curves for @ = 0.05 (right panels) are consistently higher than those for = 0.01
(left panels). It is found that the Cramér—von Mises test exhibits higher power than the
Kolmogorov—Smirnov test under the alternative model (1). This conclusion, however,
should not be overemphasized as the type I error rates of the Cramér—von Mises test
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Table 5 Simulation results for the proposed goodness-of-fit tests under the null hypothesis based on 500
replications

Cramér—von Mises Kolmogorov—
test (C) Smirnov test (K)
n Il
100 150 250 100 150 250
(a, b) = Rejectrateate = 0.10  0.096  0.097  0.100 0.075  0.075  0.095
(0.25, 0.75)
Rejectrateat e = 0.05  0.045  0.047  0.056 0.031  0.037  0.043
Rejectrateate = 0.0 0.006  0.011  0.018 0.006  0.005 0015
E[C]or E[K] 0.608  0.623  0.667 0.118  0.099  0.081
E[CP)or E(KP] 0625 0614  0.605 0.115  0.096  0.077
(a, b) = Rejectrate ata = 010 0.120  0.105  0.088 0.089  0.081  0.078
(0.5,0.5)
Rejectrate at @ = 0.05  0.063  0.055  0.045 0.037  0.033  0.030
Rejectrate ata = 0.01  0.015  0.014  0.008 0.006  0.007  0.005
E[C]or E[K] 1.078 1206  1.306 0.143  0.121  0.098
E[CD)or E[K®)] 1.167 1281  1.331 0.137  0.116  0.093
(a, b) = Rejectrateat e = 0.10  0.140 0150  0.120 0.090  0.065  0.105
(0.67, 0.33)
Rejectrate at @ = 0.05  0.095  0.085  0.060 0.040  0.035  0.040
Rejectrateat o = 0.01  0.015  0.020  0.030 0.010  0.005  0.010
E[C]or E[K] 1.006  1.109  0.989 0.142  0.118  0.091
E[C®7or E[K® 1.001 0984  0.820 0.135 0.113  0.087
c=5 Rejectrate ata = 0.10  0.108  0.119  0.119 0.096  0.106  0.110

Rejectrate at e = 0.05  0.063  0.057  0.059 0.052  0.055  0.055
Rejectrate ata = 0.01  0.015 0014 0.014 0.010 0011  0.013
E[C]or E[K] 0417 0411 0412 0.104 0084  0.067
E[CO)or E[K®)] 0.403  0.403  0.401 0.103  0.085  0.066

The average of the Cramér—von Mises statistics is denoted by E[C]. The average of its resampling version
is denoted by E[C (b)]. E[K]and E[K (b)] are defined similarly for the Kolmogorov—Smirnov statistics

are slightly higher than those of the Kolmogorov—Smirnov test. The results for other
(a, b) are similar.

5.4 Performance of the confidence band

We investigate the coverage performance of the EP and HW bands introduced in
Sect. 4.3. The EP band is calculated under p; =0.2 and p, =0.8. For each run,
we check if the bands completely cover the true F. The coverage rates over the 500
replications are given in Table 6. Overall, the coverage rates reflect the nominal levels
and are particularly accurate when 1 — « = 0.99. The EP band has slightly more
accurate coverage compared to the HW band, especially at levels 1 — « = 0.90 and
0.95. This is because the HW band exhibits slight over-coverage, which parallels the
conservative results of the Kolmogorov—Smirnov test.
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Fig.2 The power curves for the proposed goodness-of-fit tests with sizes & =0.01 (left panel) and o =0.05
(right panel) based on n = 150. The value y = 1 corresponds to the null, while ¥ # 1 corresponds to the
alternative. (1) Alternative Fi(¢t) = t]'/yI(O <t < 1), y=1/18,1/16,...,1, ..., 1.6, 1.8. (2) Alternative
)y =tI0 <t < y)/y,y=1,0975,095, ..., 0.75,0.725

6 Data analysis

We analyzed the childhood cancer data from Moreira and Ufia-Alvarez (2010) as
described in Sect. 1. The sample consists of 409 children with { (U;, T;, V;) :
J =1, ..., 409 } subject to double-truncation U; < T; < V;, where T} is the age
(in days) at diagnosis, U; is the age at the start of follow-up (January 1, 1999), and
Vi = U; 4+ 1825 is the age at the end of follow-up (December 31, 2003). The primary
interest here is inference of the distribution function F (t) = Pr(T™ < 1), where T™ is
the pre-truncated age at diagnosis. We depict the NPMLE F (¢) in Fig. 3. The resulting
curve is virtually identical to that reported in Moreira and Ufa-Alvarez (2010). They
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Table6 Coverage rates of the proposed confidence bands at the 100(1 —«)% level based on 500 replications

Nominal level n =100 n =150 n =250
EP (equal precision) band
a=0250=0.5 [ —a=0.900 0.904 0.924 0.902
I —a=0.950 0.958 0.952 0.950
I — o =0.99 0.990 0.990 0.984
a=05,b=0.5 1 —« = 0.900 0.908 0.910 0.918
1 —a=0.950 0.964 0.954 0.960
I —a=0.990 0.990 0.988 0.990
a=0.67,b=033 1 —a=0.900 0.915 0.905 0.910
1 —a =10.950 0.950 0.955 0.950
1 —a=0.99 0.985 0.995 0.985
c=5 I —a = 0.900 0.894 0.894 0.876
I —a=0950 0.928 0.940 0.932
1 — o =0.990 0.984 0.986 0.986
HW (Hall-Wellner) band
a=025,b=0.75 I —a =0.900 0.927 0.926 0.905
1 —a =0.950 0.969 0.963 0.957
I —a=0.990 0.994 0.995 0.985
a=05b=05 1 —a =0.900 0.912 0919 0.922
1 — o =0.950 0.963 0.967 0.970
1 —a=0.990 0.994 0.993 0.995
a=0.67,0=0.33 I —a =0.900 0.910 0.935 0.895
1 —o=0.950 0.960 0.965 0.960
1 —a =099 0.990 0.995 0.990
c=5 1 —oa=0.900 0.904 0.894 0.890
1 —a =0.950 0.948 0.945 0.945
1 —a=0.99 0.990 0.989 0.987

provide pointwise confidence intervals using the bootstrap. In this paper, we provide
additional inference procedures using goodness-of-fit tests and confidence bands.
For goodness-of-fit tests, we set the following two hypotheses:

t
Hyr: F(t) = 5—4—7—31(0 <t < 5475) + I(r = 5475)

and

3/4
t
Hy: F(t) = (57:7—5) L0 <t < 5475) + 1(t = 5475),

where 5,475 = 15 x 365 (days) is the maximum age to be defined as childhood cancer
(15 years old). Here, Hy; implies that childhood cancer occurs uniformly over all ages
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Fig.3 The NPMLE F (t) of the distribution function of ages at diagnosis for childhood cancer (solid line).
The hypothesized curves are Hoy @ F(t) = (£/5475) I(0 < t < 5475) + It > 5475) (dashed line),
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Fig. 4 The NPMLE and its 95% confidence bands. The dotted line is the EP (equal precision) band and
the dashed line is the HW (Hall-Wellner) band

under 15 years, while Hpy implies that the occurrence of childhood cancer decreases
as their age increases. Figure 3 depicts the two hypothesized curves along with the
NPMLE. The curve for Hy, fits better than the curve for Hy;. Indeed, the Cramér—von
Mises test rejects Hyp at 10 % significance level (P-value =0.094), while does not reject
Hyy (P-value = 0.732). Similar results are found through the Kolmogorov—Smirnov
test (P-value = 0.099 for Hy; and P-value = 0.797 for Hy,).

Figure 4 displays the 95 % EP and HW bands based on the algorithm in Sect. 4.3.
The EP band is calculated under p; =0.1 and p, =0.9. The EP and HW bands
are generally competitive, but the EP band is slightly narrower in the tails. This is
qualitatively similar to the EP and HW bands for right-censored data. Now, we validate
the coverage performance using the bootstrap as mentioned in Sect. 4.3. The EP band
covers 950 out of the 1000 bootstrap NPMLEs and the HW band covers 964 out of
the 1000 bootstrap NPMLESs. Hence, the coverage level is close to the nominal 95 %.

We compare the three variance estimators (proposed, bootstrap and jackknife) for
selected values of . The computation time required for the three estimators are also
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Table 7 Variance estimates of the NPMLE based on the childhood cancer data

Proposed: Bootstrap: Jackknife:

V Vinfol F (1)} VBoolF (1)) V Viaek {F (1))
Variance estimate at ¢ = 750.0 0.0469 0.0464 0.0473
Computation time (s) 0.25) (342.16) (118.37)
Variance estimate at ¢ = 2,083.5 0.0817 0.0814 0.0815
Computation time (s) 0.22) (313.53) (115.83)
Variance estimate at t = 4,251.0 0.0599 0.0665 0.0644
Computation time (s) 0.23) 317.48) (117.37)

The three variance estimators are calculated at t = 750.0, t =2,083.5, and ¢t =4,251.0, corresponding to the
20, 50, and 80 percentiles of observed ages at diagnosis, respectively. Required computation times for the
three methods are also compared

compared. As shown in Table 7, the three estimates produce very similar results for
all £. On the other hand, the computation time required for the proposed method is
much shorter than those of the resampling-based methods.

7 Conclusion

This paper introduced a simple and explicit covariance estimator of the NPMLE using
the observed information matrix. This technique provides various inference proce-
dures, including pointwise confidence interval, goodness-of-fit, and confidence band.

Our simulations showed that the major advantage of the proposed variance estimator
over the bootstrap and jackknife was for the larger samples (n = 250 and 300). The
data analysis demonstrated the reduced computational time for the proposed method
vis-a-vis the bootstrap and jackknife methods. Hence, the proposed method is most
useful when the sample size is very large, which often occurs in demography and
epidemiology (e.g., Stovring and Wang 2007). In such large-scale studies, the proposed
method may be the best possible choice for statistical inference.

For goodness-of-fit procedures, we developed the Kolmogorov—Smirnov and
Cramér—von Mises tests with the null distributions simulated by the proposed covari-
ance structure. The simulations showed that these tests have proper type I error rates
and power. Applying the tests to the childhood cancer data, we rejected the scien-
tific assumption that childhood cancer occurs uniformly over all ages below 15 years.
This conclusion could not have been derived without developing the goodness-of-fit
procedures.

Acknowledgments We would like to thank the editor, the associate editor and the two reviewers for
their helpful comments and corrections that greatly improved the manuscript. This work was financially
supported by the National Science Council of Taiwan (NSC101-2118-M008-002-MY?2) to T. Emura, and
a Grant-in-Aid for a Research Fellow of the Japan Society for the Promotion of Science to H. Michimae
(No. 23570036). The work of Y. Konno was partially supported by Grant-in-Aid for Scientific Research(C)
(No. 25330043 and 21500283).

@ Springer — 446 —



Statistical inference based on the NPMLE

Appendix A: Bootstrap and jackknife algorithms

Simple bootstrap algorithm (Moreira and Ufia-Alvarez 2010):

Step 1: Foreach b = 1, ..., B, draw bootstrap resamples { (U , Tj*b, b)
j=1 ..., n}from{ (U;, Tj, Vj): j=1, ..., n}, andthencomputethe
NPMLE F(t) from them.

Step 2: Compute the bootstrap variance estimator

Voot F (1)} = B——— Z {Fp() — F* ),

b=1

where F*(1) = £ "8 | F(1), and take the (@/2) x 100% and (1 —a/2) x 100%

points of { Is’t’f(t) :b=1, ..., B}forthe(l —a) x 100% confidence interval.
Jackknife algorithm:

Step 1: Foreachi = 1, ..., n, delete the i th sample from { (U;, T;, Vj) :

j =1, ..., n}, and then compute the NPMLE ﬁ(_i)(t) from the remaining n—1

samples.

Step 2: Compute the jackknife variance estimator
n— 1 n _
Vi F(0)} = —— 2 {Fiy@ = Fy 0P,
i=1

where F'(.)(t) = % 1 ﬁ(_i)(t), and the log-transformed (1 — «) x 100% con-
fidence interval

(F@) expl —za2 Vla AF @Y F @) 1, E@)expl zap2 Ve AE @} E(@) 1)

Appendix B: Asymptotic theory
Appendix B1. Weak convergence of /n( F (1) — F{t))

Although not stated explicitly, we assume that the identifiability conditions (Shen
2010, p. 836) are satisfied. Consider the log-likelihood function

Lu(F)/n =" (log fj —log Fj)/n.

i=1

Forany h € Q, Where Q is the set of all uniformly bounded functions, let H() =
fo h(s)dF(s)and H(t) = fo h(s)dF (s) where h satisfies the constraint H (00) = 1.

SupEose ttiat F is thp maximizer of £, (F). Then for any & € Q and ¢ > 0, we have
£,(F +eH) < £,(F). Hence, the score function 0¢,,(F + e H)/d¢|.=¢ is equal to
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N o JWWUi =5 < Vh(s)dF(s)
O =22 [h(m T LU <5 = VDdE() }

=]

for any i € Q. The expectation is defined as

W()[h] = E {IZ(T*) B fI(U*< <s < V*)]z(S)dF(S)}

JIU* <5 < VHAF(s)

Consider W, (F)[ ] as a random function defined on Q. Accordingly, consider a ran-
dom map ® — [°°(Q), defined by F +— W, (F)[-]. Then, the equation ¥,,(F)[-] =0
is considered the estimating function that takes its value on [°°(Q). It follows that the
NPMLE is the Z-estimator that satisfies \11,1(13 )[-] = 0 (van der Vaart and Wellner
1996, p. 309). In the following, we assume that certain regularity conditions for the
asymptotic theory for the Z-estimator hold, which include the asymptotic approxi-
mation condition, the Fréchet differentiability of the map, and the invertibility of the
derivative map.
Then, one can write

0 = n!/2W, (F)[h] = n'?W, (F)[R] + 0" ?¥p(F — F)[h] 4 op(1), (5)

where W p(ﬁ — F)[h] 1s the derivative of W, (F)[h] at F with direction F—F. Tt
follows from the form of W(F)[-] that

. A 1 A A A
Vp(F — F)lh] = Z;_i\y{ F 4 1(F = F) }[h]li=0 = — /GF(X)[h]d(F — F)(x).
©

It follows from Eqs. (5) and (6) that the NPMLE satisfies the asymptotic linear expres-
sion

NG / o ()[RId(F — F)(x)

1 n L J1(U; <5 < Vi)h(s)dF(s)

where the right-side converges weakly to a mean zero Gaussian process with the
covariance structure

JIU*<s< V*)h(s)dF(s):| {hl(T*) B JI(U*<s< V*)h’(s)dF(s)]
JIU*<s<V*)dF(s) [I(U*<s<V*)dF(s)

E [h(T*)—
= /ap(x)[h]h/(X)dF(x)»

for bounded functions / and 4’. The desired weak convergence of /n( F (1) — F (1) )
1s obtained by setting & = o Ywy) in Eq. (7).
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-1
Appendix B2: Proof of >7_; w(T; )AF_1 (we) (T )fj {%f—)} W

It follows that

n

5’F(Tj)[h]:%2 {—*LZ Lkhkfk} %':h i/ ZZJ”J‘khkfk]
i=1 '

2
Fp F7 % i1i=1 Fi
(8)
Note that
oy dgn . S
1 1 13
JTdiag (—F—i) J = : . :
jin-,i I jin-]in
it —F’Tl Z;:] TR
Hence, Eq. (8) with 2 = A’ and op (x)[1'] = w;(x) = I(x < 1) yield
w:(T1) T : ) S TmAh
: == | {diag{ — ) — /T diag{ — } J :
: n 2 F2 Fu=1-1T_ f | T .
we (13,) - ! n- by fu
- = h fi
1 1 1
= - {diag (:;) — JTdiag (7—) J}[ D' : ,
n £ 2 fa=1-17_f | ~
- -1 fu-1

where the last equation uses the constraint Z’]’-:I hj f] = 0. Multiplying D for both
sides, and taking the inverse of the information matrix,

“%wz)m)fl ) {in(f))—l w,<T1)fwt(Tn>

67 W (Ta ) fo wi(T1) = wi(Ty)

It follows that

n—1

Zws(mo W(T) fj = D {ws(T)) = we(Ty) Y67 (T f

j=1

i (F)

—1 | we(T1) — wi(Ty)
= [ws(T1) = ws(To) - ws (Tu1) — wi(T;) ]{ } :
wt(Tl) - wt('rll)

n

Ayl
:W}‘{’”(D} W,
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Aikou Okamoto, MD, PhD,* Rosalind M. Glasspool, MBBS, PhD, FRCET Seiji Mabuchi, MD, PhD,}
Noriomi Matsumura, MD, PhD,§ Hiroyuki Nomura, MD, PhD,|| Hiroaki Itamochi, MD, PhD,q
Masashi Takano, MD, PhD,# Tadao Takano, MD, PhD,** Nobuyuki Susumu, MD, PhD,//
Daisuke Aoki, MD, PhD,/| Tkuo Konishi, MD, PhD,§ Alan Covens, MD, LMCC, FRCSC, 1
Jonathan Ledermann, MD, FRCP#} Delia Mezzazanica, PhD,§$
Christopher Steer, MBBS, FRACR//|| David Millan, BSc, MB, ChB, FRCPath,qY
lain A. McNeish, MD, PhD,## Jacobus Pfisterer, MD, PhD,*** Sokbom Kang, MD, PhD, 11t
Laurence Gladieff, MD, 113} Jane Bryce, MSN,§§§ and Amit Oza, MD, FRPCPC, MBBs|/////

Abstract: Clear cell carcinoma of the ovary (CCC) is a histologic subtype of epithelial
ovarian cancer with a distinct clinical behavior. There are marked geographic differences in
the prevalence of CCC. The CCC is more likely to be detected at an early stage than high-
grade serous cancers, and when confined within the ovary, the prognosis is good. However,
advanced disease is associated with a very poor prognosis and resistance to standard
treatment. Cytoreductive surgery should be performed for patients with stage II, IIL, or IV
disease. An international phase III study to compare irinotecan/cisplatin and paclitaxel/
carboplatin as adjuvant chemotherapy for stage IIV CCC has completed enrollment (GCIG/
JGOG3017). Considering the frequent PIK3CA mutation in CCC, dual inhibitors targeting
PI3K, AKT in the mTOR pathway, are promising. Performing these trials and generating the
evidence will require considerable international collaboration.
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Review for CCC of the Ovary

O varian cancer is made up of several different histological
subtypes, and it is clear that these represent different
diseases with distinct biology, pathogenesis, and clinical be-
havior. However, to date, they have all been treated in the
same way. As understanding of the differences increases, this
is no longer a rational approach. Most women included in
clinical trials have high-grade serous (HGS) ovarian cancer,
and it cannot be assumed that the results of these trials are
applicable to women with other histotypes. Clear cell carci-
noma of the ovary (CCC) is more likely to be detected at
an early stage than HGS cancers, and when confined within
the ovary, the prognosis is good. However advanced disease
is associated with a very poor prognosis and resistance to stan-
dard treatment.! Histotype-specific trials and treatment protocols
are required. Performing these trials and generating the evidence
will require considerable international collaboration.

EPIDEMIOLOGY

The CCC is a histologic subtype of epithelial ovarian
cancer with a distinct clinical behavior. There are marked
geographic differences in the prevalence of CCC. In North
America and Europe, CCC is the third most common histologic
subtype of epithelial ovarian cancer, with an estimated preva-
lence of 1% to 12%.2 Recent Surveillance, Epidemiology, and
End Results data revealed that the incidences of CCC in women
living in United States were 4.8% in whites, 3.1% in blacks, and
11.1% in Asians.® In Japan, the prevalence of CCC is higher
than in western countries, although the reason for this remains
unknown.! The annual report of the Japanese Gynecologic
Cancer Committee showed an increasing incidence of CCC as a
proportion of all epithelial ovarian cancers (Fig. 1),* now making
up more than 25% of epithelial ovarian cancers in Japan.

The incidence of thromboembolic complications in
CCC, such as deep venous thrombosis and pulmonary em-
bolism, is reported to be higher than other epithelial ovarian
cancers (16.9%~27.3% vs 0%—6.8%) and is considered as an
independent prognostic factor.>¢

PATHOLOGY

Gross

Most CCCs are unilateral. Typically, the sectioned
surface of the tumor reveals a unilocular cyst with 1 or more
solid, yellow nodules protruding into the cyst. Cysts may
contain watery, mucinous fluid or brownish “chocolate-
colored” fluid. Multilocular cysts are less common, and oc-
casional tumors are predominantly solid. The mean size of
CCC is 15 cm.

Microscopic

The CCC is composed of glycogen-containing cells
with abundant clear cytoplasm and hobnail cells. Many tu-
mors also contain cells with granular eosinophilic cytoplasm.
Nuclei are often eccentrically placed, with rounded-to-
angulated contours. Hobnail cells have scant cytoplasm and
enlarged, bulbous, hyperchromatic nuclei that protrude into
tubule and cyst lumens. Bland and flattened cuboidal cells
may line cysts or glands. It may arise within an endometriotic

© 2014 IGCS and ESGO
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FIGURE 1. The rate of CCC among all epithelial ovarian
cancers in Japan (annual reports on Japanese
Gynecologic Cancer Committee).

cyst, and benign endometriotic lesions or atypical endome-
triosis may be seen adjacent to CCC. Occasionally, CCCs also
present in association with adenofibromatous, clear cell
borderline tumors.

The CCC exhibits high-grade nuclear features, although
a spectrum of nuclear atypia may be present. The CCCs have
traditionally been considered to be of high grade, but mitotic
figures are relatively uncommon compared with other ovarian
carcinomas.

Architectural patterns include tubulocystic, papillary,
solid, and mixtures of them. Tubulocystic areas include tubules
and cysts that are lined by flat-to-cuboidal cells with variable
atypia and scattered hobnail cells (Fig. 2A). Papillary areas
contain papillae that are small and round in comparison with
those in serous carcinoma (Fig. 2B). The fibrovascular cores
may be filled with either fibromatous, myxoid, spherulelike
mucoid, or hyalinized basement membrane-type material. Solid
areas are composed of sheets of polyhedral cells with clear
cytoplasm (Fig. 2C).

Mixed subtypes of epithelial carcinomas are found.
However, these should be considered as HGS tumors.”

Immunohistochemistry

The differential keratin profile is CK7+/CK20—, al-
though CK7 may be focal in approximately 10% of cases.® In
general, CCCs are negative for estrogen receptor, progester-
one receptor, and WTI. Hepatocyte nuclear factor-18 is a
relatively new marker that is positive in CCC.° WT1 is useful
in distinguishing CCC from mixed serous/clear cell tumors as
it is typically positive in the latter.

Molecular Biology and Genetics

Unlike HGS tumors, CCCs are generally p53 wild type
and have a lower frequency of BRCA1 and BRCA2 mutations.'°
The most frequent alterations are ARIDIA and PIK3CA mu-
tations.''"'? 4RIDIA encodes the protein BAF250a, which is
integral in the SWI-SNF chromatin remodeling complex.
ARID1A mutations are seen in 40% to 60% of CCCs, but not in
HGS carcinomas. In general, loss of BAF250a expression
correlates with mutational status. PIK3CA mutations are seen in
approximately 40% of clear cell tumors. Amplification and
overexpression of the antiapoptotic protein, PPMID, is seen in
10% of CCCs,!? and mutation of PPP2R14 has been reported
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FIGURE 2. Microscopic findings of CCC. Tubulocystic
areas include tubules and cysts that are lined by
flat-to-cuboidal cells with variable atypia and scattered
hobnail cells (A). Papillary areas contain papillae that are
small and round in comparison with those in serous
carcinoma (B). The fibrovascular cores may be filled with
either fibromatous, myxoid, spherulelike mucoid, or
hyalinized basement membrane-type material. Solid
areas are composed of sheets of polyhedral cells with
clear cytoplasm (C).

in 7%, whereas KRAS has been reported in 5%.'# The CCCs
are not a uniform group. Tan et al demonstrated groups with
distinct patterns of copy number aberration in a comparative
genomic hybridization analysis,'> which seems to have prog-
nostic significance.

Gene Expression Analysis

Yamaguchi et al'® identified the gene signature that dis-
tinguishes CCC from other types of ovarian cancer using a mi-
croarray data set of ovarian cancers. The signature consisted of
437 genes and was designated as the CCC signature, which is
specific for CCC. A categorical analysis demonstrated that genes
belonging to 3 categories—stress response, sugar metabolism,
and coagulation—are frequently involved in this signature.

INITIAL TREATMENT

Appropriate surgical treatment, followed by systemic
chemotherapy, is recommended as an initial treatment for
patients with CCC. The standard surgical treatment for pa-
tients with CCC is the same as for other epithelial ovarian cancers
and includes hysterectomy, bilateral salpingo-oophorectomy,
omentectomy, pelvic and para-aortic lymphadenectomy, and
cytoreductive surgery. The recommended regimen of postop-
erative chemotherapy is paclitaxel (175 mg/m?) combined with
carboplatin (AUC 5-7.5), given every 3 weeks for 6 cycles.

Surgery
Lymphadenectomy is important to detect whether lymph
nodes are involved in CCC because the presence of lymph node

S22

metastasis is an independent prognostic factor!”!® and may
guide the need for adjuvant therapy in early disease. Several
authors have examined the therapeutic role of lymphadenec-
tomy in therapy for this disease. In the Multicenter Italian Trials
in Ovarian Cancer (MITO 9) retrospective study, disease-free
survival in patients who underwent lymphadenectomy was
longer than in other patients (P = 0.0001), in both early (I/IT)
(P = 0.0258) and advanced (II/TV) (P = 0.037) stages.'®
Lymphadenectomy also prolonged overall survival (OS) in
patients with advanced stage (P = 0.0039). However, previous
other reports have failed to show a therapeutic benefit from
lymphadenectomy.!”1° Further study will be required to
identify the impact of lymphadenectomy on a patient’s outcome
from CCC.

Cytoreductive surgery should be performed for patients
with stage 11, III, or IV disease. Takano et al*° reported no
significant prognostic difference between the patients who
underwent optimal cytoreduction (<1 cm) and those who had
residual disease of greater than 1 cm. Complete surgery with
no residual macroscopic disease was the only independent
prognostic factor (median progression-free survival, 7 vs 5 vs
39 months, respectively). In a study by the Gynecologic On-
cology Group, the markedly poor prognosis of CCC was ob-
served even when patients have small-volume disease.?! These
findings suggest that a maximal effort should be made to re-
move all gross disease in patients with CCC.

Unilateral salpingo-oophorectomy preserving contralat-
eral normal ovary and uterus should be considered for patients
desiring to remain fertile. Several studies have examined
outcomes of fertility-sparing surgery in patients with stage I
CCC.%%% A total of 23 IA patients underwent fertility-sparing
surgery, and all patients, excluding one (4%), were alive with-
out recurrence. In contrast, 6 (25%) of the 24 patients at stage IC
relapsed after surgery. Therefore, fertility-sparing surgery should
only be offered for patients with stage IA disease.

Adjuvant Therapy

All patients with CCC have traditionally received
postoperative systemic chemotherapy. However, observation
may be considered for patients with surgical stage 1A disease,
because survival for these women is greater than 95%.2%-22:23

It is generally accepted that CCC is resistant to con-
ventional platinum-based chemotherapy compared with HGS
ovarian cancer. The variation in reported response rates may
reflect heterogeneity in patients included with some older
studies including those with mixed tumors that would now be
considered to be HGS tumors. Combination chemotherapy
with paclitaxel plus platinum (TC) is thought to yield a higher
response rate than conventional platinum-based chemother-
apy (22%-56% vs 11%-27%) and improved survival in pa-
tients with advanced CCC, especially for those with optimal
cytoreduction,?*?° although the addition of a taxane was not
an independent prognostic factor in the MITO 9 study.
Nevertheless, responses remain much lower than with HGS,
and there is an urgent need for more effective therapies.

Inarandomized phase I1 study, the Japanese Gynecologic
Oncology Group compared irinotecan hydrochloride plus
cisplatin (CPT-P) with TC.2® Both regimens were tolerated
well, and progression-free survival between the 2 groups was
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