throughout the world [2]. Therefore, a new strategy for OCCC therapy has been highly anticipated [2].

Heparin-binding epidermal growth factor-like growth factor (HB-EGF), which belongs to the EGF family, is synthesized as an 87 amino acid membrane-anchored glycoprotein [3–5]. Cleavage of membrane-anchored HB-EGF by proteases, called "ectodomain shedding," induces the secretion of soluble mature form of HB-EGF from the cell surface. Through ectodomain shedding, HB-EGF contributes to several biological processes, such as wound healing [6], inflammation [7, 8], embryogenesis [9], and carcinogenesis [10]. In previous reports, we described that the expression of HB-EGF was higher than that of other EGFR ligands in the ascites and tissues of ovarian cancer patients [11, 12]. However, the molecular mechanism(s) underlying the increase of HB-EGF expression in ovarian cancer has remained unclear.

There have been several reports that have described other molecular mechanisms affecting the expression of HB-EGF. For example, inflammatory cytokines, including tumor necrosis factor- $\alpha$  and interleukin-1 $\beta$ , directly or indirectly activated the transcription of HB-EGF [13, 14]. In bladder cancer cells, insulin induces the transcriptional activation of epiregulin, HB-EGF, and amphiregulin (AREG), which may be regulated by transcriptional factors including specific protein 1 (SP1), activator protein-1 (AP-1), and nuclear factor-kappa B (NF-κB) [15]. HB-EGF was rapidly induced following exposure to a variety of chemotherapeutic agents, and the chemotherapyinduced HB-EGF expression was largely dependent on AP-1 and NF-κB [16]. In addition, transcription factors including SP1, AP-1, pancreatic and duodenal homeobox-1 (PDX-1), and myogenic differentiation 1 (MyoD) were detected as direct regulators of HB-EGF expression [15, 17-19]. However, the molecule(s) directly involved in the transcript of HB-EGF has remained unknown in human cancer.

The aim of this study is to assess the association between HB-EGF expression and the cell viability of OCCC cells. Additionally, in order to elucidate transcriptional regulation of HB-EGF in OCCC cells, we also performed a screening assay and identified the transcription factor, SP1, which is responsible for the upregulation of HB-EGF induced by anticancer agent.

#### **Materials and Methods**

#### Cells and cell culture

Eleven OCCC cell lines (RMG-I, RMG-II, OVISE, OVTOKO, KK, TU-OC-1, KOC-7C, HAC-2, OVAS, SMOV-2, ES-2) and 293T cells were used for the studies. The KK cells were a kind gift from Professor Yoshihiro

Kikuchi, National Defense Medical College, Japan; the OVAS cells were provided by Professor Hiroshi Minaguchi, Yokohama City University, Japan; KOC-7C by Dr. Toru Sugiyama, Kurume University, Japan; SMOV-2 by Dr. Tomohiro Iida, St. Marianna University, Japan; and HAC-2 by Dr. Masato Nishida, Tsukuba University, Japan. TU-OC-1 cells were derived as described previously [20]. ES-2 cells were purchased from Summit Pharmaceuticals International Corporation (Tokyo, Japan). RMG-I, RMG-II, OVISE, OVTOKO, and 293T cells were purchased from the Health Science Research Resources Bank (HSRRB, Osaka, Japan). All OCCC cell lines were maintained in RPMI-1640 medium (Gibco, Carlsbad, CA), and 293T cells were maintained in DMEM medium (Gibco). The culture media were supplemented with 10% fetal bovine serum (FBS) (ICN Biomedical, Irvine, CA).

#### Cell viability and apoptosis assay

Paclitaxel (PTX), cisplatin (CDDP), and SN38 (the active metabolite of irinotecan) were purchased from Sigma-Aldrich (St. Louis, MO). Recombinant human HB-EGF (rhHB-EGF) was purchased from R&D systems (Minneapolis, MN). Cross-reactive material 197 (CRM197), a specific inhibitor of HB-EGF, was prepared as described previously [21]. In the cell viability assay, 20,000–40,000 cells were incubated in RPMI-1640 medium with 5% FBS and different concentrations of PTX, CDDP, or SN38 on 12-well plates. After a 72-h incubation, the cells were counted using a hemocytometer after the addition of trypan blue exclusion dye to determine the cell viability. In the apoptosis assay, TUNEL-positive cells were quantified as apoptotic cells by a flow cytometric analysis as described previously [22].

## DNA extraction, RNA isolation, and cDNA synthesis

ES-2 cells were suspended in 0.1% SDS/Tris-EDTA buffer (pH 8.0). After treatment with proteinase K (Sigma-Aldrich) and RNase A (Invitrogen, Carlsbad, CA), phenol/chloroform extraction and ethanol precipitation were preformed to purify genomic DNA. Total RNA was isolated using TRIzol reagent (Invitrogen) according to the manufacturer's protocol. First-strand cDNA synthesis was performed with 1  $\mu$ g of total RNA using with Primescript II reverse transcriptase (Takara Bio, Otsu, Shiga, Japan) following the manufacturer's protocol.

#### Real-time quantitative PCR (qPCR)

qPCR was performed using TaqMan Universal PCR Master Mix (Applied Biosystems, Foster City, CA) and

1160

© 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

the samples were analyzed by an Applied Biosystems 7500 Fast Real-time PCR system. TaqMan probes used were as follow: *HB-EGF*: Hs00181813\_m1; *AREG*: Hs00950 669\_m1; and *GAPDH*: Hs02758991\_g1. The methods used for the data analysis were described previously [12].

#### Western blot analysis

were cell lysates (5  $\mu$ g) electrophoresed through 10% SDS-PAGE gels and proteins were transferred to a polyvinylidene difluoride membrane using a semi-dry electroblot (Bio-Rad, Hercules, CA). The blot was probed with primary antibodies (antihuman SP1 antibody [#07-645; Millipore, Billerica, MA], anti-human GAPDH antibody [#ABS16; Millipore]) and secondary antibody (anti-rabbit IgG-Peroxidase [A9169; Sigma-Aldrich]), and then the binding to antibody was detected using ECL Western Blotting Detection Regents (General Electric Company, Fairfield, CT) and a Fuji image analyzer (LAS mini-3000; Fujifilm, Tokyo, Japan) according to the manufacturer's protocol.

#### **ELISA**

Cells were incubated with culture medium for 24 h. After a 24-h incubation, the concentrations of HB-EGF and AREG in the culture medium were determined using a commercially available sandwich ELISA (DuoSet kit; R&D Systems) according to the manufacturer's instructions.

#### **Vectors**

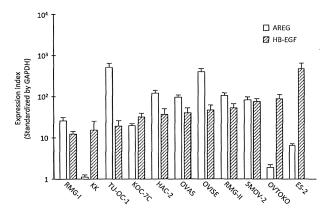
To generate promoter constructs for the HB-EGF gene promoter, which were located at -4138 to +205 base pair (bp), -125 to +205 bp, -178 to +205 bp, and -253 to +205 bp from its transcriptional start site (TSS), the sequences were amplified and cloned into pGL4.12 (Promega, Madison, WI). All nucleotide numbering was done with reference to the TSS. The primers used for these PCR assays are listed in Table S1. The pGL4.12 and fragments were digested with KpnI and NcoI restriction enzymes and ligated. To create pGL/HB-2585/+205 and pGL/HB\_454/+205, pGL/HB\_4138/+205 was digested with NdeI and KpnI or AseI and KpnI, and self-ligation was performed after blunt-ended treatment with Klenow fragment (Takara Bio). Site-detected mutants of the reporter vector were constructed by inverse PCR with primers described in Table S1. The sequences of all generated vectors were confirmed by DNA sequencing. The expression vectors for SP1 (EX-Y2188-Lv105) and EGFP (EX-EGFP-Lv105) were purchased from GeneCopoeia (Rockville, MD).

#### Reporter assay

The luciferase assay was performed with ES-2 cells and 293T cells. A total of 25,000 cells were incubated on 24-well plates for 16 h, and then were cotransfected with 1  $\mu$ g of promoter reporter vector and 25 ng of pRL-TK (Promega), which had a renilla-luciferase gene downstream of the thymidine kinase promoter. Lipofectamine 2000 (Invitrogen) and Opti-MEM (Gibco) were used for transfection. When cells were treated with SN38, the culture medium was changed to RPMI-1640 medium supplemented with 10% FBS and SN38 (10 nmol/L). After a 48-h incubation, Dual-Luciferase Reporter Assay (Promega) was performed according to the manufacturer's protocol.

#### **Small interfering RNA**

Stealth RNAi (Invitrogen) against SP1 (siSP1\_1: 5'-CA AUGGCAGUGAGUCUUCCAAGAAU-3', siSP1\_2: 5'-GACAGGUCAGUUGGCAGACUCUACA-3') and control siRNAs (Control\_1: Stealth RNAi siRNA Negative Control Lo GC, Control\_2: Stealth RNAi siRNA Negative Control Med GC, Invitrogen) were transfected using Lipofectamine RNAiMAX (Invitrogen) according to the manufacturer's protocol.


#### **Chromatin immunoprecipitation assay**

ES-2 cells which were cultured until subconfluent in five 15 cm dishes were fixed in 1% formaldehyde for 10 min at 37°C. Chromatin was sheared using a Digital Sonifier S-250D (Branson, Danbury, CT) to yield DNA fragments of 300–800 bp. Nuclear extraction, immunoprecipitation, reverse cross-linking, and DNA purification were performed using Magna ChIP A kit (Millipore) according to the manufacturer's protocol. An anti-SP1 antibody (#07-645; Millipore), tri-methyl-histone H3 (Lys4) monoclonal antibody (#9751S; Cell Signaling Technology, Boston, MA), and normal rabbit IgG (#2729S; Cell Signaling Technology) were used in the immunoprecipitation reactions. Quantitative real-time PCR was performed using SYBR Premix Ex Taq GC (Takara Bio) to detect the HB-EGF promoter fragments.

#### Statistical analysis

The two-tailed independent Student's t-test was used to calculate all P-values. P < 0.05 was considered statistically significant.

1161



**Figure 1.** The expression of HB-EGF in 11 ovarian clear cell carcinoma (OCCC) cell lines. The real-time PCR data show the expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF) and amphiregulin (AREG) in OCCC cells. Each value represents the mean (n=3) and standard deviation (SD) of the mRNA expression index for HB-EGF (diagonal striped bars) and AREG (open bars).

#### **Results**

### Promotion of HB-EGF expression in response to SN38 treatment

First, we examined the expression of HB-EGF and AREG in 11 cell lines of OCCC. HB-EGF was highly expressed in all of the cell lines, and eight of the 11 cell lines had a

high-expression level of AREG (Fig. 1). OVTOKO and ES-2 cells had the highest expression of HB-EGF, while the OVISE and RMG-II cells had higher expression of AREG compared to that of HB-EGF.

To evaluate in vitro anticancer effects of conventional anticancer agents in the OVISE, RMG-II, OVTOKO, and ES-2 cells, cell viability assays were performed using SN38 (Fig. 2A), PTX (Fig. 2B), or CDDP (Fig. 2C). In this analysis, SN38 was a most effective anticancer agent in all four OCCC cell lines. Real-time PCR showed a twofold or higher increase in HB-EGF expression induced by the treatment of the OCCC cells with SN38, and the concentration of HB-EGF also increased more than twofold in the culture medium of RMG-II and ES-2 cells following SN38 treatment (Fig. 3A and B). In contrast, a high concentration of PTX or CDDP did not induce HB-EGF expression in ES-2 cells (Fig. 3C). The addition of the recombinant HB-EGF in cell culture blocked a decrease in cell viability with the treatment of SN38 in OCCC cells (Fig. 3D and E). These results indicated that HB-EGF plays a pivotal role in defense mechanism against the treatment of SN38 in OCCC cells.

To address the potential synergistic anticancer effects of the combination of SN38 and a specific inhibitor of HB-EGF (CRM197), apoptosis assays were performed after treating ES-2 or OVTOKO cells with SN38 and/or CRM197. Treatment with 10  $\mu$ g/mL of CRM197 and 10 nmol/L of SN38 induced a marked increase in the number of apoptotic ES-2 and OVTOKO cells, compared to

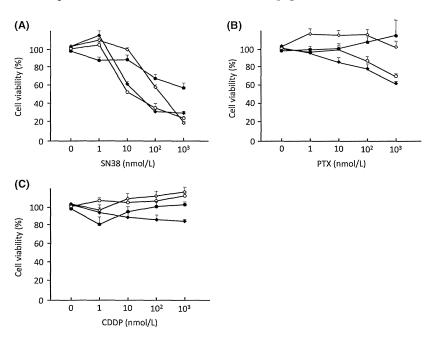
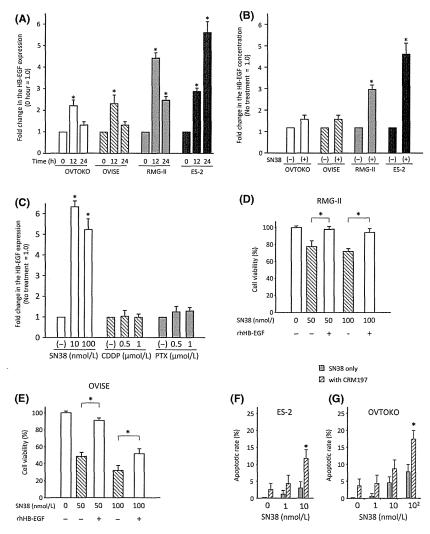
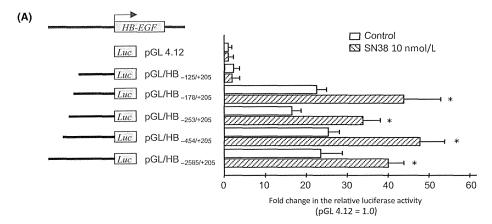




Figure 2. The efficacy of conventional anticancer agents against OCCC cells. Differences in the viability of OVISE (closed squares), RMG-II (closed circles), OVTOKO (open squares), and ES-2 (open circles) OCCC cells after treatment with SN38 (A), paclitaxel (PTX; B), and cisplatin (CDDP; C) for 72 h. Each value represents the mean cell viability rate (n = 3) and the SD. OCCC, ovarian clear cell carcinoma.




**Figure 3.** The association between HB-EGF expression and the SN38 treatment of OCCC cells. The induction of HB-EGF mRNA in cells (A) and HB-EGF protein in the culture medium (B) in OVTOKO (open bars), OVISE (diagonal striped bars), RMG-II (gray bars), and ES-2 (closed bars) cells treated with SN38 (10 nmol/L) for 12 or 24 h. Each value represents the mean (n = 3) and SD. (C) The differences in the HB-EGF mRNA expression in ES-2 cells after the treatment with SN38 (open bars), CDDP (diagonal striped bars), or PTX (gray bars). The differences in cell viabilities of RMG-II (D) and OVISE (E), which were cultured with recombinant human HB-EGF (0 and 200 pg/mL) and SN38 (0, 50, and 100 nmol/L). Each value represents the mean fold change (n = 3) and the SD. \*P < 0.05. The changes in the apoptosis rate of ES-2 (F) and OVTOKO (G) cells after the treatment with each concentration of SN38 with (closed bars) or without CRM197 (10  $\mu$ g/mL, diagonal striped bars). Each value represents the mean apoptosis ratio (n = 3) and SD. \*P < 0.05, SN38-only versus SN38 with CRM197. HB-EGF, heparin-binding epidermal growth factor-like growth factor; PTX, paclitaxel.

cells with SN38 treatment alone, as determined using TUN-EL assay (Fig. 3F and G). These results suggested that the suppression of HB-EGF during the treatment with SN38 leads to a synergistic anticancer effect in OCCC cells.

## Screening for transcription factors that regulate the HB-EGF expression induced by SN38 treatment

To identify transcription factor(s) that contribute to the HB-EGF induction following treatment with SN38, a

promoter analysis was performed using the ES-2 cells. For the reporter gene analysis, a *HB-EGF* promoter fragment (-2585/+205), which is conserved among mammalian species, fused to a luciferase vector, and various truncated constructs were synthesized. The luciferase assay showed that a reporter vector containing promoter fragment of -178/+205 bp from HB-EGF TSS (pGL/HB<sub>-178/+205</sub>) exhibited an about 20-fold increase in luciferase activity compared to that of pGL/HB<sub>-125/+205</sub> (Fig. 4A). Additionally, treatment with SN38 induced ~twofold increase in the luciferase activity in a reporter vector containing



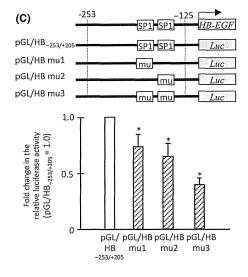
(B) MatInspector

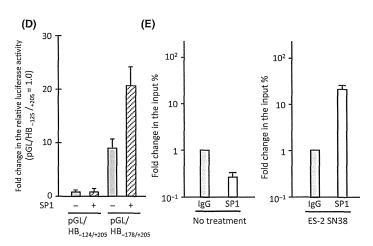
GTGNGCGCBNn ZFP161

nsggggggggnnnn SP1 Nvkgggcggrgybnn SP1 Nnggggcggggnnnn SP1

GGGCGGGASCn KLF6

nNGSGGGAGGGSGnnnn ZBTB7B nKGSGAGGGGAGn MAZ


NVKGGGCGGRGYB SP1


NNGGGGCGGGGNN SP1

nnnnnhACCCTVBSBGn KLF1
nBNBGCGCVTGCGCGNB NRF1
nnnnnnNVRGGGGYGGSNYCnnn KLF6
GGCGYGG BRE

#### AliBaba 2.1

=====SP1===== ====SP1==== ====SP1=== ====GAL4== =====SP1==== =====SP1==== =====SP1==== =====SP1==== =====SP1====





1164

© 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

pGL/HB $_{-178/+205}$  compared to the control (Fig. 4A). Accordingly, the sequence located -178 to -125 bp from the TSS of HB-EGF was recognized as a promoter sequence bound by transcription factors.

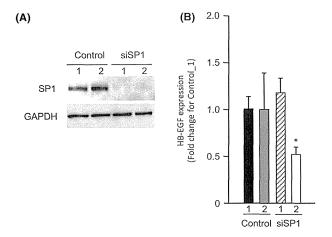
Using the MatInspector (http://www.genomatix.de) and AliBaba 2.1 (http://www.gene-regulation.com) in silico analysis programs, we found that SP1-binding sites are commonly found in this promoter sequence (Fig. 4B). Since the HB-EGF promoter has a TATA-less and GC-rich promoter, which are characteristics of SP1-binding promoters, we focused on SP1 as the candidate transcription factor inducing HB-EGF in SN38-treated ES-2 cells [17, 23, 24].

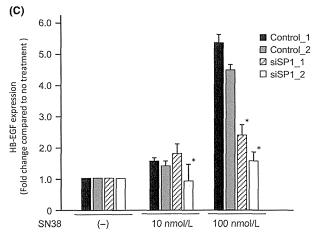
Reporter vectors with site mutations of each SP1-binding site showed significantly reduced luciferase activity compared to the control (Fig. 4C). Moreover, the luciferase activity significantly decreased, compared to the control, when the two putative binding sites of SP1 were replaced with mutant sites (Fig. 4C). Forced expression of SP1 activated the luciferase activity in 298T cells transfected with pGL/HB $_{178/+205}$ , although no difference was found between the forced expression of SP1 and control in 293T cells transfected by pGL/HB $_{125/+205}$  (Fig. 4D).

To detect direct interaction between the SP1 protein and HB-EGF promoter in ES-2 cells, a chromatin immunoprecipitation assay was performed in cells with or without treatment with SN38. Quantitative real-time PCR showed that, during treatment with SN38, the level of HB-EGF promoter bound to SP1 significantly increased compared to that of control cells (Fig. 4E). These results indicated that the HB-EGF expression promoted by the treatment with SN38 was regulated by SP1 in OCCC cells.

## Contribution of SP1 to the HB-EGF expression and SN38 sensitivity of OCCC cells

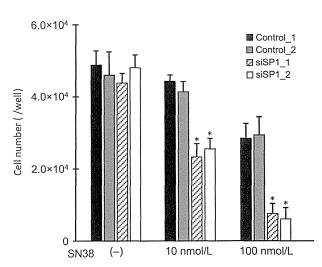
To confirm whether SP1 affects the sensitivity of cells to SN38 via the induction of HB-EGF expression, the


expression and the cell viability assays were performed after the transfection of small interfering RNA (siRNA) targeting SP1. A Western blot analysis showed that the ES-2 cells transfected with siSP1\_1 and siSP1\_2 had reduced expression of the SP1 protein compared to the cells transfected with control siRNAs (Fig. 5A). In the ES-2 cells transfected with siSP1\_2, the HB-EGF expression was reduced to approximately half the control level, although the HB-EGF expression was not altered in the ES-2 cells transfected with siSP1\_1 (Fig. 5B). No induction of HB-EGF expression was found in the presence of SN38 in the ES-2 cells transfected with either siSP1\_1 or siSP1\_2 (Fig. 5C). Additionally, we examined alterations in the cell viabilities using RMG-II cells, which had the least antitumor effect with the treatment of SN38. Following the treatment with SN38, the number of RMG-II cells transfected with siSP1\_1 and siSP1\_2 significantly decreased compared to that in the RMG-II cells transfected with control siRNAs (Fig. 6). These results indicate that SP1 regulates the drug sensitivity of SN38 by regulating the HB-EGF expression in OCCC cells.


#### Discussion

In this study, HB-EGF was attributable for the escape from cell death, as SN38 damaged OCCC cells. SP1 activated HB-EGF expression through its binding to multiple transcription sites within the promoter of HB-EGF in OCCC cells. In addition, the suppression of HB-EGF as well as SP1 enhanced the sensitivity of SN38 in OCCC cells.

SP1, which belongs to the family of SP1/Kruppel-like factor (KFL) transcriptional factors, regulates the expression of numerous genes involved in cell proliferation, apoptosis, and differentiation [25]. Phorbol 12-myristate 13 acetate (PMA) induced an increase in the transcriptional activity of SP1 through the deacetylation of SP1, and also provoked the ectodomain shedding of HB-EGF; it also increased the expression of HB-EGF [26, 27].


**Figure 4.** The interaction of SP1 with the *HB-EGF* promoter region following SN38 treatment. (A) The alterations in the luminescence of ES-2 cells for each reporter vector in cells with (open bars) and without (diagonal striped bars) SN38 (10 nmol/L) treatment. A schematic diagram showing the reporter vectors on the left side. (B) A schematic diagram obtained from the in silico analysis including the Matinspector and AliBaba 2.1 programs. (C) The luciferase reporter analysis of the site mutants in ES-2 cells. The schematic diagram shows the wild-type SP1-binding sites as "SP1" and the mutated binding sites as "mu" in each vector. The alterations in the luminescence of ES-2 cells among the wild-type reporter vector (open bar) and the mutated reporter vectors (diagonal striped bars) in the presence of SN38 (10 nmol/L). Each value represents the mean (n = 3) and SD. (D) The differences in the relative luciferase activity of 293T cells transfected with pGL/HB $_{-178/+205}$  and the SP1 expression vector (diagonal striped bars). An EGFP expression vector was used as a control (gray bars). Each value represents the mean (n = 3) and SD. All relative luciferase activities were normalized to the renilla luminescence. (E) The results of the ChIP analysis of ES-2 cells with or without SN38 (10 nmol/L) treatment. The fold change in the immunoprecipitated DNA for SP1 (open bars) against templates due to the nonspecific binding with IgG (gray bars). Each value represents the mean (n = 3) and SD. \*P < 0.05, versus control. HB-EGF, heparin-binding epidermal growth factor-like growth factor; SP1, specific protein 1.





**Figure 5.** The contribution of SP1 to the HB-EGF induction following the treatment with SN38. (A) A Western blot analysis was performed to confirm the SP1 reduction in the transfected ES-2 cells induced by treatment with siRNAs against SP1 or a control siRNA. (B) The alterations in the HB-EGF mRNA expression in the transfected ES-2 cells induced by treatment with the siRNAs against SP1 or the control siRNA. (C) The induction of HB-EGF mRNA in the RMG-II cells transfected with siRNAs against SP1 or the control siRNA following the treatment of SN38. Each value represents the mean (n=3) and SD. Closed bars, control\_1 siRNA; gray bars, control\_2 siRNA; diagonal striped bars, siSP1\_1 si RNA; open bars, siSP1\_2 siRNA. \*P < 0.05, control\_1 versus each siRNA. SP1, specific protein 1.

Additionally, NF- $\kappa$ B induced the expression of HB-EGF, and the NF- $\kappa$ B and SP1 binding sequence was shown to be the same GC-rich element in colon cancer cells [16, 28]. This evidence suggests that SP1 augments the expression of HB-EGF through the deacetylation of SP1 or via an interaction with NF- $\kappa$ B. In mice, SP1 was reported to be directly bound to the promoter regions of HB-EGF [24]. In humans, SP1 also functions as a direct regulator for the expression of HB-EGF, possibly through various posttranslational modifications of SP1 and by interactions with other transcriptional factors.



**Figure 6.** The contribution of SP1 to the cell viabilities following the treatment with SN38. The alterations in the numbers of RMG-II cells transfected with siRNAs against SP1 or a control siRNA after treatment with SN38. Each value represents the mean (n=3) and SD. Closed bars, control\_1 siRNA; gray bars, control\_2 siRNA; diagonal striped bars, siSP1\_1 si RNA; open bars, siSP1\_2 siRNA. \*P < 0.05, control\_1 versus each siRNA. SP1, specific protein 1.

Dysregulation of SP1 is found in many types of cancer, including ovarian, breast, and gastric cancer, for which HB-EGF is a rational therapeutic target [22, 29, 30]. The hypoxia-inducible factor 2α (HIF2α)-SP1 complex activated coagulation factor VII promoter in OCCC and estrogen receptor a also form complexes with SP1 in other types of ovarian cancer [31, 32]. Additionally, previous reports showed that activation of SP1 promoted breast cancer development and the metastasis of gastric cancer [33, 34]. On the other hand, the SP1 level was highly upregulated in patients with early stage and minimally invasive lung cancer cells and in patients with stage I lung cancer compared to that in lung cancers with high invasiveness and in patients with stage IV lung cancer [35]. These previous findings show that the significance of SP1 involvement in cancer progression have been controversial. In this study, the suppression of SP1 enhanced the sensitivity of OCCC cells to SN38. Therefore, it seems to be important that the suppression of SP1 itself, as well as the inhibition of the posttranslational modifications of SP1, are critical for cancer therapy.

Several compounds that inhibit the transcriptional activity of SP1 have been developed for cancer therapy [25], for example, arsenic trioxide downregulates the expression of SP1 [36]. A phase III trial of arsenic trioxide was performed for patients with acute promyelocytic leukemia classified as having low-to-intermediate risk, and the results suggested that all-trans-retinoic acid plus arsenic trioxide may be superior to all-trans-retinoic acid

1166

© 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

plus other chemotherapy [37]. Bortezomib has been already used for the treatment of patients with multiple myeloma [38, 39]. Bortezomib has been shown to decrease the expression of SP1 and disrupt the interaction of SP1 with NF- $\kappa$ B [40]. Other inhibitory compounds for SP1 will be clinically applied for various diseases, in addition to cancer [41, 42].

We have performed a clinical phase II trial using CRM197 in patients with recurrent and advanced ovarian cancer. To explore the importance of the posttranslational modifications of SP1 in the induction of HB-EGF expression and to search for compounds that can inhibit such modifications, a preclinical study should be performed using combination therapy with CRM197, irinotecan, and a compound that inhibits SP1, such as arsenic trioxide or bortezomib. Such a combination would likely improve the prognosis of patients with OCCC.

#### **Acknowledgments**

This work was supported in part by funds from the Central Research Institute of Fukuoka University (Fukuoka, Japan).

#### **Conflict of Interest**

None declared.

#### References

- Heintz, A. P., F. Odicino, P. Maisonneuve, M. A. Quinn, J. L. Benedet, W. T. Creasman, et al. 2006. Carcinoma of the ovary. FIGO 26th Annual Report on the Results of Treatment in Gynecological Cancer. Int. J. Gynaecol. Obstet. 95(Suppl. 1):S161–S192.
- del Carmen, M. G., M. Birrer, and J. O. Schorge. 2012.
   Clear cell carcinoma of the ovary: a review of the literature. Gynecol. Oncol. 126:481

  –490.
- 3. Higashiyama, S., J. A. Abraham, J. Miller, J. C. Fiddes, and M. Klagsbrun. 1991. A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science 251:936–939.
- Higashiyama, S., K. Lau, G. E. Besner, J. A. Abraham, and M. Klagsbrun. 1992. Structure of heparin-binding EGF-like growth factor. Multiple forms, primary structure, and glycosylation of the mature protein. J. Biol. Chem. 267:6205–6212.
- 5. Elenius, K., S. Paul, G. Allison, J. Sun, and M. Klagsbrun. 1997. Activation of HER4 by heparin-binding EGF-like growth factor stimulates chemotaxis but not proliferation. EMBO J. 16: 1268–1278.
- Ellis, P. D., K. M. Hadfield, J. C. Pascall, and K. D. Brown. 2001. Heparin-binding epidermal-growth-factor-like growth factor gene expression is induced by

- scrape-wounding epithelial cell monolayers: involvement of mitogen-activated protein kinase cascades. Biochem. J. 354 (Pt 1):99–106.
- Murthy, A., V. Defamie, D. S. Smookler, M. A. Di Grappa, K. Horiuchi, M. Federici, et al. 2010. Ectodomain shedding of EGFR ligands and TNFR1 dictates hepatocyte apoptosis during fulminant hepatitis in mice. J. Clin. Invest. 120:2731–2744.
- Malmsten, M., M. Davoudi, B. Walse, V. Rydengård, M. Pasupuleti, M. Mörgelin, et al. 2007. Antimicrobial peptides derived from growth factors. Growth Factors 25:60–70.
- Iwamoto, R., S. Yamazaki, M. Asakura, S. Takashima, H. Hasuwa, K. Miyado, et al. 2003. Heparin-binding EGF-like growth factor and ErbB signaling is essential for heart function. Proc. Natl. Acad. Sci. USA 100:3221–3226.
- Miyamoto, S., M. Hirata, A. Yamazaki, T. Kageyama, H. Hasuwa, H. Mizushima, Y. Tanaka, et al. 2004. Heparin-binding EGF-like growth factor is a promising target for ovarian cancer therapy. Cancer Res. 64: 5720–5727.
- Yagi, H., S. Miyamoto, Y. Tanaka, K. Sonoda, H. Kobayashi, T. Kishikawa, et al. 2005. Clinical significance of heparin-binding epidermal growth factor-like growth factor in peritoneal fluid of ovarian cancer. Br. J. Cancer 92:1737–1745.
- 12. Tanaka, Y., S. Miyamoto, S. O. Suzuki, E. Oki, H. Yagi, K. Sonoda, et al. 2005. Clinical significance of heparin-binding epidermal growth factor-like growth factor and a disintegrin and metalloprotease 17 expression in human ovarian cancer. Clin. Cancer Res. 11:4783–4792.
- 13. Yoshizumi, M., S. Kourembanas, D. H. Temizer, R. P. Cambria, T. Quertermous, and M. E. Lee. 1992. Tumor necrosis factor increases transcription of the heparinbinding epidermal growth factor-like growth factor gene in vascular endothelial cells. J. Biol. Chem. 267:9467–9469.
- 14. Cheng, C. Y., C. T. Kuo, C. C. Lin, H. L. Hsieh, and C. M. Yang. 2010. IL-1beta induces expression of matrix metalloproteinase-9 and cell migration via a c-Src-dependent, growth factor receptor transactivation in A549 cells. Br. J. Pharmacol. 160:1595–1610.
- Ornskov, D., E. Nexo, and B. S. Sorensen. 2007. Insulin induces a transcriptional activation of epiregulin, HB-EGF and amphiregulin, by a PI3K-dependent mechanism: identification of a specific insulin-responsive promoter element. Biochem. Biophys. Res. Commun. 354:885–891.
- 16. Wang, F., R. Liu, S. W. Lee, C. M. Sloss, J. Couget, and J. C. Cusack. 2006. Heparin-binding EGF-like growth factor is an early response gene to chemotherapy and contributes to chemotherapy resistance. Oncogene 26:2006–2016.
- 17. Kanda, N., and S. Watanabe. 2005. 17 beta-estradiol enhances heparin-binding epidermal growth factor-like

- growth factor production in human keratinocytes. Am. J. Physiol. Cell Physiol. 288:C813—C823.
- 18. Kaneto, H., J. Miyagawa, Y. Kajimoto, K. Yamamoto, H. Watada, Y. Umayahara, et al. 1997. Expression of heparin-binding epidermal growth factor-like growth factor during pancreas development. A potential role of PDX-1 in transcriptional activation. J. Biol. Chem. 272:29137–29143.
- 19. Chen, X., G. Raab, U. Deutsch, J. Zhang, R. M. Ezzell, and M. Klagsbrun. 1995. Induction of heparin-binding EGF-like growth factor expression during myogenesis. Activation of the gene by MyoD and localization of the transmembrane form of the protein on the myotube surface. J. Biol. Chem. 270:18285–18294.
- Yanagibashi, T., I. Gorai, T. Nakazawa, E. Miyagi, F. Hirahara, H. Kitamura, et al. 1997. Complexity of expression of the intermediate filaments of six new human ovarian carcinoma cell lines: new expression of cytokeratin 20. Br. J. Cancer 76:829–835.
- Uchida, T., A. M. Pappenheimer, Jr., and R. Greany. 1973.
   Diphtheria toxin and related proteins. I. Isolation and properties of mutant proteins serologically related to diphtheria toxin. J. Biol. Chem. 248:3838–3844.
- 22. Yotsumoto, F., H. Yagi, S. O. Suzuki, E. Oki, H. Tsujioka, T. Hachisuga, et al. 2008. Validation of HB-EGF and amphiregulin as targets for human cancer therapy. Biochem. Biophys. Res. Commun. 365:555–561.
- 23. Wierstra, I. 2008. SP1: emerging roles—beyond constitutive activation of TATA- less housekeeping genes. Biochem. Biophys. Res. Commun. 372:1–13.
- 24. Edwards, J. P., X. Zhang, and D. M. Mosser. 2009. The expression of heparin-binding epidermal growth factor-like growth factor by regulatory macrophages. J. Immunol. 182:1929–1939.
- 25. Chang, W. C., and J. J. Hung. 2012. Functional role of post-translational modifications of Sp1 in tumorigenesis. J. Biomed. Sci. 19:94.
- 26. Liao, M., Y. Zhang, and M. L. Dufau. 2008. Protein kinase C alpha-induced derepression of the human luteinizing hormone receptor gene transcription through ERK-mediated release of HDAC1/Sin3A repressor complex from Sp1 sites. Mol. Endocrinol. 22:1449–1463.
- 27. Gechtman, Z., J. L. Alonso, G. Raab, D. E. Ingber, and M. Klagsbrun. 1999. The shedding of membrane-anchored heparin-binding epidermal-like growth factor is regulated by the Raf/mitogen-activated protein kinase cascade and by cell adhesion and spreading. J. Biol. Chem. 274:28828–28835.
- 28. Xu, J., W. F. Ding, K. K. Shao, X. D. Wang, G. H. Wang, H. Q. Li, et al. 2012. Transcription of promoter from the human APRIL gene regulated by Sp1 and NF-κB. Neoplasma 59:341–347.
- 29. Miyamoto, S., H. Yagi, F. Yotsumoto, T. Kawarabayashi, and E. Mekada. 2006. Heparin-binding epidermal growth

- factor-like growth factor as a novel targeting molecule for cancer therapy. Cancer Sci. 97:341–347.
- Sanui, A., F. Yotsumoto, H. Tsujioka, T. Fukami, S. Horiuchi, K. Shirota, et al. 2010. HB-EGF inhibition in combination with various anticancer agents enhances its antitumor effects in gastric cancer. Anticancer Res. 30:3143–3149.
- 31. Koizume, S., S. Ito, and E. Miyagi. 2012. HIF2α-Sp1 interaction mediates a deacetylation-dependent FVII-gene activation under hypoxic conditions in ovarian cancer cells. Nucleic Acids Res. 40:5389–5401.
- 32. Kim, K., R. Barhoumi, R. Burghardt, and S. Safe. 2005. Analysis of estrogen receptor α-Sp1 interactions in breast cancer cells by fluorescence resonance energy transfer. Mol. Endocrinol. 19:843–854.
- 33. Gorbatenko, A., C. W. Olesen, N. Mørup, G. Thiel, T. Kallunki, E. Valen, et al. 2014. ErbB2 upregulates the Na+, HCO3(-)-cotransporter NBCn1/SLC4A7 in human breast cancer cells via Akt, ERK, Src, and Kruppel-like factor 4. FASEB J. 28:350–363.
- 34. Zhou, C., J. Ji, Q. Cai, M. Shi, X. Chen, Y. Yu, et al. 2013. MTA2 promotes gastric cancer cells invasion and is transcriptionally regulated by Sp1. Mol. Cancer 12:102. doi: 10.1186/1476-4598-12-102.
- Hsu, T. I., M. C. Wang, S. Y. Chen, Y. M. Yeh, W. C. Su,
   W. C. Chang, et al. 2012. Sp1 expression regulates lung tumor progression. Oncogene 31:3973–3988.
- 36. Jutooru, I., G. Chadalapaka, S. Sreevalsan, P. Lei, R. Barhoumi, R. Burghardt, et al. 2010. Arsenic trioxide downregulates specificity protein (Sp) transcription factors and inhibits bladder cancer cell and tumor growth. Exp. Cell Res. 316:2174–2188.
- Lo-Coco, F., G. Avvisati, M. Vignetti, C. Thiede, S.M. Orlando, S. Iacobelli, et al. 2013. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N. Engl. J. Med. 369:111–121.
- 38. San Miguel, J. F., R. Schlag, N. K. Khuageva, M. A. Dimopoulos, O. Shpilberg, M. Kropff, et al. 2008. Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N. Engl. J. Med. 359: 906–917.
- 39. Mateos, M. V., P. G. Richardson, R. Schlag, N. K. Khuageva, M. A. Dimopoulos, O. Shpilberg, et al. 2010. Bortezomib plus melphalan and prednisone compared with melphalan and prednisone in previously untreated multiple myeloma: updated follow-up and impact of subsequent therapy in the phase III VISTA trial. J. Clin. Oncol. 28:2259–2266.
- 40. Liu, S., Z. Liu, Z. Xie, J. Pang, J. Yu, E. Lehmann, et al. 2008. Bortezomib induces DNA hypomethylation and silenced gene transcription by interfering with SP1/ NF-kappaB-dependent DNA methyltransferase activity in acute myeloid leukemia. Blood 111: 2364–2373.
- 41. Banerjee, S., D. Kong, Z. Wang, B. Bao, G. G. Hillman, and F. H. Sarkar. 2011. Attenuation of multi-targeted

- proliferation-linked signaling by 3,3'-diindolylmethane (DIM): from bench to clinic. Mutat. Res. 728:47–66.
- 42. Chuengsamarn, S., S. Rattanamongkolgul, B. Phonrat, R. Tungtrongchitr, and S. Jirawatnotai. 2014. Reduction of atherogenic risk in patients with type 2 diabetes by curcuminoid extract: a randomized controlled trial. kJ. Nutr. Biochem. 25:144–150.

#### **Supporting Information**

Additional Supporting Information may be found in the online version of this article:

Table S1. Primer sequences.

#### ORIGINAL ARTICLE

# Efficacy and safety of triple therapy with aprepitant, palonosetron, and dexamethasone for preventing nausea and vomiting induced by cisplatin-based chemotherapy for gynecological cancer: KCOG-G1003 phase II trial

Nobuhiro Takeshima • Maki Matoda • Masakazu Abe • Yasuyuki Hirashima • Kentaro Kai • Kaei Nasu • Masashi Takano • Kenichi Furuya • Seiya Sato • Hiroaki Itamochi • Hiroshi Tsubamoto • Kosei Hasegawa • Kiminari Terao • Takeo Otsuki • Keiko Kuritani • Kimihiko Ito

Received: 5 November 2013 / Accepted: 5 May 2014 / Published online: 14 May 2014 © Springer-Verlag Berlin Heidelberg 2014

#### Abstract

Purpose Prevention of chemotherapy-induced nausea and vomiting (CINV) is crucial for maintaining the quality of life of cancer patients. Female patients have been underrepresented in previous clinical studies of aprepitant or palonosetron. We performed a prospective multicenter study to investigate the efficacy and safety of triple therapy comprising these two

agents and dexamethasone in female cancer patients receiving chemotherapy that included cisplatin (≥50 mg/m²). *Methods* Aprepitant was administered at a dose of 125 mg before chemotherapy on day 1 and at 80 mg on days 2 and 3. Palonosetron (0.75 mg) was given before chemotherapy on day 1. Dexamethasone was administered at a dose of 9.9 mg before chemotherapy on day 1 and at 6.6 mg on days 2–4. The

N. Takeshima · M. Matoda ( )

Department of Gynecology, Cancer Institute Hospital, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan e-mail: maki.matsumura@jfcr.or.jp

N. Takeshima

e-mail: nobuhiro.takeshima@jfcr.or.jp

M. Abe · Y. Hirashima

Division of Gynecology, Shizuoka Cancer Center Hospital, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777, Japan

M. Abe

e-mail: ma.abe@scchr.jp

Y. Hirashima

e-mail: y.hirashima@scchr.jp

K. Kai · K. Nasu

Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita 879-5593, Japan

K. Kai

e-mail: kenta9sp@oita-u.ac.jp

K. Nasu

e-mail: nasu@oita-u.ac.jp

M. Takano · K. Furuya

Department of Obstetrics and Gynecology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan

M. Takano

e-mail: mastkn@ndmc.ac.jp

K. Furuya

e-mail: furuyac@nifty.com

S. Sato · H. Itamochi

Department of Obstetrics and Gynecology, Tottori University, School of Medicine, 36-1 Nishicho, Yonago, Tottori 683-8504, Japan

S. Sato

e-mail: sseiya@med.tottori-u.ac.jp

H. Itamochi

e-mail: itamochi@hotmail.com

H. Tsubamoto

Department of Obstetrics and Gynecology, Hyogo College of Medicine, Mukogawa 1-1, Nishinomiya, Hyogo 663-8501, Japan a mail: taubo@hyo med eo in

e-mail: tsuba@hyo-med.ac.jp



primary endpoint was the the proportion of patients with a complete response (CR no vomiting and no use of rescue medication) throughout the overall period (0–120 h post-chemotherapy).

Results Ninety-six women (median age 55 years) were enrolled. The overall CR rate was 54.2 %. CR was obtained during the acute phase (0–24 h post-chemotherapy) and the delayed phase (24–120 h post-chemotherapy) in 87.5 and 56.3 % of the patients, respectively. The most common adverse reactions were constipation and fatigue (reported by three patients each).

Conclusions Exhibition of a favorable overall CR rate over existing two-drug combinations suggests that the triple therapy regimen used in the present study is effective and tolerable in patients with gynecological malignancies receiving cisplatin-based chemotherapy. Female patients may have a higher risk of developing CINV.

**Keywords** Aprepitant  $\cdot$  Palonosetron  $\cdot$  Nausea  $\cdot$  Vomiting  $\cdot$  CINV  $\cdot$  Cisplatin

#### Introduction

Chemotherapy-induced nausea and vomiting (CINV) occurs with a high frequency following chemotherapy for cancer and is one of the adverse reactions that causes hardship for patients receiving chemotherapy. Failure to prevent CINV may result in worsening of the physical and mental state of the patient and may even become an obstacle to the continuation of chemotherapy. Thus, prevention or alleviation of CINV is

K. Hasegawa

Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka-shi, Saitama 350-1298, Japan e-mail: koseih@gmail.com

#### K. Terao

Miyazaki Prefectural NOBEOKA Hospital, Shinkouji 2-1-10, Nobeoka-shi, Miyazaki 882-0835, Japan e-mail: k-terao@pref-hp.nobeoka.miyazaki.jp

#### T. Otsuki

Department of Obstetrics and Gynecology, Tohoku University, School of Medicine, 1-1, Seiryo-machi, Sendai 980-8574, Japan e-mail: takeootsuki@med.tohoku.ac.jp

K. Kuritani · K. Ito Kansai Rosai Hospital, 3-1-69 Inabaso, Amagasaki, Hyogo 660-8511, Japan

K. Kuritani

e-mail: keiko0630@bcb.bai.ne.jp

K. Ito

e-mail: kimihiko-ito@kanrou.net



extremely important for maintenance of the quality of life of patients and for continuation of their treatment [1, 2].

Antineoplastic agents cause vomiting via two pathways. In one pathway, enterochromaffin cells of the gastrointestinal mucosa are stimulated by a chemotherapy agent and release 5-hydroxytryptamine (serotonin, 5-HT), a neurotransmitter that activates gastrointestinal 5-hydroxytryptamine type 3 (5-HT<sub>3</sub>) receptors and transmits signals to the vomiting center in the lateral reticular formation of the medulla via vagal afferents or via the chemoreceptor trigger zone (CTZ). In the other pathway, a drug directly stimulates the CTZ, and then, signals are transmitted to the vomiting center via dopamine receptors and 5-HT<sub>3</sub> receptors. Furthermore, antineoplastic agents can promote the secretion of substance P in the area postrema and the nucleus solitarius of the medulla oblongata, after which substance P binds to neurokinin-1 (NK-1) receptors and induces vomiting. Attention has recently been paid to this mechanism as a new target for antiemetic therapy [3].

Aprepitant is a selective NK-1 receptor antagonist. Clinical trials of this agent with a new mechanism of action for the prophylaxis for CINV have been undertaken outside Japan, and it has been shown to be effective for both acute CINV and also delayed CINV, which responds poorly to existing medications [4–7]. In Japan, the efficacy of aprepitant was demonstrated in Japanese patients by a phase II trial [8], and authorization for manufacturing/marketing was gained in October 2009.

Palonosetron is a new second-generation 5-HT<sub>3</sub> receptor antagonist that differs from other 5-HT<sub>3</sub> receptor antagonists by showing higher receptor-binding affinity, as well as having an extended half-life of about 40 h (four to five times longer than dolasetron, granisetron, or ondansetron) and an excellent safety profile [9, 10]. In Japan, the efficacy of palonosetron was demonstrated by a randomized, parallel-group, comparative, multicenter study using granisetron hydrochloride as the comparator [11], and manufacturing/marketing authorization was obtained in January 2010.

Combined administration of NK-1 receptor antagonists, 5-HT<sub>3</sub> receptor antagonists, and steroids is recommended for the prevention of CINV associated with the administration of highly or moderately emetogenic antineoplastic agents in the international guidelines for antiemetic therapy issued by the American Society of Clinical Oncology (ASCO), Multinational Association of Supportive Care in Cancer (MASCC), and National Comprehensive Cancer Network (NCCN) [12–14]. In clinical studies of aprepitant or palonosetron, thus far reported in or outside Japan, there have been relatively few female patients, and the efficacy of these drugs for CINV in patients with gynecological cancer has not yet been established. In addition, no information is available in or outside Japan concerning the clinical efficacy of triple therapy with the

combination of aprepitant, palonosetron, and dexamethasone in patients with gynecological cancer.

Therefore, we planned the present study to evaluate the efficacy and safety of combined therapy with these three agents for prevention of CINV in patients with gynecological malignancies receiving chemotherapy containing cisplatin, a highly emetogenic antineoplastic agent.

#### Methods

#### Patients

Patients aged 20 years or older were enrolled if they were scheduled to receive more than one cycle of highly emetogenic chemotherapy at any of ten facilities related to Kansai Clinical Oncology Group (KCOG) between July 1, 2010 and June 30, 2012. All patients had gynecological cancer and were scheduled to receive cisplatin at a dose of 50 mg/m<sup>2</sup> or more. Patients who fulfilled any of the following criteria were excluded from the study: previous cisplatin use, severe hepatic insufficiency (Child-Pugh score >9), pre-enrollment alanine aminotransferase (glutamic-pyruvic transaminase) or aspartate aminotransferase (glutamic-oxaloacetic transaminase) level >3 times the upper limit of normal, pre-enrollment total bilirubin >2 times the upper limit of normal, and pre-enrollment serum creatinine level >1.5 times the upper limit of normal.

#### Study treatment

Aprepitant was administered orally, with a dose of 125 mg being given at 60–90 min before chemotherapy on day 1 and 80 mg being administered once daily on days 2 and 3. Palonosetron was administered intravenously with a dose of 0.75 mg at 30–60 min before chemotherapy on day 1. Dexamethasone was administered orally or intravenously, with a dose of 9.9 mg being given at 30–60 min before chemotherapy on day 1 followed by 6.6 mg once daily on days 2–4.

#### Parameters assessed

The primary endpoint of the study was the proportion of patients with a complete response (CR), which was defined as no episodes of vomiting and no rescue therapy for nausea, throughout the study period from 0 to 120 h after cisplatin administration (overall CR rate). The secondary endpoints were the proportion of patients with CR in the acute phase (0–24 h after cisplatin administration) and in the delayed phase (24–120 h after cisplatin administration) of the study, as well as the proportion of patients with complete protection

(CP no vomiting, no rescue therapy, and no significant nausea (visual analog scale score <25 mm)) throughout the study and in the acute and delayed phases. The proportion of patients who gave the response "Little or no effect on activities of daily living" when completing the Functional Living Index-Emesis (FLIE) questionnaire on day 6 was also determined to assess the influence on the quality of life (QOL).

#### Evaluation of safety

Adverse events and laboratory data were compiled according to the Common Terminology Criteria for Adverse Events (version 4).

#### Statistical analysis

It was calculated that 81 patients were needed to detect a difference of  $P \le 0.05$  (two-sided) with a 90 % power if the CR rate for antiemetic therapy was assumed to be 70 %. By estimating the rate of exclusion from analysis as about 20 %, the target number of subjects for enrollment was set at 100. In the main analysis, the study therapy would be judged to be effective if the proportion of patients with a CR throughout the study period (0–120 h) exceeded the proportion of patients with a CR with standard therapy (dual therapy with a first-generation 5-HT<sub>3</sub> receptor antagonists and dexamethasone) in previous reports.

#### Ethical considerations

The present study was conducted in accordance with ethical principles based on the Declaration of Helsinki and the "Ethical Guidelines for Clinical Studies." It was approved by an appropriate institutional review board and ethics committee at each participating center after assessment of the protocol and written information provided for the patients. All patients gave written informed consent prior to inclusion in the study. This study was registered with the University Hospital Medical Information Network (UMIN) clinical trial registry (no. UMIN000003820).

#### Results

#### Patient characteristics

A total of 96 patients were enrolled, and their characteristics are summarized in Table 1. All patients were female and their median age was 55 years (range 32–75 years). They were treated for the following gynecological malignancies: endometrial cancer in 61 patients (63.5 %), cervical cancer in 14 patients (14.6 %), and ovarian cancer in 19 patients (19.8 %). Among them, 49 patients (51.0 %) had a history of morning



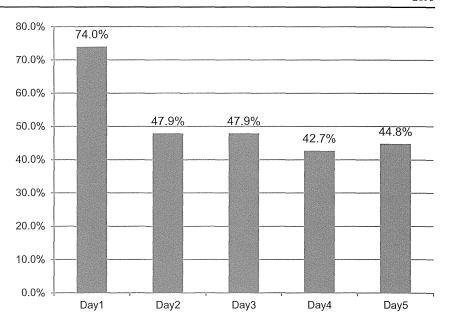
Table 1 Patient characteristics

|                        |                          | Number | Percen |
|------------------------|--------------------------|--------|--------|
| Total                  |                          | 96     | 100.0  |
| Age (years)            |                          |        |        |
|                        | Median                   | 55     |        |
|                        | Range                    | 32-75  |        |
| Performance status     |                          |        |        |
|                        | 0                        | 91     | 94.8   |
|                        | 1                        | 5      | 5.2    |
| Gynecological malignan | су                       |        |        |
|                        | Endometrial cancer       | 61     | 63.5   |
|                        | Ovarian cancer           | 19     | 19.8   |
|                        | Cervical cancer          | 14     | 14.6   |
|                        | Others                   | 2      | 2.1    |
| Cisplatin dose         |                          |        |        |
|                        | $\geq$ 50 and $\leq$ 60  | 57     | 59.4   |
|                        | ≥60 and <70              | 31     | 32.3   |
|                        | ≥70                      | 8      | 8.3    |
|                        | Mean                     | 56.0   |        |
| Chemotherapy regimen   |                          |        |        |
|                        | Cisplatin/Adriamycin     | 46     | 47.9   |
|                        | Cisplatin/Irinotecan     | 26     | 27.1   |
|                        | Cisplatin/Docetaxel      | 12     | 12.5   |
|                        | Cisplatin/Taxol          | 7      | 7.3    |
|                        | Cisplatin alone          | 2      | 2.1    |
|                        | Cisplatin/5-fluorouracil | 2      | 2.1    |
|                        | Cisplatin/Doxorubicin    | 1      | 1.0    |
| Prior chemotherapy     |                          |        |        |
|                        | Vomiting—Yes             | 19     | 19.8   |
|                        | Vomiting—No              | 15     | 15.6   |
| No prior chemotherapy  |                          | 62     | 64.6   |
| Drinking alcohol       |                          |        |        |
|                        | Yes                      | 17     | 17.7   |
|                        | No                       | 79     | 82.3   |
| Motion sickness        |                          |        |        |
|                        | Yes                      | 30     | 31.3   |
|                        | No                       | 66     | 68.8   |
| morning sickness       |                          |        |        |
| -                      | Yes                      | 49     | 51.0   |
|                        | No                       | 47     | 49.0   |

sickness during pregnancy, 30 (31.3 %) had a history of motion sickness, and 17 (17.7 %) drank alcohol. Furthermore, 34 patients (35 %) had received prior anticancer chemotherapy, and 19 patients (19.8 %) had experienced nausea. The mean dosage of cisplatin was 56 mg/cm², and the other drug used in combination with cisplatin was adriamycin in 46 patients (47.9 %), irinotecan in 26 patients (27.1 %), and docetaxel in 12 patients (12.5 %).



Table 2 Efficacy data


|                       | Study phase | Percent | 95 % confidence interval |
|-----------------------|-------------|---------|--------------------------|
| CR                    | Acute       | 87.5    | (79.2–93.4)              |
|                       | Delayed     | 56.3    | (45.7–66.4)              |
|                       | Overall     | 54.2    | (43.7–64.4)              |
| CP                    | Acute       | 82.3    | (73.2–89.3)              |
|                       | Delayed     | 45.8    | (35.6–56.3)              |
|                       | Overall     | 44.8    | (34.6–55.3)              |
| No emesis             | Acute       | 90.6    | (82.9-95.6)              |
|                       | Delayed     | 71.9    | (61.8-80.6)              |
|                       | Overall     | 71.9    | (61.8-80.6)              |
| No rescue therapy     | Acute       | 95.8    | (89.7-98.9)              |
|                       | Delayed     | 65.6    | (55.2–75.0)              |
|                       | Overall     | 62.5    | (52.0-72.2)              |
| No nausea             | Acute       | 74.0    | (64.0-82.4)              |
|                       | Delayed     | 33.3    | (24.3-44.1)              |
|                       | Overall     | 30.2    | (21.5-40.8)              |
| No significant nausea | Acute       | 89.6    | (81.7-94.9)              |
|                       | Delayed     | 62.5    | (52.6–72.8)              |
|                       | Overall     | 62.5    | (52.6–72.8)              |

The results for patients with no nausea and with no significant nausea are based on data for 95 patients because there was one omission *CR* complete response, *CP* complete protection

#### Antiemetic effect

The antiemetic effect of study therapy is summarized in Table 2. The overall CR rate, which was the primary endpoint, was 54.2 %, while the acute CR rate and delayed CR rate were 87.5 and 56.3 %, respectively. The proportion of patients with no emesis was 90.6, 71.9, and 71.9 % in the acute phase, delayed phase, and overall, respectively, while the corresponding CP rates were 82.3, 45.8, and 44.8 %. The proportion of patients with no nausea was 74.0, 33.3, and 30.2 % in the acute phase, delayed phase, and overall, respectively. The proportion of patients with no nausea on a daily basis for 5 days after administration of chemotherapy is shown in Fig. 1. Control of CINV was poorest at 4 days after the administration of chemotherapy. The proportion of patients who did not need rescue therapy was 95.8, 65.6, and 62.5 % in the acute phase, delayed phase, and overall, respectively. The proportion of patients who gave the response "Little or no effect on activities of daily living" when completing the FLIE questionnaire on day 6 was determined to assess QOL. It was 82.3 % for the vomiting domain, 43.8 % for the nausea domain, and 59.4 % for the combined nausea/vomiting domain. With regard to the nine items in the nausea domain of the FLIE questionnaire, the impact of nausea on daily activities was greatest for "Ability to enjoy a meal" (Fig. 2).

**Fig. 1** Proportion of patients with no nausea



#### Safety

Triple therapy with aprepitant, palonosetron, and dexamethasone showed good tolerability throughout the study period. The most frequently reported adverse reactions were constipation and fatigue, each of which was noted by three patients (3 %).

#### Discussion

The present multicenter clinical study aimed to evaluate the effect of triple therapy with aprepitant (an NK-1 receptor antagonist), palonosetron (a second-generation 5-HT<sub>3</sub>

receptor antagonist), and dexamethasone on CINV in patients with female malignancies who received cisplatin-based chemotherapy. Female sex is known as a risk factor for CINV. In addition, cisplatin is an antineoplastic agent that frequently causes CINV. Accordingly, the subjects of the present study may represent a population of patients in whom CINV would be difficult to control. Cisplatin-containing regimens are classified as highly emetogenic chemotherapy in the guidelines for antiemetic therapy issued by the ASCO [12], MASCC [13], NCCN [14], and Japan Society of Clinical Oncology [15].

In the present study, a CR rate of 54.2 % was achieved by triple therapy with aprepitant, palonosetron, and dexamethasone. This study demonstrated that the triple-agent strategy is

**Fig. 2** Nine items in the nausea domain of the Functional Living Index-Emesis questionnaire

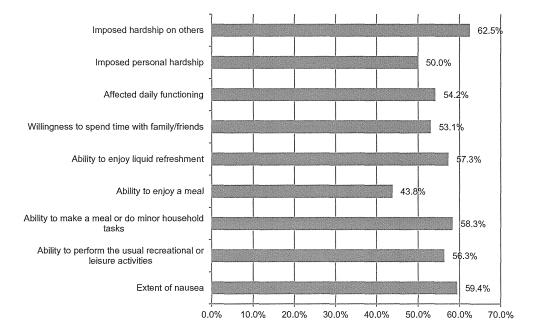





Table 3 Comparison of triple therapy regimens

|                            | No. of patients | Percentage of female patients | Cisplatin ≥70 mg/m <sup>2</sup> | CR   | No emesis | No nausea | No significant nausea | 5-HT <sub>3</sub> receptor antagonist |
|----------------------------|-----------------|-------------------------------|---------------------------------|------|-----------|-----------|-----------------------|---------------------------------------|
| Hesketh et al. (2003)      | 260             | 48                            | 70 %                            | 73 % | 78 %      | 48 %      | 73 %                  | Ondansetron                           |
| Poli-Bigelli et al. (2003) | 261             | 37                            | 82 %                            | 63 % | 66 %      | 49 %      | 71 %                  | Ondansetron                           |
| Schmoll et al. (2006)      | 243             | 39                            | 75 %                            | 72 % | 77 %      | MARRIA    | 73 %                  | Ondansetron                           |
| Takahashi et al. (2011)    | 149             | 24                            | 100 %                           | 71 % | 77 %      | 34 %      | 69 %                  | Granisetron                           |
| Present study              | 96              | 100                           | 9 %                             | 54 % | 72 %      | 30 %      | 63 %                  | Palonosetron                          |

CR complete response

useful, because it achieved similar CR rates to standard therapy (with a first-generation 5-HT3 receptor antagonist plus dexamethasone) that was used as the comparator in previous clinical trials of aprepitant or palonosetron: Hesketh et al. [4] and Poli-Bigelli et al. [5], respectively, reported a CR rate of 52.3 and 43.3 % with the standard ondansetrondexamethasone combination. In addition, a CR rate of 40.3 % was reported with the combination of palonosetron and dexamethasone [11]. However, the triple therapy used in the present study achieved a lower CR rate than other triplet regimens, since the CR rate was 72.7, 62.7, and 72.0 % with triple therapy using ondansetron (a first-generation 5-HT<sub>3</sub> receptor antagonist) as reported by Hesketh et al. in 2003 [4], Poli-Bigelli et al. in 2003 [5], and Schmoll et al. in 2006 [16], respectively. In addition, a CR rate of 70.5 % for a triplet regimen using granisetron (another first-generation 5-HT<sub>3</sub> receptor antagonist) was reported by Takahashi et al. in 2011 (Table 3) [8]. One reason for this difference from other studies may be that our subjects were all female patients. Women are known to be susceptible to CINV, and stratified analysis has shown that dual therapy with a first-generation 5-HT<sub>3</sub> receptor antagonist and dexamethasone achieves a lower CR rate in women than in men [17]. In other clinical studies with a lower proportion of women than the present study, the CR rate for triple therapy that included palonosetron as the firstgeneration 5-HT3 receptor antagonist was reported to be 70.3 % (percentage of women in the study population 23.4 %) by Longo et al. [18] and 81.0 % (percentage of women 23 %) by Miura et al. [19]. Since patients with previous chemotherapy were also enrolled in the present

study, an analysis was conducted to compare the subgroups with and without prior chemotherapy, but similar results were obtained (Table 4). Accordingly, although the fact that the subjects of the present study were all women should have an influence, the possibility of other factors cannot be ruled out because it has been reported that the addition of aprepitant to dual therapy with a first-generation 5-HT<sub>3</sub> receptor antagonist and dexamethasone can overcome the increased risk of CINV associated with the female gender [17].

In the present study, only 30 % of patients had no nausea throughout the observation period, and adequate control of nausea was not achieved. Rescue medication was administered at the discretion of the attending physician at each participating center because the present study was a multicenter investigation. Accordingly, one reason for the low CR rate may be that rescue therapy was provided without careful consideration of patient's complaints about nausea at some centers. Therefore, different measures should be taken for the control of nausea in future studies.

In another study of patients undergoing highly emetogenic chemotherapy (TRIPLE), comparison was performed between granisetron (a first-generation 5-HT<sub>3</sub> receptor antagonist) and palonosetron (a second-generation 5-HT<sub>3</sub> receptor antagonist) with basal antiemetic therapy using aprepitant and dexamethasone [20]. The overall CR rate was the primary endpoint, and this showed no statistically significant difference between the two groups. Palonosetron group was significantly superior to the granisetron group with regard to the nausea domain rates for complete control and total control. In view of our present finding that the control of nausea was even poor with

Table 4 Results for patients with and without prior chemotherapy

|                     | No. of patients | Percentage of female patients | Cisplatin ≥70 mg/m <sup>2</sup> | CR   | No emesis | No nausea | No significant nausea | Prior chemotherapy |
|---------------------|-----------------|-------------------------------|---------------------------------|------|-----------|-----------|-----------------------|--------------------|
| Longo et al. (2010) | 222             | 23                            | 98 %                            | 70 % | 93 %      | 60 %      | 91 %                  | Chemo-naïve        |
| Miura et al. (2013) | 64              | 23                            | 95 %                            | 81 % | atte      | 54 %      | 67 %                  | Chemo-naïve        |
| Present study       | 96              | 100                           | 9 %                             | 54 % | 72 %      | 30 %      | 63 %                  | Cisplatin-naïve    |
|                     | 62*             | 100                           | 8 %                             | 55 % | 68 %      | 31 %      | 63 %                  | Chemo-naïve        |

CR complete response



palonosetron, the influence of female gender is considered to be strong.

Recently, the efficacy of olanzapine for controlling nausea has been reported. This agent is one of the multi-acting receptor antipsychotics (MARTA) used for the treatment of schizophrenia, which can block dopamine receptors, serotonin receptors, histamine receptors, adrenergic receptors, and other receptors associated with CINV. Olanzapine was recently reported to be effective for preventing CINV based on its mechanism of action [21]. Therefore, concomitant use of olanzapine is another option that is available.

In order to achieve further improvement of the control of CINV, several additional treatments are likely to be introduced. Since nausea often reaches a peak at 4 days after the administration of anticancer agents (Fig. 2), treatment with apprepiatnt for 5 days is also likely to be a useful option. Furthermore, administration of dexamethasone for a period of up to 5 days is recommended by guidelines established in Japan, and this regimen is also available.

The present study was the first to investigate the usefulness of triple therapy with aprepitant, palonosetron, and dexamethasone for prevention of CINV in Japanese patients with gynecological cancer receiving cisplatin-containing chemotherapy. This triple therapy was ascertained to be effective compared with the current standard therapy using first-generation 5-HT<sub>3</sub> receptor antagonists and dexamethasone. Nevertheless, the preventive effect of triple therapy tended to be weaker in the present study than that reported previously. All of the subjects were female and therefore may have been predisposed to develop CINV, but the reason is unclear. Control of delayed nausea is an important measure against CINV in the gynecology field. Thus, it may be necessary for medical and co-medical staff, including pharmacists and nurses, to conduct further follow-up of patients.

**Acknowledgments** We would like to thank Dr. Noriyuki Takai for his substantial support with the conception and implementation of the present study.

**Conflict of interest** The authors have no conflicts of interest to declare.

#### References

- Richardson JL, Marks G, Levine A (1988) The influence of symptoms of disease and side effects of treatment on compliance with cancer therapy. J Clin Oncol 6:1746–1752
- Bloechl-Daum B, Deuson RR, Mavros P, Hansen M, Herrstedt J (2006) Delayed nausea and vomiting continue to reduce patients' quality of life after highly and moderately emetogenic chemotherapy despite antiemetic treatment. Clin Oncol 24:4472–4478
- Huskey SE, Dean BJ, Bakhtiar R, Sanchez RI, Tattersall FD, Rycroft W, Hargreaves R, Watt AP, Chicchi GG, Keohane C, Hora DF, Chiu SH (2003) Brain penetration of aprepitant, a substance P receptor antagonist, in ferrets. Drug Metab Dispos 31(6):785–791

- 4. Hesketh PJ, Grunberg SM, Gralla RJ, Warr DG, Roila F, de Wit R, Chawla SP, Carides AD, Ianus J, Elmer ME, Evans JK, Beck K, Reines S, Horgan KJ, Aprepitant Protocol 052 Study Group (2003) The oral neurokinin-1 antagonist aprepitant for the prevention of chemotherapy-induced nausea and vomiting: a multinational, randomized, double-blind, placebo-controlled trial in patients receiving high-dose cisplatin-the Aprepitant Protocol 052 Study Grou. J Clin Oncol 21(22):4112–4119
- 5. Poli-Bigelli S, Rodrigues-Pereira J, Carides AD, Julie Ma G, Eldridge K, Hipple A, Evans JK, Horgan KJ, Lawson F, Aprepitant Protocol 054 Study Group (2003) Addition of the neurokinin 1 receptor antagonist aprepitant to standard antiemetic therapy improves control of chemotherapy-induced nausea and vomiting. Results from a randomized, double-blind, placebo-controlled trial in Latin America. Cancer 97(12):3090–3098
- 6. Warr DG, Hesketh PJ, Gralla RJ, Muss HB, Herrstedt J, Eisenberg PD, Raftopoulos H, Grunberg SM, Gabriel M, Rodgers A, Bohidar N, Klinger G, Hustad CM, Horgan KJ, Skobieranda F (2005) Efficacy and tolerability of aprepitant for the prevention of chemotherapy-induced nausea and vomiting in patients with breast cancer after moderately emetogenic chemotherapy. J Clin Oncol 23(12):2822–2830
- Chawla SP, Grunberg SM, Gralla RJ, Hesketh PJ, Rittenberg C, Elmer ME, Schmidt C, Taylor A, Carides AD, Evans JK, Horgan KJ (2003) Establishing the dose of the oral NK1 antagonist aprepitant for the prevention of chemotherapy-induced nausea and vomiting. Cancer 97(9):2290–2300
- Takahashi T, Hoshi E, Takagi M, Katsumata N, Kawahara M, Eguchi K (2011) Multicenter, phase II, placebo-controlled, double-blind, randomized study of aprepitant in Japanese patients receiving highdose cisplatin. Cancer Sci 11:2455–2461
- Wong EH, Clark R, Leung E, Loury D, Bonhaus DW, Jakeman L, Parnes H, Whiting RL, Eglen RM (1995) The interaction of RS 25259-197, a potent and selective antagonist, with 5-HT<sub>3</sub> receptors, in vitro. Br J Pharmacol 114(4):851–859
- Rojas C, Stathis M, Thomas AG, Massuda EB, Alt J, Zhang J, Rubenstein E, Sebastiani S, Cantoreggi S, Snyder SH, Slusher B (2008) Palonosetron exhibits unique molecular interactions with the 5-HT<sub>3</sub> receptor. Anesth Analg 107(2):469–478
- Saito M, Aogi K, Sekine I, Yoshizawa H, Yanagita Y, Sakai H, Inoue K, Kitagawa C, Ogura T, Mitsuhashi S (2009) Palonosetron plus dexamethasone versus granisetron plus dexamethasone for prevention of nausea and vomiting during chemotherapy: a double-blind, double-dummy, randomised, comparative phase III trial. Lancet Oncol 10(2):115–124
- Basch E, Prestrud AA, Hesketh PJ, Kris MG, Feyer PC, Somerfield MR, Chesney M, Clark-Snow RA, Flaherty AM, Freundlich B, Morrow G, Rao KV, Schwartz RN, Lyman GH (2011) Antiemetics: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol 29(31):4189–4198
- MASCC/ESMO Antiemetic Guideline 2013. http://www.mascc.org/ assets/documents/mascc\_guidelines\_english\_2013.pdf Accessed 8 Aug 2013
- National Comprehensive Cancer Network (2014) NCCN Clinical Practice Guidelines in Oncology: Antiemesis, Version 1. http:// www.nccn.org/professionals/physician\_gls/pdf/antiemesis.pdf Accessed 8 Aug 2013
- Japan Society of Clinical Oncology (2010) Guidelines for the Proper Use of Antiemetics, Version 1. Kanehara, Tokyo
- 16. Schmoll HJ, Aapro MS, Poli-Bigelli S, Kim HK, Park K, Jordan K, von Pawel J, Giezek H, Ahmed T, Chan CY (2006) Comparison of an aprepitant regimen with a multiple-day ondansetron regimen, both with dexamethasone, for antiemetic efficacy in high-dose cisplatin treatment. Ann Oncol 17:1000–1006
- 17. Hesketh PJ, Aapro M, Street JC, Carides AD (2010) Evaluation of risk factors predictive of nausea and vomiting with current standard-



- of-care antiemetic treatment: analysis of two phase III trials of aprepitant in patients receiving cisplatin-based chemotherapy. Support Care Cancer 18:1171–1177
- 18. Longo F, Mansueto G, Lapadula V, De Sanctis R, Quadrini S, Grande R, Gori B, Altavilla A, D'Antoni I, Del Signore E, Stumbo L, De Luca C, Cimadon B, Cortesi E, Gamucci T, Di Seri M (2011) Palonosetron plus 3-day aprepitant and dexamethasone to prevent nausea and vomiting in patients receiving highly emetogenic chemotherapy. Support Care Cancer 19:1159–1164
- 19. Miura S, Watanabe S, Sato K, Makino M, Kobayashi O, Miyao H, Iwashima A, Okajima M, Tanaka J, Tanaka H, Kagamu H, Yokoyama A, Narita I, Yoshizawa H (2013) The efficacy of triplet antiemetic therapy with 0.75 mg of palonosetron for chemotherapy-induced nausea and vomiting in lung cancer patients receiving highly emetogenic chemotherapy. Support Care Cancer 21(9):2575–2581
- 20. Hashimoto H, Yamanaka T, Shimada Y, Arata K, Matsui R, Goto K, Takiguchi T, Ohyanagi F, Kogure Y, Nogami N, Nakao M, Takeda K, Azuma K, Nagase S, Hayashi T, Fujiwara K, Shimada T, Seki N, Suzuki K, Yamamoto N (2013) Palonosetron (PALO) versus granisetron (GRA) in the triplet regimen with dexamethasone (DEX) and aprepitant (APR) for preventing chemotherapy-induced nausea and vomiting (CINV) in patients (pts) receiving highly emetogenic chemotherapy (HEC) with cisplatin (CDDP): A randomized, double-blind, phase III trial. ASCO2013 Annual Meeting abstr #9621 http://meetinglibrary.asco.org/content/111042-132 Accessed 8 Aug 2013
- 21. Navari RM, Gray SE, Kerr AC (2011) Olanzapine versus aprepitant for the prevention of chemotherapy-induced nausea and vomiting: a randomized phase III trial. J Support Oncol 9(5):188–195



# The PI3K/mTOR dual inhibitor NVP-BEZ235 reduces the growth of ovarian clear cell carcinoma

TETSURO OISHI $^1$ , HIROAKI ITAMOCHI $^1$ , AKIKO KUDOH $^1$ , MICHIKO NONAKA $^1$ , MISAKI KATO $^2$ , MAYUMI NISHIMURA $^2$ , NAO OUMI $^2$ , SEIYA SATO $^1$ , JUN NANIWA $^1$ , SHINYA SATO $^1$ , MUNEAKI SHIMADA $^1$ , JUNZO KIGAWA $^2$  and TASUKU HARADA $^1$ 

<sup>1</sup>Department of Obstetrics and Gynecology, Tottori University School of Medicine; <sup>2</sup>Tottori University Hospital Cancer Center, Yonago, Tottori 683-8504, Japan

Received January 31, 2014; Accepted April 8, 2014

DOI: 10.3892/or.2014.3268

Abstract. Patients with clear cell carcinoma of the ovary (OCCC) have poor survival due to resistance to standard chemotherapy. OCCC has frequent activating mutations of the PIK3CA gene. The present study was conducted to clarify the efficacy of the inhibition of the PI3K-AKT-mTOR pathway in OCCC. We used 8 OCCC cell lines and 5 ovarian serous adenocarcinoma (OSAC) cell lines. The mutation status of the PIK3CA and KRAS genes was examined by direct sequencing. The IC<sub>50</sub> values of NVP-BEZ235 (BEZ235) and temsirolimus were determined by WST-8 assay. Protein expression levels of PI3K-AKT-mTOR pathway molecules were examined by western blotting. Cell cycle distribution was analyzed by flow cytometry. Annexin V staining was used for detecting apoptosis. We also investigated the effects of BEZ235 on OCCC tumor growth in a nude mouse xenograft model. Four of the 8 OCCC cell lines showed a PIK3CA mutation while none of the 5 OSAC cell lines showed a mutation. The IC<sub>50</sub> values of BEZ235 for the OCCC cell lines were lower than these values for the OSAC cell lines. The IC<sub>50</sub> value of temsirolimus was higher than BEZ235 in the OCCC cell lines. The PIK3CA mutation was more frequently noted in OCCC than OSAC cells, but the sensitivity of these cell lines to BEZ235 or temsirolimus was not related to the mutation status. pHER3 and pAkt proteins were expressed more frequently in OCCC compared with OSAC. However, protein expression levels were distributed widely, and were not related to the sensitivity. Treatment with BEZ235 suppressed expression of pAkt, although treatment with temsirolimus did not. OCCC cells

Correspondence to: Dr Tetsuro Oishi, Department of Obstetrics and Gynecology, Tottori University School of Medicine, 36-1 Nishicho, Yonago, Tottori 683-8504, Japan E-mail: tetsuro@med.tottori-u.ac.jp

Abbreviations: PI3K, phosphatidylinositol 3-kinase; PDK1, phosphatidylinositol-dependent kinase 1; mTOR, mammalian target of rapamycin; OCCC, ovarian clear cell carcinoma; OSAC, ovarian serous adenocarcinoma

Key words: clear cell carcinoma, PI3K, mTOR, ovarian carcinoma

exhibited  $G_1$  phase arrest after treatment with BEZ235 and apoptosis with a higher concentration of the agent. BEZ235 significantly inhibited tumor growth in mice bearing OVISE and TU-OC-1 cell tumors. The present study indicated that the PI3K-AKT-mTOR pathway is a potential target for OCCC, and that BEZ235 warrants investigation as a therapeutic agent.

#### Introduction

Clear cell carcinoma of the ovary (OCCC) is recognized in the World Health Organization classification of ovarian tumors as a distinct histological entity. Its clinical behavior is distinctly different from other epithelial ovarian cancers (1). OCCC accounts for 3.7-12.1% of epithelial ovarian cancers (2,3). We found that response rates for platinum-based chemotherapy were 11.1% for OCCC and 72.5% for serous adenocarcinoma (SAC), suggesting that OCCC resists conventional platinum-based chemotherapy (4). A novel therapeutic strategy is needed to improve the prognosis of patients with OCCC.

PIK3CA is located at the 3g26.3 locus and encodes the catalytic subunit of the phosphatidylinositol 3-kinase (PI3K), p110 $\alpha$  (5). In response to an extracellular signal, the activated p110a phosphorylates PIP2 to generate PIP3. The PIP3 recruits AKT to the plasma membrane, where it is phosphorylated and activated by phosphatidylinositol-dependent kinase 1 (PDK1) and PDK2. Activated AKT can directly activate the mammalian target of rapamycin (mTOR) by phosphorylation at Ser2448. mTOR is a serine/threonine kinase that acts as an effector in the PI3K/Akt pathway. Aberrations of the PI3K pathway are frequently present in many different types of cancer. A number of studies have shown amplification or mutations of the PIK3CA gene in ovarian cancers (6-8). AKT and mTOR are also hyperactivated in ovarian cancer (9,10). Additionally, a high frequency of activating mutations of PIK3CA has been observed in OCCC (11).

NVP-BEZ235 is an imidazoquinoline derivative that potently and reversibly inhibits class 1 PI3K and mTOR catalytic activity by competing at its ATP-binding site (12). It has been demonstrated to reduce tumor growth in several xenograft models and is currently in clinical trials (12-14). The present study was conducted to clarify the efficacy of NVP-BEZ235 treatment on OCCC.

#### Materials and methods

Cell lines and cell cultures. Eight human OCCC cell lines (OVISE, SMOV-2, KK, TU-OC-1, OVTOKO, KOC-7c, RMG-I and OVMANA) and five OSAC cell lines (KF, KOC-2s, TU-OS-3, TU-OS-4 and SHIN-3) were used. Cells were obtained as follows: OVISE and OVTOKO from Dr Hiroshi Minaguchi (Yokohama City University, Yokohama, Japan); SMOV-2 from Dr Tomohiro Iida (St. Marianna University, Kawasaki, Japan); KK and KF from Dr Yoshihiro Kikuchi (National Defense Medical College, Tokorozawa, Japan); KOC-7c and KOC-2s from Dr Toru Sugiyama (Kurume University, Kurume, Japan); RMG-I from Dr Shiro Nozawa (Keio University, Tokyo, Japan); and SHIN-3 from Dr Yasuhiko Kiyozuka (Nara Medical University, Kashihara, Japan). TU-OC-1, TU-OS-3, and TU-OS-4 cells were established by our department (15,16). All cell lines were maintained in Dulbecco's modified Eagle's medium (DMEM)/F12 (Gibco, Grand Island, NY, USA) with 10% fetal bovine serum (FBS) in a humidified atmosphere containing 5% CO<sub>2</sub> at 37°C.

Mutation screening. Screening for mutations was performed as previously described (17). Genomic DNA was purified from all cell lines using a DNeasy Tissue kit (Qiagen, Valencia, CA, USA). PCR primers used to amplify the sequence of interest (exons 9 and 20 of the PIK3CA gene, exons 2 and 3 of the KRAS gene) were the same as reported in the literature (18,19). DNA was amplified in reactions of 30 sec at 94°C; 30 sec at 55°C; followed by 90 sec at 72°C for 30 cycles. Then, PCR products were subjected to sequencing using BigDye Terminator v3.1 Cycle Sequencing kit and an Applied Biosystems 3130xl Genetic Analyzer (Applied Biosystems Foster City, CA, USA).

Reagents. NVP-BEZ235 and temsirolimus were purchased from LC Laboratories (Woburn, MA, USA). Stock solutions were prepared in dimethyl sulfoxide (DMSO) and stored at -20°C for the *in vitro* experiments. The drugs were diluted in fresh medium immediately before each experiment. In all the experiments, the final DMSO concentration was <0.1%.

Dose-response studies. The cytotoxicities of NVP-BEZ235 and temsirolimus were assessed by the WST-8 assay using Cell Counting Kit-8 (Dojindo Laboratories, Tabaru, Japan) as previously described (17). Cells (2-4x10³ cells/80  $\mu$ l) were seeded into each well of a 96-well tissue culture plate, cultured overnight, and then treated with 20  $\mu$ l of NVP-BEZ235 or temsirolimus solution at a final concentration of 0.001, 0.01, 0.1, 1 or 10  $\mu$ M for 72 h. After that, 20  $\mu$ l of Cell Counting Kit-8 solution was added to each well, and the plates were incubated for another 1-2 h. Absorbance was measured at 450 nm with a microplate reader (iMark Microplate Absorbance Reader). Cell viability was calculated as the percentage of cells killed by the treatment. All experiments were conducted in triplicate. Median inhibitory concentrations were determined from these calculations.

Western blot analysis. Cells were washed twice with ice-cold PBS. Cell pellets were then lysed in a buffer [50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 10% glycerol, 1% NP-40, 2 mM EDTA, 50 mM NaF, 2 mM Na<sub>3</sub>VO<sub>4</sub> and protease inhibitors (Complete

Protease Inhibitor Cocktail Tablets; Roche Diagnostics)] as previously described (17). Protein concentrations were measured against a standardized control using a protein assay kit (Bio-Rad Laboratories). A total of 50 mg protein was separated by electrophoresis on a 5-20% polyacrylamide gel and transferred to a polyvinylidene difluoride membrane (Millipore). The antibodies were as follows: rabbit anti-erbB3 antibody (C17) (diluted 1:200; Santa Cruz Biotechnology, Santa Cruz, CA, USA), mouse anti-β-actin (AC-40) antibody (1:1,000; Sigma-Aldrich, St. Louis, MO, USA); and anti-phospho-erbB3 (Tyr1289) (21D3) antibody (1:1,000), rabbit anti-AKT antibody (1:1,000), rabbit anti-phospho-AKT (Ser473) antibody (1:500), rabbit anti-mTOR antibody (1:500), rabbit anti-phospho-mTOR (Ser2448) antibody (1:500), rabbit anti-p70S6K antibody (1:500), rabbit anti-phospho-p70S6K (Thr389) antibody (1:500), rabbit anti-4E-BP1 antibody (1:1,000) and rabbit anti-phospho-4E-BP1 (Thr37/49) antibody (1:1,000) (all from Cell Signaling Technology (Danvers, MA, USA). Signals were detected with secondary anti-mouse or anti-rabbit immunoglobulin G antibody coupled with horseradish peroxidase, using an Ez-Capture II chemiluminescent imaging system (ATTO, Tokyo, Japan).

Cell cycle distribution analysis. Cell cycle distribution was analyzed by flow cytometry. Briefly, cells were plated in a 6-well plate, cultured overnight, and then treated with NVP-BEZ235 or left untreated for 48 or 72 h (final concentration of 10 or 100 nM). Floating and adherent cells were fixed overnight in ice-cold 70% ethanol. The cells were then resuspended in PBS containing propidium iodide (PI, 25  $\mu$ g/ml) supplemented with 0.1% RNase A and incubated at 37°C for 30 min. DNA content was measured with a FACSCalibur flow cytometer with CellQuest software (Becton-Dickinson, Franklin Lakes, NJ, USA). Cell fit analysis determined the percentage of the cell count in a specific phase of the cell cycle.

Annexin V staining. The Annexin V-FITC Apoptosis Detection kit (BioVision, Mountain View, CA, USA) was used to assess apoptosis as the externalization of phosphatidylserine residues, according to the specifications of the manufacturer. Briefly, cells were suspended in 500 ml of 1X binding buffer. The cells then were stained with 5 ml Annexin V-FITC (fluorescein isothiocyanate) and 5 ml PI (50 mg/ml) for 5 min in the dark at room temperature. Finally, the cells were analyzed with a flow cytometer (FACSCalibur; Becton-Dickinson).

Ovarian cancer xenograft model. OVISE or TU-OC-1 cells in log-phase growth were trypsinized, washed twice with PBS and centrifuged at 250 x g. For subcutaneous tumor development,  $4x10^6$  viable cells (in 0.1 ml of PBS) were injected subcutaneously under aseptic conditions into female athymic mice. Seven days after the injection, we confirmed the development of measurable tumors, and then treatment was initiated with NVP-BEZ235 at doses of 25 or 50 mg/kg/day, and continued for 3 weeks. Mice treated with vehicle (10% 1-methyl-2-pyrrolidone-90% polyethylene glycol 300) were used as the control group. All agents were administered by oral gavage. Ten mice were used in each experimental group. The tumor volume was measured with a caliper twice weekly. The body weight of mice was also measured twice weekly.