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ARTICLE INFO ABSTRACT
Article history: For competing risks data, it is of interest to estimate the sub-distribution function of a
Received 18 July 2013 particular failure event, which is the failure probability in the presence of competing risks.

Available online 6 September 2014 However, if multiple failure events per subject are available, estimation procedures become

challenging even for the bivariate case. In this paper, we consider nonparametric estimation

AIZVIS subject classifications: of a bivariate sub-distribution function, which has been discussed in the related literature.
22:83 Adopting a decision-theoretic approach, we propose a new nonparametric estimator which
62605 improves upon an existing estimator. We show theoretically and numerically that the
62G20 proposed estimator has smaller mean square error than the existing one. The consistency
62C05 of the proposed estimator is also established. The usefulness of the estimator is illustrated
by the salamander data and mouse data.
g?wa”td55 val functi © 2014 Elsevier Inc. All rights reserved.
ivariate survival function
Right censoring

Survival analysis

1. Introduction

Statistical analysis of competing risks data is common in biology, where individuals experience multiple failure causes.
For instance, larvae grown in a cage may experience either metamorphosis or death, whichever comes first [15]. These two
failure causes are mutually exclusive in that each larva exhibits only one of the two causes at the time of failure. This type
of data is popular, especially in biomedical research involving human and animal subjects [2]. Competing risks models are
used to analyze such data. An overview of competing risks data analysis is referred to Crowder [8] and Bakoyannis and
Touloumi [5].

In competing risks data analysis, the sub-distribution function plays a fundamental role. Let T be a failure time and C €
{1,2, ..., v} be the failure cause for y distinct causes. The sub-distribution function (also known as cumulative incidence
function) is defined as

Ft)=P(T<t,C=j)), j=12,...,y.
This is the proportion of failure events occurring due to cause j before time t. The sub-distribution function is easy to
interpret and is often the target for estimation [8,5,13].
In applications, bivariate competing risks arise naturally. For instance, a pair of larvae in an experimental cage shares

unobserved environmental or genetic factors [15]. In analysis of such data, the univariate competing risks models need to
be generalized to bivariate models.
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The bivariate competing risk models have been recently considered by many authors [4,19,17,18,20]. Under the bi-
variate competing risks models, the target of estimation is the bivariate sub-distribution function (formally defined in Sec-
tion 2). Several nonparametric estimators have been proposed under various censoring and truncation schemes. Antony and
Sankaran {4] and Sankaran et al. [ 19] developed nonparametric estimators under right-censoring. Sankaran and Antony [ 18]
considered a similar problem where the censoring times are missing. Sankaran and Antony [17] proposed a nonpara-
metric estimator under left-truncation and right-censoring. Shen [20] considered nonparametric estimation under double
censoring.

This paper considers nonparametric estimation of the bivariate sub-distribution functions under right censoring as in
[4,19]. Note that nonparametric estimation under bivariate competing risks is much more challenging than its univariate
counterpart. Especially in small sample sizes, the estimator of Sankaran et al. [19] will generally be a crude step function
and will have a large mean squared error (MSE). In light of this problem, the main objective of this paper is to propose a
new nonparametric estimator that aims to improve upon the existing estimator. The proposed estimator not only reduces
the MSE but also smoothes out the crude step function estimator in some degree.

The paper is organized as follow. Section 2 introduces basic notations and the estimator of Sankaran et al. { 19]. Section 3
proposes a new estimator for the bivariate sub-distribution function. Section 4 verifies the consistency of the proposed
estimator. Section 5 presents simulations comparing the proposed method with the existing one. Section 6 analyzes the
mouse data and the salamander data. Section 7 concludes the paper.

2. Preliminary

This section defines basic notations for bivariate competing risks models and then introduces the nonparametric estima-
tor of Sankaran et al. [19] for estimating a bivariate sub-distribution function.

Let S(t1, ) = Pr(T; > t1,To, > tp) be the survivor function of bivariate failure times (T, T»). Also, let (C1, (3) €
{1,2,..., 71} x{1,2, ..., v} be the corresponding bivariate failure causes. For (i, j) € {1,2, ..., 1} x {1,2, ..., 2}, the
cause-specific hazard is

Pr(T; edt;, T, € dt;, C; =i, =)
Pr(Ty = t1, T, > 1) '
Also, the sub-distribution function is
Fi(t1, ) =Pr(Ty =61, T, <6, G =1i,G =)).
The cause-specific hazard and the sub-distribution functions are related through

Aj(dty, dtp) =

t t
Fij(tl, fz) = / / S(Um, v")A,-j(du, dv) (])
0 0

The above identity is useful for estimating the sub-distribution Fy; under right-censoring. If (T, T,) are censored by a pair
of independent censoring times (Z1, Z,), one observes (Y1, Y>) and (81, &;), where Y, = min(Ty, Z;) and 6, = I(T, = Y;) for
k = 1, 2, where I(-) is the indicator function. If §;, = 0, then we set C;, = 0 since the value of Cy is not available. If H(t{, ;) =
Pr(Y; > t1, Yo > ) > 0, Eq. (1) becomes

) S(u v ) “(du,dv) )
Fl](t15t2)_“/ / ) ’ 1=1,2,~-.7V17]=szu-’VZ, (2)
where
Fi(ti, ) =Pr(T1 <61, <, 81 =1,8,=1,C, =1, G =)).
Sankaran et al. [19] used Eq. (2) to estimate F; based on observations (Y1y, Y2y), (Ciy, Cou), and (81, S2u),u = 1,2,..., 1,

which are i.i.d. replications of (Y1, Y2), (Cq, (3), and (81, 8-). They consider an estimator of H(ty, t;) as
n

~ 1
H(t1, t2) = - Zl(ylu > by, You > t2),
u=1
and an estimate of F; (t1, t) as

. 1 . .
Fi(t1, t) = - ZI(Yw Sty You S, 8w =160 =1Cu=1Cy=J).
u=1

Under H (t1, tz) > 0, they obtain the nonparametric estimator for F;(ty, t3) as

o S, v7) Fi(du, dv) .
Fu(t],tz)— H(u* v*) s l=l,2,...,)/],]=1,2,...,)/2. (3)

Sankaran et al. | 19] proposed to apply the Dabrowska estimator [9] for S. Other estimators are also available, such as

the estimators of Prentice and Cai [16] and Wang and Wells [22]. The strong consistency and weak convergence for F,] are
studied by [19].
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3. Proposed estimator

3.1. The independence estimator

Before deriving the proposed estimator, we first consider a simplified estimator under the independence assumption.
The idea is motivated by Wang and Wells [22].
If (Tq, Cy, Zy) and (Ty, Gy, Z3) are independent, it is easy to show the identity

ty 5]
Fj(t1, o) = {/ 51(UN)An(dU)} X {[ Sz(v")/lzj(dv)} =12, ond=12,...,
0 0

where S (1) = Pr(T, > u) and Ayi(du) = Pr(Ty € du, Gy = i|Ty > u) for k = 1, 2. We define the “independence estimator”
OfFij(ﬁ, ;) as

Fj (61, 02) = Fu(t)Fy(t2), (4)

where ﬁli(tl) and ﬁzj(tz) are the two univariate estimators of the form

7% ¢ -

ﬁki(tk) :/ ?k(u )ﬁ;(dU) i= 1,2, ..,,}/k,kz 1,2,
0 Hg(u™)

where ﬁ,fi(u) =y 1Y

estimator of Tj.

Obviously, the estimator in Eq. (4) is inconsistent except for the independence case. However, estimation of two univari-
ate function in Eq. (4) is much easier than estimation of a bivariate function in the existing estimator of Sankaran et al. [ 19].
Also, due to the trade-off between bias and variance, the independence estimator often has smaller MSE than the existing
estimator. In the following, we take advantage of the independence estimator to refine the estimator of Sankaran et al. [19].

< U = 1,Cy = 1)/n, ﬁk(u“) = ZZ:l I(Yiw > u)/n, and §k(~) is the Kaplan-Meier (KM)

3.2. The proposed estimator

We propose a new nonparametric estimator which refines the estimator of Sankaran et al. [ 19] for estimating the bivariate
sub-distribution function.

We define a class of estimators that combine the existing estimator and independence estimator as follow:

Fi(t1, ) = aFy(ti, ) + (1 — a)Fyi(ty) Fy(t), a €0, 1].

If a = 1, this is the estimator of Sankaran et al. [19] in Eq. (3); if a = 0 this is the independence estimator in Eq. (4). Hence,
the class of estimators includes the two estimators as special cases.

Now we consider how to choose the optimal value of a. In the statistical decision theory, one often searches the estimator
that minimizes the MSE within a class of shrinkage estimators (e.g., Khan [12]; Wencheko and Wijekoon [23]). In estimating

a bivariate survival function, this approach was taken by Akritas and Keilegom [ 1]. By adopting this approach, we find a that
archives the smallest MSE. The MSE is calculated as

MSE[F{ (t1, )] = E[F{(t1, t) — Fy(t1, )1

= @ E[Fy(t1, t) — Fy(ts, t)1* + (1 — a)2E[Fyi(t) Fyj(tz) — Fy(ty, )12
+2a (1 — Q)E{[Fj(t1, ta) — Fy(t1, )1[Fi(t1) Fyy(t2) — Fy(ta, t2)1}.
The minimizer is obtained by solving
d n
0= EEMSE[F;“]’ )] =2{ax+y—22)+z—y}.

This results in
. - y(t1, ) — z(ty, tp)
a* (tq, tz) = argmin MSE[F?(t1, £)] = 5
(1, 2) ga [Fy (0, 2)] x(ty, to) +y (t1, &) — 2z(t1, &) ©)

where
x = x(tr, ) = E[Fy(t1, ty) — Fy(t1, )%,
y=y(tr, tz) = E[Fy(ty) Fyi(ty) — Fy(tr, )12,
z=2(t1, t5) = E{[Fy(tr, tz) — Fy(tr, t)1[Fyi (01 () — Fy(tr, 2)1}.
The next theorem shows that, at the optimal value of a*, MSE[ﬁg* (t1, t2)] is strictly smaller than both MSE[ﬁjj(t], t;)] and
MSE[Fy;(t1) F(t2)].
Theorem 1. If x(tq, t2) % z(t1, ) and y(tq, t3) # z(t1, tp) then 0 < a* (t1, t;) < 1and
MSE[F{ (t1, )] < min{MSE[F;(ty, t)], MSE[Fy:(t1) Py (£2)1}-
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Proof. Note that the denominator of a* (t1, ;) in Eq. (5) is well-defined since

X(t, b)) + y(t1, ) — 2z(t1, 1) = E[ﬁij(tlv t) — ﬁli(tl)ﬁZj(tz)]z > 0.
Also, the MSE function is strictly convex since

2

— MSE[F2(ty, )] = 2(x +y — 22) > 0.
da2 i

Hence, a* (t, t3) is the unique minimizer. One can verify 0 < a* (t1, t;) < 1 under the assumptions x(t1, t) # z(t1, t) and
y(t1, t2) # z(ty, tp) since
y (t]’ tz) - Z(tl’ tz)
0#a (t;, ) 0 <0 ty, ) — z(tq, t),
#a (t1,tp) #x(tl,tz)—l—y(t],tz)~—-2z(t1,t2) #y (b, t) —z(ty, )

X (ty, o) — z(t1, t2)
a* (t1, t 10 <0 t1, t) —z(t;, t). O
)2 e O ety — 22 7 R TG

The conditions of Theorem 1 exclude some extreme cases. When (t,, t») are very close to (0, 0), one may have I:‘,-f(ﬁ ,b) =
ﬁli(t1)ﬁ2j(t2) = 0 with probability one. In such cases, the conditions do not hold. The same is true if (¢, t;) are too large. In

usual cases, x(t1, t2), y(t1, t2) and z(ty, t;) cannot be equal since ﬁij and ﬁﬁﬁzj have different distributions.

When applying the proposed estimator to real data, one needs to estimate a* (t1, t;). We suggest nonparametric boot-
strap to estimate x(t1, t3), y(t1, t2) and z(tq, t;) as in the manner of Akritas and Keilegom [ 1], Sankaran and Antony [17] and
Shen [20].

The bootstrap method for estimating a*(t;, t3):

Step 1. Calculate ﬁij(tl, t;) from observed data.

step 2. Let {(V;?, yz® s:0) g2® cx® cx®y .y = 1,2,...,n)} be a random sample with replacement from the ob-

Tu > u

served data {(Y1y, Yau, 814, 82u, Cru, Coy) :u=1,2,...,n}forb = 1,2, ..., B, where B is the bootstrap number.

Step 3. Calculate I:'; ® (¢, t,) and ﬁﬁ(b)(tl)ﬁ;j(b)(tz) based on the resampled data {(Y;?, yz® g+® 52®) 0+ C;(l’f)) e

Tu *»*2u *“1lu*"2u>~lu >

1,2,...,m}L, b=1,2,...,B, and then compute the bootstrap approximations to x(t, t2), y(t;, tp) and z(t1, t3), defined as

N y R .
SCRIEE-D P UANCRIES TGI8
b=1

< 1 Gn i) k) A 2
y(rl,t2)=§b;w; (B (&) — Fy(tr, )12,

B

. 1 - . . . X
2t ) = 2 3 I @R () = Fy(on, I (01, 02) = Fytr, 0],
b=1

Then, we obtain the estimator of a* (1, t3) as
P (t1, t2) = 2(t1, t2)
X(t1, ) + (1, ) = 22(ty, 1)

alty, tp) =

Remark 1. By simulations not shown here, we have checked that X(t;, t3), ¥(t1, t2) and Z(t1, t) are all good estimators of
x(tq, t2), y(t1, t5) and z(ty, t;), respectively.

Remark 2. The case of a(t;, t;) < 0 or a(ty, t;) > 1 could occur in small samples. In such a case, one can set a(t;, t;) = 0
or a(ty, t;) = 1, respectively.

4. Asymptotic theory

For fixed (t1, t3), we shall prove the consistency of the proposed estimator

ﬁ,»?(t], f2) = & (t1, t)Fy(tr, ) + {1 — a(tr, t)Fui(tr) Fas(a).
The proof differs between two cases:

(i) (T4, C1,Zy) and (T, Co, Z;) are independent;
(ii) (T1, Cq,Z7) and (T, (3, Zy) are not independent.
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Under the case (i), both I:‘ij and ﬁ]iﬁzj are consistent for F; under the conditions of Theorem 2 below. Then, the consistency
of their middle point F; follows immediately. In this case, we even do not need to establish the consistency of the bootstrap

estimator d.
The case (ii) needs more careful study. As a special case of a more general theory of product-limit estimator (Theorem
IV.4.1, Andersen et al. [3]), we have

Lemma 1. For fixed t;, with G, (t;,) > 0, where G.(t) = Pr(Z, > t), asn — o0,

~ P
ij(tk) ~> Fi;(ty) fork=1,2.

As a direct consequence from Lemma 1 and the fact
G(tr, ) =Pr(Zy > t1, 2> > ) < min{G1(t1), Ga(t2)},

we also have the following Lemma:
Lemma 2. For fixed (tq, t;) with G(t1, t;) > 0,asn — oo,

~ ~ [)
Fii(t1)Fi(ty) — Fu(t)Fy(t2).

The next theorem establishes the convergence of a* (ti, t;) defined in Eq. (5).

Theorem 2. Suppose that (tq, ty) satisfies G(ty, t;) > 0, and that (T, Cy, Z) and (Ty, C3, Z3) are not independent, Then, as
n— 00,

a*(ty, t) — 1.

Proof. Sankaran et al. [19] gave the consistency I:"ij(ﬁ, t) LN Fjj(t1, t;) under the condition of Theorem 2. One also verifies

I:"],-(tl)l:'Zi(tz) i Fi(t1)F,(tz) in Lemma 2. Note that these two estimators are uniformly bounded sequences on [0, 1].
Hence, these two estimators converge in L, for 0 < p < oo (p. 71 of Chung [6]). To complete the proof the theorem, we
need the following three claims:

Claim 1. lim, o E[F;(t1, t) — Fj(t1, t)1> = 0.
Proof. The proof follows by the definition of convergence inLp atp = 2. O
Claim 2. lim,,_, o, E[Fy;(t7) ﬁzj(fz) — Fj(t1, )12 = [Fii(t1)Fy(t2) — Fy(t1, t2)]°.

Proof. Since F;(t)) Fy(t2) —=> Fi(t1)Fi(£2),0 < p < o0, it follows that

lim E[Fyi(t1) Fy(t2) = Fu(ti)Fy(t2)] = 0,

nlgglo E[Fii(t:) ﬁzj(fz) — Fii(t)Fy(6)]° = 0.
Then we obtain

nl—l—>n;lo E[Fii(ty) Fy(t2) — Fy(th, )] = ,,llfg‘o E[Fyi(t1) Foj(ty) — Fri(t)Fo(t2) 1 + [Fri(ty) Foj(t) — Fyi(ty, £)]?

+2[F1i(t1) Fy(t2) = Fy(tr, £2)] lim E[Fyi(t1)Fy(82) — Fi(t)Fy(t2)]
= [Fii(t)Fy(t2) — Fy(tr, £)1%. O

Claim 3. lim,_, oo E{[Fyj(t1, t2) — Fy(t1, )] [Fri(t1) Fy(t2) — Fy(ty, t2)]} = O.

Proof. Since ﬁ,j(t,, t) i Fji(ty, t;) and I:"u(ﬁ)ﬁzj(@) N Fi(t1)F;(tz) holds under the conditions of Theorem 2, Slutsky’s
theorem shows

- - . P
Fij(tq, t)Fyi(ty) Foj(t2) —> Fy(ty, t2)Fri(t)Fy(t).

Note that the sequence {I%(ﬁ, tz)ﬁl,-(tl) ﬁzj(tz)} is also uniformly bounded, the above convergence implies the convergence
in Lp at p = 2. Then one can verify that

lim E{[Fy(tr, t2) = Fy(tr, ][ Fru(t)Fy(t2) — Fy(tr, t2)])

= lim E[Fj(t1, t2)Fyi(tr) Foj(t)] — Fy(ty, t2) lim E[Fy(tr) Foj(62)] — Fy(ty, t) lim E[Fy(t1, )] + Fy(ty, £2)?
n->00 n—oo n—oo
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= lim E[Fj(t1, t)Fu(tr) Fy(t2)] = Fy(t1, £2)* = Fy(t1, )Fu(t0)F(t2) + Fy(t1, 1)
= lim E[F(t1, tp)Fu(tr) Fy(ta) = Fy(tr, 2)Fu(t)Fy(t2)]
=0 0O

We use Claims 1-3 to conclude
lim x(t1, &) = lim E[Fy(t1, t2) = Fy(tr. ) = 0,
nli)ngoY(fl, t) = nlljgo E[ﬁn(tl)ﬁzj(tz) — F(t1, )1 = [Fii(t)Fy(tz) — Fy(ta, )17
lim z(t1, ) = lim E [F(t1, &2) — Fy(ta, )]lFu(t) Fy(t) = Fy(tr, 12)] = 0.

By the definition of a*(ty, t,),

. . y(ty, &) — z(t1, &)
lim a* (t1, ;) = lim
n—00 n—o0 X(t1, t2) +y (t1, tz) — 2z(ty, t2)
lim y (f], tz) — lim Z(t], tz)
n-—o0 n->oo

lim x(t1, &) + lim y (6, &) — lim 2z(t1, &)
n—>oo n—->oo n—oo
The proof of Theorem 2 is complete. O

Note that a*(tq, t;) needs to be estimated by the bootstrap estimator a(ty, t). The formal asymptotic results for the
bootstrap estimator @ are fairly difficult to derive. In general, empirical process techniques are used to study the bootstrap
consistency [21]. Since our bootstrap uses the same algorithm as Dabrowska [10], the consistency may follow arguments
similar to pp. 313-314 of Dabrowska [ 10].

Conjecture 1. Suppose that (tq, t) satisfies G(ty, t;) > 0. Then, as n — 00,

R p
a(ty, t) — a*(t1, t).

We do not have a proof. Instead, we use simulations to verify that E{a(t;, t;)] goes to a*(ty, t,) and MSE[a(ty, t,)] goes
to zero asn — oo (see Section 5).

Theorem 3. Suppose that (ty, ty) satisfies G(t;, t;) > 0. Then, asn — oo,
s A N N ~ A P
Fi(ti, &) = a(tr, )Fy(t, t2) + {1 — a(ty, &2)}Fut) F(t2) —> Fyi(ta, t2).

Proof. We only need to consider the case (ii) (Ty, C1, Z1) and (T3, C;, Z;) are not independent. With this case, by Theorem 2
and Conjecture 1, one has a(tq, t;) i) The proof completes by Slutsky’s theorem with ﬁij(tl, ) N Fi(t1, ). O

5. Simulations

Simulations are conducted to study the performance of the proposed estimator and to compare it with the estimator of
Sankaran et al. [19] and the independence estimator.

5.1. Simulation design

We carry out a series of 500 simulations with n = 100 based on data generated from the Clayton model [7]:

Pr(Ty < t1,To < tp) = max [{Fl(ﬁ)—((X_D + Fa(t)™ @D — Hﬁ, 0] , a€[0,00)\{1}.
When « € [0, 1), T; and T, have negative correlation; when « € (1, co], T and T, have positive correlation. The Kendall's
taubetween Ty and T, is T = (a—1)/(x+1). The marginal distributions are the unit exponential distribution F(t) = 1—e™*
for k = 1, 2. The censoring times Z; and Z; independently follow the unit exponential distributions. In this way, censoring
percentages for T, and T, are both 50%. The causes C; and C; are independent and take values 1 or 2 with equal probability.
The number of bootstrap replicates to obtain the estimator @ is taken to be B = 500.

We have done the same set of simulations for the lognormal distribution F,(t) = @(Int) for k = 1,2 where @ is
the distribution function of the standard normal distribution. The results parallel the case of exponential distributions and
therefore not shown.
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Table 1
Simulation results for estimating Fy1(ty, t;) based on four different estimators with n = 100.
(th. ty) Fri(ty, ) Estimator E(Fiy) MSE(Fy) a* E(@)
(i) Independent case (i.e., o = 1)
(1,2) 0.1366 Fi(ty, &) 0.1290 0.00438
Fy(ty) Fi () 0.1219 0.00113
F& (61, t) 0.1221 0.00113 0.023
Fo (61, ) 0.1213 0.00277 0.360
(0.5,0.5) 0.0387 Frtti, t) 0.0386 0.00060
Fi(t1) Fi(t2) 0.0376 0.00016
Ff: (ty, ) 0.0376 0.00016 0.000
Fii(ty. t2) 0.0360 0.00038 0.388

(ii) Dependent case with & = 5(t = 0.667)

1,2) 0.1534 Pt ) 0.1514 0.00457

P ) 0.1221 0.00200

Fol(tr, ) 0.1274 0.00184 0.181

Fe () 0.1348 0.00290 0.372
(0.5,0.5) 0.0830 Fiitty, &) 0.0816 0.00117

Pt Bi() 0.0372 0.00228

Fo(t, ) 0.0675 0.00093 0.683

Fa(t t2) 0.0688 0.00115 0.604

5.2. Simulation results

Table 1 summarizes the results. In all cases, the proposed estimator using the true a* shows the best performance in
terms of the MSE, as supported by Theorem 1. When T; and T, are independent (i.e.,, « = 1), the proposed estimator using
the true a* performs the best, but the performance is nearly identical to the independence estimator. When a* is estimated
by @, the performance is no longer the best, but still better than the existing estimator. When T; and T, are dependent with
a = 5 (Kendall's tau = 0.667), the proposed estimator using the true a* and estimator a outperforms the existing estimator
in terms of the MSE. In spite of the superior performance in terms of the MSE, the proposed estimator is biased compared to
the existing estimator. This is a typical phenomenon of the trade-off between bias and variance, seen in shrinkage estimators.
The results for negative correlation with @ = 1/2 (Kendall's tau = —0.333) are similar and not shown here.

We examine the properties of the bootstrap estimator a of a*. Table 2 shows the results when the association parameter
takes o = 5 (Kendall's tau = 0.667). When n increase from 100 to 300, E[a(t;, t;)] approaches to a* (¢, t;) and MSE[d(tq, )]
approaches to zero. Hence, the estimator a appears to be consistent. Although there need more extensive studies, the results
give some numerical support for Conjecture 1.

Fig. 1 compares the bias of the three methods under @ = 1.1 ~ 7 (Kendall's tau = 0.05 ~ 0.75). We see that the existing
estimator of Sankaran et al. [19] has the smallest bias while the proposed estimator and the independence estimator have
downward bias.

Fig. 2 compares the MSE of the three methods when the association parameter takes « = 1.1 ~ 7 (Kendall's tau
= 0.05 ~ 0.75). In spite of the downward bias, the proposed estimator with the true a = a* has the smallest MSE. This
is the consequence of the trade-off between bias and variance. Also, the proposed estimator with estimate a of a* does not
change the performance much, as the bootstrap estimator @ is a good approximation to the true a*. As a result, the proposed
estimator using @ performs better than the existing estimator.

We examine how the MSE curve of ﬁ;(tl, t2) changes as the value of a varies from O to 1. Fig. 3 shows the results under
a = 5 (Kendall's tau = 0.667). It is seen that the MSE curve attains the minimal value at a*, at which it is strictly smaller
than those of the MSEs of the existing estimator and independence estimator. This observation provides a numerical support
for Theorem 1.

6. Data analysis

We illustrate our proposal using the mouse data and salamander data.

6.1. Mouse data analysis

We consider the mouse data concerning time to tumor appearance or death for 50 pairs of mice from the same litter in a
tumor genesis experiment [ 14,24]. In this data, T; and T; are failure times (in weeks) for a pair of mice from the same litter,
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Fig. 1. Simulation results for E [ﬁﬂ (t1, t2)] based on four different estimators under Clayton model with @ = 1.1 ~ 7(t = 0.05 ~ 0.75). Their values are
compared with the true Fy (¢, t2).

Table 2
Simulation results for estimating the true a* using the bootstrap estimator @. The corresponding pair of causes
is(@,)=(1,1.

Dependent case with « = 5(1 = 0.667)

n (t1,t2) a*(ty, tz) E[a(ty, )] MSE[d(ty, t;)]
100 (1,2) 0.1853 0.3737 0.09094
200 © 0.2540 0.3812 0.07169
300 0.2832 0.3905 0.06837
100 (0.5,0.5) 0.6754 0.5939 0.05670
200 0.8107 0.7670 0.02110
300 0.8833 0.8376 0.00975

and the corresponding causes C; and C; express the appearance of a tumor (C, = 1), death happened before the tumor
appearance (Cy = 2), or censoring (C; = 0). A common censoring (Type I censoring) occurs at 104 weeks for all subjects.

Figs. 4 and 5 compare estimates of sub-distributions calculated by the existing estimator I:",-j(ﬁ, t;) and the proposed
estimator I:'g(tl, ty) fori,j = 1, 2. The surface of the existing estimator ﬁij(t], t) is a fairly crude step function (Fig. 4). This
is because the jumps of ﬁij(t], t;) occur only when the joint failure events correspond to the pair (i, j) occurs. On the other
hand, the surface of ﬁg(t], ty) is smoother than the surface of ﬁij(t1, t;) (Fig. 5). This smoothness of ?g(tl, ty) is achieved by

borrowing information from the independence estimator I:']i(tl)ﬁzj(tz), where the jumps occur when the marginal events
correspond to either cause i or j occur.
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Fig. 2. Simulation results for MSE[?H(tl, )] = E[ﬁn(tl, t) — F11(t1, t2)]? based on four different estimators under Clayton model with @ = 1.1 ~ 7
(t =0.05 ~ 0.75).

6.2. Salamander data analysis

We analyze time to completion of metamorphosis on the salamander larvae living in Hokkaido, Japan [ 15]. We consider
a subset of the larvae that are grown under the high-water level. The resultant data consists of n = 90 egg clutches, and
each clutch contains 2 larvae (Fig. 6). The times to events for a pair of larvae are denoted as T; and T,. Since a pair of larvae
belongs to the same clutch (same parent), they share unobserved characteristics, which induces correlation. The real data
on the 90 pair of larvae is shown in Table 3. A pair of causes C; and C, indicates whether the failure event is metamorphosis
(C¢ = 1), or the death prior to metamorphosis (C, = 2). There is no censoring in this data. We focus on the estimation of
Fy1(ty, ty) since the major biological interest is on the time-to-metamorphosis.

Table 4 shows the estimates 1:"11 (t1, t2), ﬁl(tl)lf} (t;), a and I:']a] (t1, t). Since Ty and T, are from the same clutch, the corre-
lation between them is fairly strong. Due to this reason, the estimates a are close to 1in many cases. Therefore, the proposed
estimator ﬁg (ty, ) is very close to Ej(ﬁ, ty). Fig. 7 draw the plot for 1:';31 (t1, t). Note that Michimae and Emura [15] treated
all larvae in the clutch as independent observations and plotted the univariate cause-specific distribution function. Although
such simplified analysis is useful for biological studies, we propose to redo their analysis taking into account the dependency
between T; and Ts.

7. Conclusion and discussion
In this paper, we have developed a new nonparametric estimator of sub-distribution function for bivariate competing
risks models. The new method with the optimal choice of the tuning parameter improves upon the existing estimator of

Sankaran et al. [19]. To be practical, we suggest the bootstrap to estimate the optimal tuning parameter. For large sample
analysis, we prove the pointwise consistency of the proposed estimator. Simulation results show that proposed estimator
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Fig. 3. Simulation results for MSE[I:"H (t, )] = E[ﬁn (t1, t2) — F11(t1, £2)]? based on three different estimators. The mark “-” indicates the optimal value
a* (ty, t;) = argmin MSE[F{, (t1, t;)] for the proposed estimator.
a

Table 3
The real data on 90 pairs of salamander larvae grown under the high-water level from Michimae and Emura (2012).
(T1, T2) (G, G) (T1, T2) (G, G) (T1, Tp) (€1, G) (Th, T) (€1, Gy) (T, ) €1, G)
(89, 80) (1,1) (69, 40) (1,2) (68,81) (1L, 1) (72,79) (1,1) (83,85) (1,1)
(79, 28) (1,2) (75, 69) (1, 1) (72,71) (1, 1) (76, 62) (1,1 (84,82) 1. 1)
(82,80) (1,1) (80, 89) (1,1) (70,71) (1, 1) (74,79) (1, 1) (81, 80) (1, 1)
(78, 88) (1, 1) (78,76) (1, 1) (75,77) (1, 1) (65, 69) (1, 1) (77,74) (1, 1)
(74,78) (1, 1) (75,79) (1, 1) (74, 81) (1, 1) (78, 35) (1,2) (73,74) (1, 1)
(72, 80) (1,1) (84,81) (1, 1) (81,74) (L, 1) (77,70) (1,1) (79,77) (1, 1)
(71,73) (1, 1) (80, 88) (1, 1) (80, 83) (1,1 (86, 83) (1, 1) (74,77) (L, 1)
(73,71) (1L 1) (77,64) (1, 1) (81, 85) (L1 (83,87) (1,1) (72,73) (1,1
(71,74) (1, 1) (81, 66) (1,1 (83,82) (L1 (83,81) (1,1 (82, 88) (1,1
(81,69) (1,1) (72,70) (1,1) (67, 65) (1, 1) (84, 82) (1,1 (83, 86) (L1
(85, 85) (1, 1) (74,73) (1,1) (71, 66) (1, 1) (80,83) (1, 1) (85,85) (1, 1)
(84, 80) (1,1) (74, 69) (1,1) (78,74) (1,1) (76,79) (1,1) (81,74) (1,1)
(80, 85) (1,1) (74, 88) (1, 1) (76,74) (L1 (77,78) (1,1 (75, 85) (1, 1)
(78,79) (1,1) (80, 83) (1,1) (76,74) (1, 1) (78,75) (1,1 (80,73) (1, 1)
(72,77) (1, 1) (77,74) (1. 1) (87, 80) (1, 1) (73,74) (1,1) (71,73) (1,1
(70, 62) (1,1) (75,76) (1, 1) (78, 86) (1,1) (79,73) (1, 1) (76,74) (1, 1)
(75,74) (1,1 (83, 89) (L1 (72, 48) (1,2) (79,81) (1,1 (65, 44) (1,2)
(73,71) (1,1) (66,72) (1,1) (78, 84) (1L 1) (82,79) (1,1) (79, 79) (1,1)

Note: The failure times of the pair of larvae are denoted as T; and T,; Causes C; and C; indicate whether the failure event is metamorphosis (G, = 1), or
the death prior to metamorphosis (C; = 2). The data do not have censored observations.

has smaller MSE than the existing estimator in finite sample. Real data analyses demonstrate that the proposed estima-
tor of the cause-specific distribution is smoother than the existing estimator, where the tuning parameter is regarded as
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Fig.4. The existing estilnatorﬁ;j(tl, t) for a bivariate cause-specific distribution function with the mouse data. Four plots correspond to pairs of 4 different
causes.

Table 4

Estimates of the cause-specific distribution function Fy(t;, ;) using the salamander data.
(t1, t2) Fii(ty, t2) Fi(t)F(t2) a Fii(t1, &)
(73.25,73.00) 0.144 0.065 1.000 0.144
(73.25,77.00) 0.189 0.119 0.922 0.183
(73.25,81.75) 0.222 0.176 0.818 0.214
(77.00, 73.00) 0.211 0.131 1.000 0.211
(77.00, 77.00) 0.356 0.239 1.000 0.356
(77.00, 81.75) 0.456 0.352 1.000 0.456
(81.00, 73.00) 0.256 0.204 1.000 0.256
(81.00, 77.00) 0.467 0.373 1.000 0.467
(81.00, 81.75) 0.611 0.551 1.000 0.611

Note: The selected values for (1, t,) are the 25% point, median, and 75% point of the observed values of Ty
and T, respectively.

a smoothing parameter. Therefore, our proposed estimator achieves two goals in a single framework: the improvement in
the MSE and the smoothing of the estimator. These advantages are important, especially in the present bivariate function
estimations, where traditional nonparametric estimator can be a crude step function.

Although the idea of combining two estimators of bivariate survival functions to improve the MSE has been considered
by Akritas and Keilegom [1], our proposal has the fundamental difference from their approach. Their method combines
two consistent estimators that have similar performance. However, our proposal combines a consistent estimator with an
inconsistent estimator which has smaller variance. The small variance exploits the reduction of a bivariate functional esti-
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Fig. 6. Bivariate competing risks data from the salamander data of Michimae and Emura (2012). To adapt to the bivariate setting, we chose the first two
larvae from the 5 larvae in egg clutches.

mator to a pair of two univariate function estimators under the independence. This trade-off between bias and variance is
the key in our approach, which makes it different from the existing approach. In the dimension reduction point of view, our
construction of the improved estimator is similar to Emura et al.[11] who propose to reduce the large variability of the mul-
tivariate Cox’s partial likelihood estimators under high-dimensional covariates. They utilize the univariate partial likelihood
estimator which is the biased (inconsistent) estimator but substantially reduces the variance. Combining the multivariate
likelihood with the univariate likelihood, the resultant estimators acquire both consistency and reduced variability due to
the high-dimensionality. In light of this result, our proposal for the bivariate competing risks data can be extended to higher
dimensional competing risks data.
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Fig. 7. The plot for the proposed estimator ﬁf] (ty, tp) for a bivariate cause-specific distribution function with the salamander data of Michimae and
Emura [15].
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1 Introduction

Statistical methodologies for doubly truncated data have been an active research area
with a variety of applications. Efron and Petrosian (1999) developed inference methods
based on doubly truncated data, highlighting its importance in astronomy. In particular,
due to the resolution of telescopes, the luminosity of stars may be undetected if it
is either too dim or too bright, leading to double-truncation (i.e., both upper and
lower truncations). Stovring and Wang (2007) considered a type of doubly truncated
data to analyze the incidence and lifetime risk of diabetes that are useful statistics
for public health. The childhood cancer data of North Portugal provides a similar
example (Moreira and Ufia-Alvarez 2010). Recently, Zhu and Wang (2012) identified
a sampling bias due to double-truncation in the analysis of cancer registry data and
proposed inference procedures that can properly analyze such data. In general, double-
truncation is very common in fields such as astronomy, demography, and epidemiology.
The methodological and theoretical developments for analyzing doubly-truncated data
are attributed to Moreira and Ufia-Alvarez (2010, 2012), Moreira and Keilegom (2013),
Shen (2010, 2011, 2012), Emura and Konno (2012), Austin et al. (2013), and Moreira
et al. (2014).

We illustrate the double-truncation occurring in the childhood cancer data discussed
in Moreira and Ufia-Alvarez (2010). Their data include the ages at diagnosis (T*) of
children who were diagnosed with cancer within a follow-up period between January
1, 1999 and December 31, 2003 (Fig. 1). However, they do not have any information
on children who are diagnosed with cancer outside this period. Hence, the sample
inclusion criterion is written as U* < T* < V*, where U* is the age on January 1,
1999 and V* = U™+ 1825 (days) is age on December 31, 2003, leading to the double-
truncation of 7% by left-truncation limit U™ and right-truncation limit V*. Ignoring
truncation causes bias in statistical inference.

Note that double-truncation is essentially different from double-censoring (i.e.,
both left- and right- censorings) and interval censoring. Double-truncation yields
inclusion/exclusion of samples while double-censoring and interval censoring pro-
duce incomplete lifetimes of the included samples (Commenges 2002).

Efron and Petrosian (1999) first introduced the nonparametric maximum likelihood
estimator (NPMLE) for F(¢) = Pr(T™* < t) under double-truncation. Their NPMLE,
denoted by F (1), takes into account the sampling bias due to double-truncation. Shen’s
Theorems 2 and 3 (2010) showed the uniform consistency and the asymptotic nor-
mality of the NPMLE. The asymptotic distribution is complicated, so his formula
of the asymptotic variance is not explicitly written down. Moreira and Ufia-Alvarez
(2010) recognized the analytical difficulty in the asymptotic variance and then pro-
posed the simple bootstrap and obvious bootstrap methods to construct the pointwise
confidence interval of F(¢). They reported that the simple bootstrap technique is more
reliable and more technically convenient than the obvious bootstrap technique. Shen
(2012) circumvented the difficulty of estimating the asymptotic variance and then uti-
lized the empirical likelihood ratio test to construct the pointwise confidence interval.
Although his method may provide more accurate coverage performance than simple
bootstrapping, it does not provide a variance estimator.
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by : birth date

d : date of diagnosis

T": age at diagnosis

U": age on January 1, 1999

V= U"+1825: age on December 31, 2003

Fig. 1 The childhood cancer cases of North Portugal (Moreira and Ufia-Alvarez 2010)

In this paper, we derive a closed-form estimator for Cov{ F (s), F (1) }. Fors =1,
the estimator yields a computationally attractive alternative to the bootstrap or jack-
knife variance estimator. Furthermore, the estimated covariance structure is utilized to
propose goodness-of-fit tests and confidence bands, both of which have not yet been
developed in the literature.

The rest of the paper is organized as follows. Section 2 briefly reviews the NPMLE
developed by Efron and Petrosian (1999). Section 3 presents the proposed covariance
estimator. Section 4 applies the proposed estimator to develop various inference pro-
cedures, including confidence interval, goodness-of-fit tests, and confidence bands.
Simulations and data analysis are given in Sects. 5 and 6, respectively. Section 7
concludes the paper.

2 The NPMLE

This paper considers doubly truncated data in which individuals can only be included
in the sample if their observations fall within certain random intervals. Specifically, let
T* be arandom variable of lifetime, U™ be the left-truncation limit, and V* be the right-
truncation limit. One can observe the triplet (U*, T*, V*)onlyif U* < T* < V*
holds. Therefore, the sample consists of { (U;, T;, V;) : j =1, ..., n} subject
to U; < T; < V;. With this sampling scheme, the observations are independent and
identical replications from the distribution function Pr(U* < u, T* < t, V* <
v|U* < T* < V*). If Pr(V* = o0) = 1, T* is only subject to left-truncation by
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U*;if Pr(U* = 0) = 1, T™ is only subject to right-truncation by V*. Hence, doubly

truncated data accommodates one-sided truncation. We assume throughout that 7*

and (U™, V*) are independent as commonly imposed in the literature (Shen 2011).
Efron and Petrosian (1999) first proposed the NPMLE for F(t) = Pr(T* < t).

Consider a discrete distribution putting probability masses £ = ( f1, ..., f,)T on
the observed points (7, ..., T,).LetJi,, = U; <T,, < Vi }, whereI{ A }=1if
Aistrue,andI{ A} = OifA 1s false. Also, let F; = Zm 1 JmJim be the masses in f on
[U;i, Vilfori =1, ..., n.Then, it follows that F = Jf, where ¥ = (Fy, ..., Fn)T
and J is an n x n matrix whose (i, j) component is J;;.
Letf = (f; s e fA'”)T be a maximizer of the likelihood function
n f/
L, = —
n(6) H P
j=1
subject to 1 = Z'}:] fi = l;ff, where 1, = (1, ..., DT is n-vector of ones. The

derivative of the log-likelihood is

dlog L,(f
o n®) e JTF1 0
of
where £~ = (f]_], e fn“l)T and F~! = (F]'l, e FH“I)T. This equation leads
to the following algorithm for obtaining f:
Self-consistency algorithm (Efron and Petrosian 1999)

Step 0: Sﬁtf(()) =(1/n, ..., I/I’L) and F(()) = Jf(()),

Step 1: Obtain f(l) byf, =JT F(O) and then replace f( 1y with f<1)/( 1! f(l) ); set
Fo)=J o), A

Step 2: Repeat Step 1 to update £, ) from the previous step for £ = 1, 2, ..;

(1)

stop the algorithm when ||f(g+1) — f(g)” < ¢ for a small ¢ > 0 and some norm
-1l

The NPMLE of F(r) = Pr(T* < 1) is defined as F (1) = Z’J’-:] I(T; < t)fj.

Moreira and Ufia-Alvarez (2010) suggested a simple bootstrap to estimate the confi-

dence interval of F (). A convenient alternative to bootstrapping is the jackknife. The
bootstrap and jackknife algorithms are given in Appendix A.

3 Asymptotic covariance estimator of the NPMLLE

This section derives a new estimator for Cov{ F (s), F (1) } in a closed form.

3.1 Observed information matrix

The likelihood Eq. (1) used in the self-consistency algorithm is derived by treating
= (ft, ..., fn )T as n unknown parameters. The constraint Z’}:] fi =1is
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then incorporated into the algorithm through standardization f'(]) /( 131?(1) ) at Step 1.
Alternatively, we modify the likelihood Eq. (1) by directly incorporating the constraint
Zj:l f; = landregardingf(_,) = (f1, ..., fn_l)T as (n—1) unknown parameters.

_ T
Here, weset f, =1 -1 _,

f(—n. This treatment is crucial for deriving the proposed
variance estimator. Without loss of generality, we assume that f = fl cees fn)T
represents masses at the ordered values of 7(j) < --- < T,). Especially, f, is the
mass corresponding to the largest observation T(,;y = max; T.

Using 0F; /0f; = Jij — Jin for j =1, ..., n — 1, the score function becomes

dloL,®) _ 1 _ [ [Logs
af; i Fi o = F
fnzl_l;f;lf(—n) i=l f,,:l—l;{_

i=1 lf(—n)
This is written in the matrix form as
dlog L, (f) _ Tae]
) =bit =Tk ]ﬁl='*l?§_|f<-n>’
where D = [L,—;: — Ll 7' = (1/A, ..., 1/f)7, and F7! =
(1/Fy, ..., 1/F,)T. Also, for j, j'e {1, .., n—1},

7

= Jij = i) Ui = Jin)
- Z F2
fa=1-1

i=1 i

CPlogLy(®) 1 =J") F]
dfjdf; f; fo=1-1T_ £

T f

n—1

Hence, the observed information matrix is

8% log L, (f 1 1
i, (F) = ___&’T.Q =D {diag (—2) — J"diag (-«2-) J” DT,

where diag(a) is a diagonal matrix with the diagonal elements a.

3.2 The asymptotic covariance estimator

We derive the asymptotic covariance structure of /n( F(t) — F(r) ) and its plug-in
estimator. Let og( - )[h] : [0, 00) — [0, 00) be defined as

h(x)
JIU* <s < V¥)dF(s)
[IU* <5 < Vh(s)dF(s)

LU =5 < VHAF(s) 12 ” ’

or(0)[h] =E [I(U* <x<VH {
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