J Physiol 592.24

(Fig. 4B, genotype and treatment main effects, and inter-
action effect in ITA, P=NS by two-way ANOVA) was small
(~1%) and similar between control and CB-treated mice in
both WT (1.0 £ 0.4 vs. 0.5 3= 0.2%, P = NS by Tukey’s test,
n = 6) and EpaclKO (0.6 £ 0.3 vs. 0.7 & 0.3%, P = NS
by Tukey’s test, n = 6). These results indicate that the
masseter muscle was primarily composed of type IID/X
fibre and type IIB fibre, in agreements with the SDS-PAGE
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analysis (Fig. 3). CB treatment significantly decreased
the proportion of type IID/X fibre (Fig. 4B, significant
treatment main effect in IID/X, P < 0.01 by two-way
ANOVA) in both WT (from 67 + 3.8 to 49 + 2.4%,
P < 0.01 by Tukey’s test, n = 6) and EpaclKO (from
64 £ 2.4 to 50 £ 3.6%, P < 0.05 by Tukey’s test, n = 6),
but it significantly increased the proportion of type IIB
fibre (Fig. 4B, significant treatment main effect in IIB,
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P < 0.01 by two-way ANOVA) in both WT (from 32 £ 3.9
to 50 =+ 2.4%, P < 0.01 by Tukey’s test, n = 6) and
Epac1KO (from 36 £ 2.2 t0 49 £ 3.7%, P < 0.05 by Tukey’s
test, n = 6). The results of NADH-TR staining showed
that the oxidative capacity of muscle fibres followed the
pattern IIA (dark) > IID/X > IIB (light), as shown pre-
viously (Fig. 4A, lower) (Hamalainen and Pette, 1993;
Sartorius et al. 1998). These data indicated that Epacl
did not influence the slow-to-fast MHC isoform trans-
ition in the masseter muscle in response to CB treatment,
in accordance with the SDS-PAGE findings.

CB-mediated Akt pathway activation was attenuated
in Epac1KO

Activation of 8,-AR was shown to activate Akt via the
Gia-GBy-PI3K pathway in cardiac myocytes (Zhu et al.
2001). Recently, we reported that Akt/mTOR is involved
in both development of hypertrophy and fast-to-slow
MHC isoform transition in masseter muscle in response to
mechanical overload stress (Umeki et al. 2013). However,
the role of Epacl in $,-AR-mediated masseter muscle
hypertrophy and activation of the Akt/mTOR pathway
remains poorly understood.

Thus, we first examined the Akt phosphorylation
on serine 473 (Fig. 5A, significant interaction effect,
P < 0.05 by two-way ANOVA) and confirmed that it was
significantly increased in WT, but not in Epac1KO (WT
vs. EpaclKO: from 100 =+ 9.4 to 161 & 19%, P < 0.05 by
Tukey’s test, 7= 5 vs. from 96 = 21 to 90 & 7.7%, P= NS
by Tukey’s test, n = 5-6).

We also examined the phosphorylation of Akt down-
stream target, glycogen synthase kinase-38 (GSK-3p8)
(Fig. 5B, significant interaction effect, P < 0.01 by two-way
ANOVA), because GSK-38 activity is negatively regulated
by Akt activity (Hardt and Sadoshima, 2002; Okumura
et al. 2007). The phosphorylation level of GSK-3 8 at serine
9 was significantly increased in masseter muscle of WT
(from 100 = 23 to 206 =+ 38%, P < 0.05 by Tukey’s test,
n = 5-6), but this increase was suppressed in Epac1KO
(from 127 % 10 to 83 & 18%, P = NS by Tukey’s test,
n=>5-6).

We next examined activation of the Akt/mTOR pathway
in terms of phosphorylation of S6K1 on threonine
389 (Fig. 5C, significant interaction effect, P < 0.05
by two-way ANOVA) and eukaryotic initiation factor
4E-binding protein 1 (4E-BP1) on threonine 37/46
(Fig. 5D, significant interaction effect, P < 0.05 by two-way
ANOVA). We found that these phosphorylations were
significantly increased by CB treatment in masseter muscle
of WT (S6K1: from 100 &£ 16 to 159 =+ 14%; 4E-BP1:
from 100 &+ 18 to 184 &+ 18, P < 0.05 by Tukey’s
test, n = 5-6), but these increases were suppressed in
EpaclKO (S6KI1: from 124 &+ 16 to 107 £ 12%; 4E-BP1:
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from 121 =+ 19 to 138 £ 19%, P = NS by Tukey’s
test, m = 5). These data indicated that CB-mediated
activation of Epacl/Akt/mTOR signalling might play an
important role in the development of masseter muscle
hypertrophy.

ERK pathway was attenuated in EpaciKO

We also examined the phosphorylation of p44/42
mitogen-activated protein kinase (also known as ERK1/2)
on threonine 202/tyrosine 204, because ,-AR activation
hasbeen shown to phosphorylate ERK1/2 via the Gie-GBy
pathway in skeletal muscle (Zhu et al. 2001) (Fig. 5E,
significant interaction effect, P < 0.05 by two-way
ANOVA). Also, ERK1/2 phosphorylation was reported to
be necessary for regulating the mass of skeletal muscle by
us and another group (Penna et al. 2010a; Umeki et al.
2013).

Phosphorylation of ERK1/2 in masseter muscle was
similar between the control and CB-treated groups in
WT (Control vs. CB: 100 £ 12 vs. 79 = 8%, P = NS by
Tukey’s test, #n = 5), but CB induced a significant increase
of phosphorylation by approximately 2-fold in Epac1KO
(Control vs. CB: 126 =+ 21 vs. 236 &+ 42%, P < 0.05 by
Tukey’s test, n = 5) (Fig. 5E). These data indicate that
Epacl decreased the CB-mediated activation of ERK1/2
signalling in masseter muscle.

CaMKII/HDAC4 pathway was attenuated in EpaciKO

Phosphorylation of histone deacetylase 4 (HDAC4) on
serine 265/266 mediated by PKA leads to induction
of skeletal muscle atrophy, whereas phosphorylation on
serine 246 mediated by Epac-activated calmodulin kinase
II (CaMK1I) leads to induction of skeletal muscle hyper-
trophy (Liu and Schneider, 2013).

We thus examined the phosphorylation of CaMKII
on threonine 286 (Fig. 64, significant interaction effect,
P < 0.01 by two-way ANOVA) and HDAC4 on serine
246 (Fig. 6B, significant interaction effect, P < 0.05 by
two-way ANOVA) in CB-treated masseter muscle of WT
and EpaclKO. These phosphorylations were significantly
increased in WT (CaMKII: from 100 & 20 to 192 + 18%,
n =6, P < 0.05 by Tukey’s test; HDAC4: from 100 £ 16
to 176 £ 6.6%, n = 5-6, P < 0.05 by Tukey’s test), but
the increases were suppressed in Epac1KO (CaMKIL: from
156 + 18 to 99 =+ 28%, P = NS by Tukey’s test, n = 6;
HDAC4: from 130 £ 7.2 to 125 &+ 27%, P = NS by
Tukey’s test, n=>5). These data suggest that Epacl plays an
important role in development of masseter muscle hyper-
trophy through the regulation of CaMKII/HDAC4 activity,
in addition to activation of Akt/mTOR signalling.

© 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society
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Calcineurin-NFAT signalling was not altered in
Epac1KO

Calcineurin is a calcium/calmodulin-regulated protein
phosphatase that acts on the transcription factors of
the nuclear factor of activated T cells (NFAT) family,
causing them to be translocated to the nucleus, where
they induce transcriptional activation. We have pre-
viously demonstrated that calcineurin-NFAT signalling
has a role in preservation of masseter muscle mass (Arai
et al. 2005). Therefore, we examined the role of Epacl
in calcineurin-NFAT signalling activation in response to
chronic CB treatment. We found that phosphorylation of
NFATc1 on serine 259 (Fig. 6C, genotype and treatment
main effects, and interaction effects, P = NS by two-way
ANOVA) and NFATc3 on serine 265 (Fig. 6D, genotype
and treatment main effects, and interaction effects, P=NS
by two-way ANOVA) tended to be decreased, though not
significantly, in both WT and EpaclKO (NFATcl: WT:
from 100 =& 12 to 77 = 13%, EpaclKO: from 105 £ 9.1
to 77 = 18%. NFATc3: WT: from 100 =% 16 to 97 4= 7.9%,
EpaclKO: from 119 = 11 to 91 + 19%, P = NS by Tukey’s
test, n = 6) (Lunde et al. 2011). These data are consistent
with the idea that Epacl did not influence the activation
of calcineurin-NFAT signalling in masseter muscle before
or after CB treatment.

Discussion

Most skeletal muscle growth-promoting agonists,
such as CB and salbutamol, are highly selective
for B,-AR, and their action is thought to occur
through Gsa-AC-cAMP-PKA signalling via f,-AR with
slow-to-fast MHC isoform transition (Li et al 2012;
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Ohnuki et al. 2013a). Recently, it was reported that
B2-AR couples not only to Gsa, but also to Gia in
skeletal muscle, leading to stimulation of GBy-mediated
Akt signalling as well as ERK1/2 signalling (Fig. 7) (Zhu
et al. 2001; Gosmanov et al. 2002; Shi et al. 2007). We
have recently demonstrated that both CB, a lipophilic
B2-AR agonist, and salbutamol, a hydrophilic B,-AR
agonist, similarly induce masseter muscle hypertrophy
with slow-to-fast MHC isoform transition, indicating that
hypertrophy might be mediated through direct muscle
B2-AR stimulation, not through CNS f,-AR stimulation
(Ohnuki ef al. 2013a). However, the relationship between
cAMP signalling and Akt or ERK1/2 signalling in skeletal
muscle hypertrophy as well as MHC isoform transition
remains poorly understood.

We hypothesized that Epacl, which was recently
identified as a PKA-independent cAMP sensor and a major
skeletal muscle isoform, might play an important role in
masseter muscle hypertrophy and MHC isoform trans-
ition by linking cAMP signalling and Akt signalling or
ERK signalling, and we aimed to test this hypothesis using
Epacl-null mice (Okumura ef al. 2014).

We first found that development of CB-mediated
masseter muscle hypertrophy was suppressed in Epac1KO
without any change of the slow-to-fast MHC isoform
transition. Importantly, phosphorylation of Akt on serine
473 and its downstream molecules S6K1 on serine 389 and
4E-BP1 on threonine 37/46, and, in parallel, GSK-36 on
serine 9 by CB treatment were all inhibited in Epac1KO
without affecting the MHC isoform transition towards
faster isoforms. These data indicated that CB-mediated
masseter muscle hypertrophy might develop as a result
of activation of cCAMP/Epacl/Akt signalling, rather than
cAMP/PKA signalling, because the cAMP/PKA signalling
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in masseter muscle was intact in both WT and Epac1KO
(Fig. 1B), as demonstrated previously in heart (Okumura
et al. 2014). Conversely, Epacl did not affect the MHC
isoform transition toward faster isoforms induced by CB
treatment in masseter muscle.

We recently demonstrated that phosphorylation of
ERK1/2 on threonine 202/tyrosine 204 was reduced more
in hypertrophied masseter muscle exposed to mechanical
overload and the effect was attenuated by rapamycin,
a selective mTOR inhibitor (Umeki et al. 2013). Our
current data showed that ERK1/2 phosphorylation in
masseter muscle was not different between WT and
EpaclKO at baseline. However, it was significantly
increased by approximately two-fold in masseter muscle of
Epac1KO in response to CB treatment, though it remained
unchanged in the hypertrophied masseter muscle of WT.
Importantly, ERK activation was recently reported to be
a critical contributor to muscle atrophy (Penna et al.
2010a). We thus anticipated that CB-mediated ERK1/2
phosphorylation in Epac1KO might be induced through
the opposing effect of PI3-Akt signalling on ERK1/2
signalling, and up-regulation of ERK activity might be
associated with the less effective CB-mediated hypertrophy
in EpaclKO (Rommel et al. 1999; Penna et al. 2010b).

HDAC4 moves between cytoplasm and nuclei in
cells prepared from flexor digitorum brevis muscle
of CD-1 mice (Liu and Schneider, 2013). HDAC4
phosphorylation at serine 265/266 mediated by PKA
induces nuclear influx, leading to inhibition of myocyte
enhancer factor 2 (MEF2) activity, while phosphorylation
at serine 246 mediated by CaMKII induces nuclear
efflux, leading to activation of MEF2, which has a role
in muscle hypertrophy (Fig. 7) (Potthoff et al. 2007;
Cardinale er al. 2010). Importantly, Epac mediates the
CaMKII-mediated HDAC4 phosphorylation on serine
246 (Liu and Schneider, 2013). We thus examined
the phosphorylation of CaMKII on threonine 286
and HDACH4 on serine 246 in masseter muscle and found
that these phosphorylations were significantly increased
by CB treatment in masseter muscle of WT, but not in
EpaclKO.

Taken together, the present finding indicate a causal
relationship between Epacl and CB-mediated masseter
muscle hypertrophy and further suggest that this
relationship might be mediated by the activation of both
Akt signalling and CaMKII/HDAC4 signalling. As markers
of the activation of Akt signalling, we examined the
phosphorylation status of Akt itself and its downstream
targets such as S6K1, 4E-BP1, and GSK-3B. Also, as
markers of the activation of CaMKII/HDAC signalling,
we examined the phosphorylation status of CaMKII
and HDAC4. Phosphorylation of these markers was
significantly increased in the masseter muscle of WT
after CB infusion, but these increases were suppressed in
EpaclKO.
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Further studies will be required to determine whether
activations of these signalling pathways were induced via
stimulation of f,-AR expressed in myofibres or vessel
because direct myofibre §,-AR stimulation was reported
to increase protein synthesis and to decrease protein
degradation, resulting in a net increase in myofibrillar
protein content through activation of the Akt pathway
or CaMKII/HDAC4 pathway (Choo et al. 1992; Joassard
et al. 2013a; Joassard et al. 2013b; Liu and Schneider,
2013). Also, vascular 8,-AR stimulation in the masseter
muscle was reported to evoke vasodilatation in the skeletal
muscle and to induce endothelial nitric oxide synthase
expression through the activation of the Akt and/or
HDAC pathway (Rossig et al. 2002; Lee, 2002 Osuka
et al. 2009; Ishii et al. 2010; Banquet et al. 2011; Bharti
et al. 2012). Importantly, myocardial blood flow is pivotal
for the development and maintenance of hypertrophied
myocardium (Sano et al. 2007). In order to clarify the
mechanisms involved at the molecular level, in vitro
experiments using cultured skeletal muscle fibres and/or
endothelial cells isolated from WT and EpaclKO might
be a fruitful approach Liu and (Schneider, 2013; Liu
et al. 2014), and we are planning studies along this
line.

In view of the current finding that disruption of Epacl
inhibited the development of CB-mediated masseter
muscle hypertrophy, we consider that pharmacological
activation of Epacl might be an alternative approach for
the treatment of masticatory dysfunction due to masseter
muscle wasting and weakness.
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Abstract

Background: Exendin-4, an exogenous glucagon-like peptide-1 receptor (GLP-1R) agonist, protects the heart from
ischemia/reperfusion injury. However, the mechanisms for this protection are poorly understood. Caveolae,
sarcolemmal invaginations, and caveolins, scaffolding proteins in caveolae, localize molecules involved in cardiac
protection. We tested the hypothesis that caveolae and caveolins are essential for exendin-4 induced cardiac
protection using in vitro and in vivo studies in control and caveolin-3 (Cav-3) knockout mice (Cav-3 KO).

Methods: Myocytes were treated with exendin-4 and then incubated with methyl-B-cyclodextrin (MBCD) to disrupt
caveolae formation. This was then followed by simulated ischemia/reperfusion (SI/R). In addition, cardiac protection
in vivo was assessed by measuring infarct size and cardiac troponin levels.

Results: Exendin-4 protected cardiac myocytes (CM) from SI/R [35.6 £ 12.6% vs. 644 = 18.0% cell death, P =0.034]
and apoptosis but this protection was abolished by MBCD (71.8 + 10.8% cell death, P =0.004). Furthermore, Cav-3/
GLP-1R co-localization was observed and membrane fractionation by sucrose density gradient centrifugation of CM
treated with MBCD + exendin-4 revealed that buoyant (caveolae enriched) fractions decreased Cav-3 compared to CM
treated with exendin-4 exclusively. Furthermore, exendin-4 induced a reduction in infarct size and cardiac troponin
relative to control (infarct size: 25.1 +£82% vs. 41.4 +4.1%, P < 0.001; troponin: 36.9 + 14.2 vs. 101.1 £ 22.3 ng/ml,

P < 0.001). However, exendin-4 induced cardiac protection was abolished in Cav-3 KO mice (infarct size: 43.0 + 6.4%,
P <0.007; troponin: 96.8 £ 26.6 ng/ml, P=0.001).

Conclusions: We conclude that caveolae and caveolin-3 are critical for exendin-4 induced protection of the heart

from ischemia/reperfusion injury.

L Keywords: Cardiac protection, Subcellular microdomain, Glucagon-like peptide-1 receptor, Incretin

Introduction

Glucagon-like peptide-1 (GLP-1) is an intestinal hormone
secreted in a nutrient-dependent manner that stimulates
insulin secretion and inhibits glucagon secretion and gas-
tric emptying, resulting in reduced post-prandial hypergly-
cemia [1]. GLP-1 acts upon the GLP-1 receptor (GLP-1R),
which belongs to the family of G-protein-coupled receptor
(GPCRs) [2]. This receptor is abundantly expressed in the
gastrointestinal tract, but has also been detected in the
central nervous system, heart, vascular smooth muscle
cells, endothelial cells, and macrophages [3,4]. Recently,
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GLP-1 has been shown to reduce an infarct size in both
in vitro and in vivo animal models of cardiac ischemia/
reperfusion injury [5-7] and exendin-4 (Ex-4), an exogen-
ous GLP-1R agonist isolated form the Gila monster lizard
[8], has reported to have very similar effects [4,9,10].
Caveolae are small flask-like invaginations of sarcolemmal
membrane that are enriched in lipids. Caveolin-3 (Cav-3)
is the principal protein component of caveolae and can
interact with a number of signaling molecules includ-
ing G protein, receptor tyrosine kinases, and GPCRs
via caveolin-binding motif [11-13]. In our previous
studies, we have shown that both caveolae and Cav-3
were essential in cardiac protection against ischemia/
reperfusion in the animal model [14-17]. However,
studies addressing the plasma-membrane localization
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of GLP-1R are not fully known and the impact of cave-
olae and Cav-3 on GLP-1-induced cardiac protection
has not been investigated. Therefore, we hypothesized
that both caveolae and Cav-3 are a critical component
of GLP-1-induced cardiac protection and that coordination
of protective signaling is dependent on the co-localization
of Cav-3 and GLP-1R.

Material and methods

All animals were treated in compliance with the Guidelines
for Proper Conduct of Animal Experiment and Related
Activities (Ministry of Education, Culture, Sports, Science
and Technology of Japan) and the protocols, which was
assigned to ARRIVE guidelines [18], approved by the Animal
Care and Use Committee at the University of Tokushima.
Male Wistar rats (12—14 weeks old, 250-300 g body weight)
and male C57BL/6 mice (8—-10 weeks old, 21-25 g body
weight) were purchased from Japan SLC, and Cav-3 KO
mice (8-10 weeks old, 21-25 g body weight) were created
as reported previously [19]. The animals were kept on a
12 hour light—dark cycle in a temperature and humidity-
controlled room, and had ad lib access to food and water.

Preparation of Cardiac Myocytes (CM)

CM were isolated from adult male Wistar rats as de-
scribed [20,21]. In brief, hearts were retrograde perfused
on a Langendorff apparatus and digested with collagenase
(Worthington). Myocytes were plated in Medium 199
(4% fetal bovine serum and 1% penicillin/streptomycin)
on laminin (2 pg/cm?®)-coated plates for 1 h. Plating
media was changed to serum-free media (1% bovine
serum albumin) to remove non-myocytes and CM were
incubated for 24 h at 37°C in 5% CO,.

Simulated ischemia/reperfusion (SI/R) in isolated
cardiac myocytes

CM were plated on laminin-coated 12-well plates, and
simulated ischemia was induced by replacing the air
content with a 95% Nj and 5% CO, gas mixture at 2 L/min
in a chamber and by replacing the media to glucose-free
media for 60 min. This was then followed by 60 min of
“reperfusion” by replacing the media with normal main-
tenance media and by incubating the cells with 21% O,
and 5% CO, [16]. CM were exposed to 0.3 nM or 3.0
nM Ex-4, a GLP-1R agonist, for 1 h prior to SI/R. Cell
death was quantified by counting trypan blue-stained
cells with results expressed as a percentage of total cells
counted. Cells were counted (3 random fields per well)
using Image] software to determine percent cell death.
To determine the impact of caveolae on cardiac protection,
methyl-B-cyclodextrin (MPCD) was used as described
[16]. CM were incubated under maintenance media
(control conditions) or in the presence of MBCD
(1 mM) for 1 h before SI/R.
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Depolarization of the mitochondrial membrane

To analyze mitochondrial membrane potential, we used the
JC-1 dye (MitoPT JC-1, ImmunoChemistry Technologies,
Bloomington, MN), which shifts the fluorescence emission
from red (580 nm) to green (488 nm) as mitochondrial
membrane is depolarized. After SI/R, as described above,
myocytes were incubated with JC-1 for 20 min at 37°C, and
cellular fluorescence was determined by a fluorescence
microscope (Leica TCS NT, Heidelberg, Germany). Data
are assessed by comparing the ratios of red/green.

Gene expression analyses

Total RNA was extracted from CM using RNeasy Plus
Universal Mini Kits (QIAGEN, Valencia, CA). Total
RNA (1 pg) was reverse-transcribed to ¢cDNA in a final
volume of 20 uL using the Primescript RT Reagent kit
(Takara, Shiga, Japan). Real-time polymerase chain
reaction (PCR) was performed in a final volume of
10 pL containing 50 ng of the cDNA template and
primers using a StepOnePlus Real-Time PCR System
(Life Technologies, Carlsbad, CA). To determine the
effect on apoptosis gene expression, we measured the
expression of the BH3-interacting domain death agonist
(BID), Bcl-2-associated death promoter (BAD), Caspase-3,
Caspase-8, and Caspase-9, and Bcl-2 associated X protein
(BAX) genes. To determine the effect on anti-apoptosis gene
expression, we measured the expression of the B-cell lymph-
oma 2 (BCL-2) and inhibitor of apoptosis 1 (IAP-1) genes.

Immunofluorescence

CM were fixed with paraformaldehyde, incubated with
100 mM glycine, permeabilized in 0.1% buffered Triton
X-100, and blocked with 1% bovine serum albumin,
phosphate-buffered saline, and 0.05% Tween. Samples
were then incubated with primary antibody (GLP-1R and
caveolins-3, Santa Cruz Biotechnology, Santa Cruz, CA)
(1:100) in 1% bovine serum albumin, phosphate-buffered
saline, and 0.05% Tween for 24 h. Excess antibody was
removed, and samples were incubated with fluorescein
Alexa-conjugated secondary antibodies (1:250) for 1 h. To
remove excess secondary antibody, samples were washed
with phosphate-buffered saline/0.1% Tween and samples
were mounted in UltraCruz (Santa Cruz Bioctechnology)
for microscopy imaging. Fluorescent images of cell sections
excited at 488 and 560 nm were captured using a confocal
laser scanning microscope (Leica TCS NT, Heidelberg,
Germany) equipped with an argon-krypton laser
source. Images were taken at 400 x magnification and
were assessed quantitatively by Image-Pro Plus (Media
Cybernetics, Silver Spring, MD).

Sucrose density fractionation
Whole left ventricles or myocytes were used for sucrose
density membrane fractions as reported previously [22].
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Briefly, approximately 1 ml of lysate was mixed with
1 ml of 80% sucrose in 25 mM MES and 150 mM NaCl
(MES buffered saline, MBS, pH 6.5) to form 40% sucrose
and loaded at the bottom of an ultracentrifuge tube. A
discontinuous sucrose gradient was generated by layer-
ing 6 ml of 35% sucrose prepared in MBS followed by
4 ml of 5% sucrose in MBS. The gradient was centrifuged
at 175,000 g using a P70AT?2 rotor (Hitachi Koki Co.) for
3 h at 4°C. After centrifugation, samples were removed in
1 ml aliquots to yield 12 fractions. We defined fraction 4—6
as buoyant membrane fractions enriched in caveolae and
proteins associated with caveolae. Fraction 9-12 were
defined as nonbuoyant fractions.

Immunoprecipitation

Immunoprecipitation was performed using Protein A
Sepharose CL-4B (GE Healthcare) as described previously
[23]. Buoyant fraction samples. were incubated with
primary antibody (GLP-1R and caveolins-3, Santa Cruz
Biotechnology) for 3 h at 4°C, immune-precipitated
overnight with protein-agarose at 4°C, and then centri-
fuged for 5 min at 13,000 g. Protein-agarose pellets
were washed 3 times. Wash buffer was removed and
sample buffer was added, and then boiled for 5 min at
95°C for immunoblotting.

Immunoblot analysis

Proteins were separated by SDS-PAGE 10% polyacrylamide
precast gels (Bio-Rad Laboratories) and transferred to
a polyvinylidene diflouride membrane by electroelution.
Membranes were blocked in PBS containing 2.0% nonfat
dry milk and incubated with primary antibody overnight
(GLP-1R and caveolins-3, Santa Cruz Biotechnology;
GAPDH, Santa Cruz Biotechnology and Cell Signaling
Technology) and at 4°C. Bound primary antibodies
were visualized using secondary antibodies (Santa Cruz
Biotechnology) conjugated with horseradish peroxidase
from Santa Cruz Biotechnology and ECL reagent from GE
Healthcare [24]. All displayed bands migrated at the ap-
propriate size, as determined by comparison to molecular
weight standards (Santa Cruz Biotechnology).

Ischemia/reperfusion protocol and experimental groups

C57BL/6 mice and Cav-3 knockout (Cav-3 KO) micewere
anesthetized with pentobarbital sodium (80 mg/kg ip) and
mechanically ventilated by using a pressure-controlled
ventilator (TOPO Ventilator, Kent Scientific) as described
before [25]. Core temperature was maintained with a heat-
ing pad and ECG leads were placed to record heart rate.
The hemodynamic effects were measured through the
right carotid artery cannulation with a 1.4 F Mikro-tip
pressure transducer (Model SPR-671, Millar Instruments),
which was connected to an amplifier (Model TC-510, Millar
Instruments) for determination of heart rate, arterial blood
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pressure, and rate pressure product as previous before [26].
After thoracotomy, baseline was established, and mice were
randomly assigned to experimental protocols. Lethal ische-
mia was produced by occluding the left coronary artery with
a 7-0 silk suture on a taper BV-1 needle (Ethicon) for
30 min. After 30 min of occlusion, the ligature was re-
leased and the heart was reperfused for 2 h. After reper-
fusion, mice were heparinized, and the coronary artery
was again occluded. The area at risk (AAR) was determined
by staining with 1% Evans blue (Sigma). The heart was im-
mediately excised and placed into 1% agarose and allowed
to harden. Once hardened, the heart was cut into 1.0-mm
slices (Mcllwain tissue chopper; Brinkmann Instruments).
Each slice of left ventricle (LV) was then counterstained with
2,3,5,-triphenyltetrazolium chloride (Sigma). After overnight
storage in 10% formaldehyde, slices were weighed and visu-
alized under a microscope (SZ61-TR, Olympus) equipped
with a charge coupled device camera (DXM 1200 E Nikon).
The images were analyzed (Image-Pro Plus, Media
Cybernetics), and AAR and infarct size (IS) was deter-
mined by planimetry as previously described [27,28].
Cardiac troponin I levels in the serum were measured
using a High Sensitivity Mouse Cardiac Troponin-I
ELISA Kit (Life Diagnostics).

Statistical analysis

Statistical analyses were performed by one-way and two-way
ANOVA for repeated measures, followed by Bonferroni
post-hoc test. All data are expressed as mean + SD.
Statistical significance was defined as P < 0.05.

Results

Experimental animals

The animals’ health status was monitored throughout the
experiments by a health surveillance program. A total of
98 animals were used in the experiments described here
(35 animals for in vitro simulated ischemia/reperfusion,
23 for immunofluorescence and immunoblot analyses,
and 40 for in vivo ischemia/reperfusion experiments).
Five mice died shortly after ischemia/reperfusion be-
cause of fatal cardiac arrhythmia in the in vivo experi-
ments (control, 1; Ex-4 administration, 2; Cav-3 KO
control, 1; Cav-3 KO Ex-4 administration, 1).

Exendin-4 induces cardiac protection in CM

CM were administered with various concentration of Ex-4
and then SI/R (Figure 1A). Administration of 0.3 nM and 3.0
nM Ex-4 before SI/R decreased cell death when compared
to SI/R alone (47.4 + 9.9%, and 35.6 + 12.6% and 64.4 + 18.0%
cell death, respectively, n =5 per each groups; Figure 1B).

MBCD abolish exendin-4 induced cardiac protection
CM were incubated with 1% BSA with 0.1% penicillin/
streptomycin (Control) or in control media along with
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3.0 nM Ex-4, and/or then incubated with 1 mM MBCD
(Figure 2A). In the present study, the protective effect of
Ex-4 was abolished in CM with MBCD (35.6 + 12.6% [n = 4]
and 71.8 £10.8% [n=5] cell death, respectively; P = 0.004).
Additionally, we observed no significant increase in basal
cell death with the various treatments (Figure 2B).

To test whether Ex-4 inhibited apoptosis by modifying the
mitochondrial membrane potential during reperfusion injury,
we measured a membrane potential-sensitive dye, 5,5",6,6-
tetrachloro-1,1",3,3-tetraethylbenzamidazolocarbocyanin
iodide (JC-1). As shown in Figure 2C, Ex-4 inhibited
reduction of mitochondrial membrane potential that oc-
curred in the re-oxygenated cells expressing SI/R suggest-
ing inhibition of apoptosis. This was further confirmed as
Ex-4 decreased pro-apoptic and increased anti-apoptotic
gene expression (Figure 2D; n = 4 per each groups).

Co-localization between GLP-1R and Cav-3, and MBCD
alter caveolins expression

Immunofluorescence microscopy showed that Cav-3
co-localizes with GLP-1R on the surface of the CM

(Figure 3A). Co-immunoprecipitation experiments using
cardiac lysates and antibodies to Cav-3 and GLP-1R pro-
vided further evidence for the interaction of these proteins
(Figure 3B). Expression of Cav-3 in buoyant caveolar
fractions (fractions 4—6) was significantly increased after
administration of Ex-4 as compared with control mice,
and Ex-4 induced migration of Cav-3 from non-buoyant
to buoyant fraction was eliminated by MPCD (Figure 4).

Caveolin-3 is required for exendin-4 induced

cardiac protection

To assess the role of Cav-3 in the protection from ischemia/
reperfusion injury, we treated C57BL/6 wild-type mice or
Cav-3 KO mice with Ex-4 administration, and then exposed
the mice to ischemia/reperfusion (Figure 5A). We found
no significant differences between groups in pre-occlusion
heart rate, blood pressure, or rate pressure product with
and without Ex-4 (Table 1). The ability of Ex-4 to protect
from ischemia/reperfusion injury was abolished in
Cav-3 KO mice compared to wild-type animals (43.0 + 6.4%
[n=8] and 25.1 +8.2% [n=7] IS/AAR, P <0.001) even
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Figure 2 In vitro assessment of the role of caveolae in exendin-4 (Ex-4) induced cardiac protection. (A) Summary illustration of in vitro
experimental groups. (B) Cardiac myocytes exposed to simulated ischemia/reperfusion (SI/R) were exposed to experimental procedures outlined
in A. Cell death was determined by trypan blue staining. Cardiac myocytes under control conditions (Control) had minimal cell death.
Methyl-B-cyclodextrin (MBCD) abolished the Ex-4 induced cardiac protection effect. Group sizes are indicated on the individual bars in parentheses.
(C) Apoptotic changes were measured by investigating mitochondrial membrane potential using JC-1 after SI/R. The excitation rate (red/green)
indicates changes within the mitochondrial membrane potential. *P < 0001 vs. SI/R, SIR + Ex-4, SI/R with MBCD, and SI/R + Ex-4 with MBCD. #P < 0.05
vs. Control, SI/R + Ex-4, and Control with MBCD. n = 4 per each group. (D) Real-time polymerase chain reaction analysis of pro-apoptotic and
anti-apoptotic gene expression after re-oxygenation. n= 4 per each group.

though there was a similar AAR in all groups of animals
(Figure 5B). Cardiac troponin I (cTnl) levels were signifi-
cantly attenuated by Ex-4 treatment in wild-type mice com-
pared to control mice subjected to ischemia/reperfusion
(36.9 + 14.2 and 101.1 + 22.3 ng/ml, P < 0.001); however,
GLP-1 failed to reduce ¢Tnl in Cav-3 KO mice and a

level similar to control Cav-3 KO mice was observed
(103.4 + 38.4 and 96.8 + 26.6 ng/ml, Figure 5C).

Discussion
In the current study, treatment with MBCD, an agent
that has been shown to decrease the number of caveolae,
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Figure 3 Glucagon-like peptide-1 receptor (GLP-1R) localization
with caveolins or caveolae. (A) Immunofluorescence analysis of
the expression and colocalization of caveolin-3 (Cav-3) and GLP-1R
in cardiac myocytes. Fluorescent secondary antibodies were used to
determine Cav-3 (green) and GLP-1R (red) localization, and strong
colocalization (merged images, yellow) were observed on the cell
surface membrane. Bar length = 10 pm. (B) The colocalization was
confirmed by immunoprecipitation (IP). Immunoblot (1B) analysis
detected Cav-3 and GLP-1R in Cav-3 and GLP-1R IP of cell lysates.
Supernatants (SUP) from which the immunoprecipitates were
generated were stained for GAPDH as loading controls.

produced an attenuation of Ex-4 (GLP-1R agonist) in-
duced cardiac protection in iz vitro models. Additionally,
consistent with these findings, we observed that Ex-4
induced cardiac protection cannot be elicited in Cav-3
KO mice, indicating that the presence of caveolae
(dependent on Cav-3 expression) is essential for myocardial
protection in the in vivo mouse models. This is the first
study to investigate the role of caveolins or caveolae in Ex-4
induced cardiac protection.

GLP-1 cardioprotection

Nutrient-responsive intestinal hormones including GLP-1
are rapidly metabolized by enzyme dipeptidyl-peptidase-4
(DPP-4) to generate an N-terminally truncated metabolite
GLP-1.(9-36) [1,29]. Previous studies have demonstrated
that the cardioprotective effect of exogenous GLP-1
were attributed to GLP-1R activation and subsequent
recruitment of numerous intracellular signaling path-
ways involving protein kinase B, extracellular regulated
kinases, p70S6K, and 5" adenosine monophosphate-activated
protein kinase as well as downstream phosphorylation
and inhibition of the pro-apoptotic protein BAD [5,6,30].
Hausenloy et al. also showed that chronic treatment with
DPP-4 inhibitors reduce infarct size via the GLP-1R-
protein kinase A pathway, in a glucose dependent manner
in vivo rat models and confirmed the cardioprotective
action of the endogenous intact GLP-1 on ischemia/
reperfusion injury [31]. Moreover, Bao et al. [32] revealed

Cav-3
Control
Ex-4
.MBCD
with Ex-4 =5 10 11 12
Buoyant Nonbuoyant
fractions fractions
P =0.016

% Normalized to
total fractions

Buoyant Nonbuoyant
fractions fractions

Figure 4 Lysed and fractionated hearts on sucrose density
gradient. Fractions were collected and probed for caveolin-3
(Cav-3). We defined fractions 4-6 as buoyant membrane fractions
enriched in caveolae and proteins associated with caveolae; fractions
9-12 were defined as nonbuoyant fractions, noncaveolar membranes.
Fraction 7-8 were considered a transition zone and were not analyzed.
Significant localization of Cav-3 in buoyant fractions was observed
in the groups treated with exendin-4 (Ex-4), whereas control and
methyl-B-cyclodextrin (MBCD)-treated with Ex-4 cells showed no
effects on Cav-3 localization. Group sizes are indicated on the
individual bars in parentheses.

that the long acting GLP-1R agonist could provide
more sustained cardioprotective effect in the setting of
acute myocardial ischemia/reperfusion injury than the
short-acting Ex-4.

GLP-1 and the caveolin-dependent pathway

Caveolae, cholesterol and sphingolipid enriched invagi-
nations of plasma membrane play a role physiological
functions and vital to cardiac protective mechanisms.
Caveolae and caveolins have been shown to play a fun-
damental role in the phenomenon of myocardial pro-
tection against ischemia/reperfusion injury [11-13]. In
the present study, we investigated that wild-type mice
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Figure 5 Caveolin-3 expression and reduction in infarct size.
Mice underwent 30-min coronary artery occlusion followed by 2-h
reperfusion after 24-h recovery from pretreatment with oxygen
(Control) or exendin-4 (Ex-4) in wild-type and caveolin-3 knockout
(Cav-3 KO) mice. (A) In vivo Ex-4 induced cardiac protection protocol.
(B) Area at risk was calculated as a percentage of the left ventricle
and revealed no significant differences between all groups. Ex-4 induced
cardiac protection was abolished Cav-3 KO mice, as shown by no
significant decrease in percent infarct size / area at risk when
compared to control Cav-3 KO; however, a significant decrease in
infarct size was observed between wild-type Ex-4 and Cav-3 KO
Ex-4. (C) Cardiac troponin I, a marker of myocardial damage also
revealed a significant decrease in Ex-4 treated control mice, but no effect
in Cav-3 KO mice. Group sizes are indicated on the individual bars in

parentheses. *P < 0.001 compared with Cav-3 KO pretreated with Ex-4.

treated with GLP-1 analogue, Ex-4, were protected against
ischemia/reperfusion injury in vivo, whereas Cav-3 KO
mice were not. In addition, Ex-4 protected isolated CM
from hypoxia-induced cell death in vitro and had profound
effects on membrane microdomains of CM. Our previous
studies also revealed that Cav-3 KO mice, which decrease
the number of myocardial caveolae, lose the ability to
undergo cardioprotection from ischemia/reperfusion
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injury both in vitro and in vivo models [14-17]. Although
there has been little evidence regarding the relationship
between caveolae, caveolins and GLP-1R within the heart,
other organ systems including human embryonic kidney
(HEK) 293 cells and pancreatic f cells [33,34]. Syme et al.
demonstrated that GLP-1 receptor interacts with Cav-1 in
an association that is necessary for receptor trafficking
to the cell membrane and signaling activity in HEK 293
cells [33]. Furthermore, Yang et al. demonstrated that
activation peroxisome proliferator-activated receptor
B/o protects pancreatic B cells from apoptosis by upreg-
ulating the expression of GLP-1R, and sterol regulatory
element binding protein-1c/Cav-1 pathway regulates GLP-
1R expression [34].

In the present study, we showed that that GLP-1R
interacted with Cav-3 and that the administration of
Ex-4 led to cardiac protection. Caveolins can interact
with a series of signaling molecules, including GPCRs
via caveolin-binding motifs and may act as a molecu-
lar chaperone for GPCRs [12,13]. Overexpression of a
dominant-negative form of Cav-1 or mutations within
the Cav-1 binding domain of the GLP-1R attenuated
GLP-1 binding and GLP-1R expression at the membrane
[33]. Collectively, these data implicate that caveolae and
caveolins are essential for GLP-1 induced cardiac protec-
tion by mediating the GLP-1R.

Hemodynamic effects of GLP-1

GLP-1 has been shown to increase blood pressure and
heart rate in rats [35,36] although others failed to demon-
strate any hemodynamic changes in the porcine models
[37,38] and human studies [39-42]. In addition, Bose et al.
investigated that the effects of GLP-1 infusion in rats sub-
jected to 30 min ischemia and 120 min of reperfusion and
observed that GLP-1 had no hemodynamic differences in
their in vivo and ex vivo experimental models [5,30,43].
The hemodynamic effects of Ex-4 were also assessed in
the animal models, in which dose-dependent increases in
mean arterial pressure and heart rate were noted in rats
[44]. In our in vivo studies, however, there were not any
hemodynamic changes among the groups at the pre-
occlusion time. This may be due to the dose and the tim-
ing of administration, Gardiner et al. showed that at a
dose of 25 ng/kg iv., Ex-4 had little effect, but at higher
concentrations (250 ng/kg) significant tachycardia and
pressor effects were noted for 60 min [44]. As the dose
and time period used for cardiac protection in mice are
not known, we selected the dosage and time of adminis-
tration for Ex-4 based on the reports of Gardiner et al.
to prevent any hemodynamic differences during pre-
occlusion (250 ng/kg iv. at 60 min before occlusion)
[44]. Furthermore, GLP-1 has been shown to have cen-
tral nervous effects on the control of blood pressure
and heart rate [45]; however, this mechanism can be
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Table 1 Hemodynamics
Baseline Pre-occlusion Ischemia Reperfusion
30 min 2h
Heart rate, beats - min™
WT Control 430+ 26 426£26 383 + 39+ 363+ 26**
WT Ex-4 432+ 16 41341 402+ 16 398+9
Cav-3 KO Control 413+27 415+£25 383+25 381132
Cav-3 KO Ex-4 416+ 28 419+ 26 376+39 357 +36*
Mean arterial pressure, mmHg
WT Control 75+6 75+6 70+6 65+10%*
WT Ex-4 78+5 75%5 72+770x8
Cav-3 KO Control 77+4 75+4 71£3* 65 £6%
Cav-3 KO Ex-4 76+5 75%5 70£3 66 + 5%
Rate-Pressure Product, beats- min™' - mmHg - 10°
WT Control 320+33 320+14 267 3.5 237 +47%
WT Ex-4 336+27 31.2+41 292 +35 280+36%
Cav-3 KO Control 319+22 311426 270423* 250+ 35*
Cav-3 KO Ex-4 315£37 315£32 264 +35% 234+26%

Data are mean + SD. Wild-type (WT) or caveolins-3 knockout (Cav-3 KO) mice were randomly exposed to exendin-4 (Ex-4).

“Significantly (P < 0.05) different from baseline (intragroup comparison).
#Significantly (P < 0.05) different from pre-occlusion (intragroup compatison).

avoided in the in vitro setting. In our in vitro mouse
models, we used 3.0 nM Ex-4 concentration, consistent
with previous study by Ban et al. in which 3.0 nM Ex-4
protect against after ischemia/reperfusion in isolated
mouse hearts [4,10].

Study limitations

There are several limitations in the present study. First,
we evaluated the GLP-1R dependent effects of Ex-4 in
experiments that investigated ischemia/reperfusion injury.
Recent studies suggest that GLP-1 (9-36), the metabolite
that is generated by DPP-4 and 1000-fold lower affinity
to GLP-1R [46], also improve LV contractile function
and post-ischemic myocardial injury [47]. Furthermore,
GLP-1R knockout mice have lower heart rate and blood
pressure with an increase in cardiac mass and GLP-1
has been shown to protect perfused hearts from rodents
lacking GLP-1R from ischemia [4]. These findings suggest
that GLP-1 and its metabolite GLP-1 (9-36) may be
capable of exerting GLP-1 receptor-independent path-
ways on the cardiovascular system [10]. Second, Cav-3
KO mice have a variety of deleterious phenotypes (i.e.,
muscle degeneration, insulin resistance, and progressive
cardiomyopathy with age) that may affect outcome after
ischemia/reperfusion injury [19,48,49].

Clinical implications

As a regulator of glucose homeostasis, an exogenous
GLP-1 analogue or potentiating endogenous GLP-1 by
DPP-4 inhibitors show promise for the treatment of

type 2 diabetes mellitus (T2DM) associated with cardiovas-
cular disease. Moreover, there have been several clinical
trials using GLP-1 as a therapy for cardiovascular disease in
human subjects. Exenatide, an exogenous GLP-1 analogue,
was found to be more beneficial than the other current
regimens (DPP-4 inhibitors, insulin or tiazolidinediones), in
reaching therapeutic goals recommended by the American
Diabetes Association in the treatment of T2DM, which is
also promising in the reduction of other co-morbidities
such as cardiovascular risk [50]. Lonborg et al. [51] has
shown that exenatide resulted in an increased salvage index
among ST-segment elevation myocardial infarction patients
with hyperglycemia and normoglycemia. Interestingly,
endogenous circulating GLP-1 level was found to be
increased in patients with high cardiovascular risk, sug-
gesting it represents a contra-regulatory response in states
of increased metabolic risk [52].

Conclusions

In conclusion, the current results demonstrate that GLP-1R
co-localized with caveolae and caveolins-3 are essential
for the cardiac protection induced by exendin-4 from
ischemia/reperfusion injury.
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Purpose: To evaluate the therapeutic results and rate of organ preservation in patients with stage Ill or IV
oral cancer treated with retrograde superselective intra-arterial chemotherapy and daily concurrent
radiotherapy.

Materials and methods: One hundred and twelve patients with stage 1l and IV oral squamous cell carci-
noma underwent intra-arterial chemoradiotherapy. Catheterization from the superficial temporal and
occipital arteries was performed. Treatment consisted of superselective intra-arterial chemotherapy

gzrvggz;r (docetaxel, total 60 mg/m?, cisplatin, total 150 mg/m?) and daily concurrent radiotherapy (total of
Chemoradiotherapy 60 Gy) for 6 weeks.

Retrograde superselective intra-arterial Results: The median follow-up for all patients was 46.2 months (range, 10-76 months). After intra-
infusion . arterial chemoradiotherapy, primary site complete response was achieved in 98 (87.5%) of 112 cases.

Five-year survival and local control rates were 71.3% and 79.3%, respectively. Grade 3 or 4 toxicities
included mucositis in 92.0%, neutropenia in 30.4%, dermatitis in 28.6%, anemia in 26.8%, and thrombocy-
topenia in 7.1% of patients. Grade 3 toxicities included dysphagia in 72.3%, nausea/vomiting in 21.4%,
fever in 8.0%, and renal failure in 0.9% of patients.

Conclusion: Retrograde superselective intra-arterial chemotherapy and daily concurrent radiotherapy for
stage 1l and IV oral cancer provided good overall survival and local control.

Organ preservation
Survival rate

© 2014 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and Oncology 111 (2014) 306-310

For patients with locally advanced head and neck cancer,
including the oral cavity, surgery with or without radiotherapy is
widely accepted as the standard treatment and is thought to be
the most effective curative therapy. However, extended surgery
markedly causes loss of oral function, including swallowing and
speech, and affects the patient’s social life, reducing the quality
of life (QOL). To preserve function while maintaining or improving
locoregional control and survival rates, concurrent chemoradio-~
therapy (CRT) represents one of the standard treatment modalities
for definitive treatment of locoregionally advanced squamous cell
carcinoma of the head and neck, particularly in resectable
advanced cases [1]. However, treatment results remain unsatisfac-
tory. Superselective intra-arterial chemotherapy for head and neck
cancer has the advantage of delivering a high concentration of the
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chemotherapeutic agents to the tumor bed. It can be classified into
the following two types: selective arterial infusion through the
femoral artery by Seldinger method [2]; and retrograde selective
infusion via the superficial temporal artery (STA) and/or occipital
artery (OA) [3-5]. Retrograde superselective intra-arterial chemo-
therapy with radiotherapy for advanced head and neck cancers
has been developed over the last 20 years {3,4], and can be used
to provide daily concurrent CRT for patients with advanced head
and neck cancer. Treatment results from arterial injection therapy
combined with radiotherapy for locally advanced oral cavity can-
cer have been reported to be similar to those of surgery, suggesting
the usefulness of this treatment modality [6]. This method can be
used for patients with T3, 4 head and neck cancer, and it may allow
organ preservation, even in cases of locally advanced head and
neck cancer [7]. The purpose of the present study was to evaluate
therapeutic results and rate of organ preservation in 112 patients
with stage Il and IV (MO) oral cancer treated with retrograde
superselective intra-arterial chemotherapy and daily concurrent
radiotherapy.



K. Mitsudo et al./ Radiotherapy and Oncology 111 (2014) 306-310 307

Materials and methods

Patients

Between August 2006 and July 2011, 118 patients with stage III
and IV squamous cell carcinoma of the oral cavity and no evidence
of distant metastasis when initially evaluated underwent retro-
grade superselective intra-arterial chemotherapy and daily concur-
rent radiotherapy. Six of these patients were found to be ineligible
for the study: 2 due to a catheter infection, 1 due to pneumonia, 1
due to edema of neck and pharynx, 1 due to liver dysfunction, and
1 due to withdrawal of consent during treatment. Thus, 112 pa-
tients (78 male and 34 female; median age, 59 years; range, 28—
87 years) were eligible for evaluation (Table 1). The primary lesion
and cervical lymph nodes were assessed by positron emission
tomography—computed tomography (PET-CT), magnetic reso-
nance imaging (MRI) and ultrasound examination before treat-
ment. Staging was performed according to the 2002 UICC staging
system [8]. Patients who had received previous chemotherapy,
radiotherapy, or surgery were excluded. Patients were required
to have an Eastern Cooperative Oncology Group (ECOG) perfor-
mance status (http:/[ecog.dfciharvard.edu/general/perf_stat.html)
of 0 or 1, a white blood cell count of at least 3500 cells/mm?, a
platelet count of at least 100,000/mm?, and a hemoglobin level of
at least 9 g/dL. Patients with cerebral infarction, or severe dysfunc-
tion of the liver, kidney, heart, or lung were ineligible. The primary
tumor sites included the tongue (n=60), upper gingiva (n=16),
lower gingiva (n=14), floor of mouth (n=7), buccal mucosa
(n=6), hard palate (n=4), and other lesion (n =5). Forty patients
had stage III disease, and the remaining 72 had stage IV disease.
The local institutional research board approved this study, and in-
formed consent was obtained from each participant.

Retrograde superselective intra-arterial infusion procedure

Before treatment, 3-dimensional computed tomography angi-
ography (3D-CTA) of the carotid artery was performed to identify
the main tumor-feeding arteries and determine the morphology
of the tumor-feeding artery originating from the external carotid
artery. Catheterization from the STA was performed according to

Table 1
Patients and disease characteristic (n=112).

18(16) =
43(38)

. 47(42)
o4

. 40(36)
61(54)
11(10) -
©o112(100)

UICC staging system, Sobbin et al.

the method described by Tohnai et al. [3] and Fuwa et al. [4]
(HFT method) [7]. A hook-shaped catheter (Medikit Corp., Tokyo,
Japan) was superselectively inserted into the target artery and
fixed to the periauricular skin. Catheterization from OA was per-
formed according to the method of Iwai et al. [5]. When the tumor
had 2 or more feeding arteries, catheters were inserted into the 2
arteries via STA and OA or bilaterally. After catheterization, flow
check digital subtraction angiography (DSA) and angio-CT were
performed in all cases. Angio-CT can help to detect tumors by con-
firming enhancement of the feeding area and enabling the catheter
to be placed at the appropriate position. Furthermore, weekly con-
firmation of the feeding artery by injection of a small amount of
indigo carmine is important. When catheterization using a hook-
shaped catheter was not stable, the guidewire exchange method
was used to replace it with a P-U catheter (Toray Medical Co.,
Ltd., Tokyo, Japan) [4].

Radiotherapy

Radiotherapy was planned for all patients after appropriate
immobilization using a thermoplastic mask and 3-dimensional
CT-based techniques. Conventional radiotherapy was performed
at 4 or 6 MV and 2 Gy/fraction/day. The irradiation field was chan-
ged according to lymph node status. In cases of NO disease, the
field contained the primary site and levels I to 11l of the neck on
the ipsilateral side. The dose was delivered to 40 Gy/20 fractions.
The portal was then reduced to only the primary site to spare the
spinal cord. The total dose delivered to the primary tumor was
60 Gy/30 fractions. In cases of N1-N2a, b disease, the field con-
tained the primary site and the levels I~V of the neck on the ipsi-
lateral side. The dose was delivered to 40 Gy/20 fractions. The
portal was then reduced to the primary site and lymph node
metastases. The total dose delivered to the primary tumor was
60 Gy/30 fractions, and that to the metastatic lymph node sites
was 50 Gy/25 fractions. In cases of N2c disease, the field contained
the primary site and the levels [-V of the neck on bilateral sides.
The dose was delivered to 40 Gy/20 fractions. The portal was then
reduced to the primary site and lymph node metastases. The dose
to the spinal cord ranged from 40 to 45 Gy. The total dose delivered
to the primary tumor was 60 Gy/30 fractions, and, if at all possible,
the total dose delivered to the metastatic lymph node sites was to
50 Gy/25 fractions.

Superselective intra-arterial chemotherapy

The anticancer agent was injected in a bolus for 1 h through the
intra-arterial catheter when radiotherapy was performed. The total
dose of docetaxel (DOC) was 60 mg/m? (10 mg/m?/week), and that
of cisplatin (CDDP) was 150 mg/m? (5 mg/m?/day) (Fig 1). Sodium
thiosulfate (STS) (1 g/m?) was administered intravenously to pro-
vide effective cisplatin neutralization after the anticancer agent
was given as soon as possible. All patients were given a 5-HT3
receptor antagonist before administration of the anticancer agent.

Follow-up after the treatment

All patients were evaluated 4 weeks after completion of treat-
ment by PET-CT, MRI and ultrasound examination. The purpose
of this combined CRT using retrograde superselective intra-arterial
infusion was to improve the local control rate and achieve good
QOL without surgery. If residual primary tumor was present after
this treatment, a salvage operation was performed 6-8 weeks after
completion of intra-arterial CRT. If residual metastatic lymph
nodes were present after treatment, radical neck dissection was
performed.
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Fig. 1. Treatment schedule for chemoradiotherapy using retrograde superselective
intra-arterial infusion. The total dose of docetaxel (DOC) was 60 mg/m? (10 mg/m?/
week x 6), and that of cisplatin (CDDP) was 150 mg/m? (5 mg/m?/day x 30). When
catheters were inserted into the 2 arteries or bilaterally, a half dose of anticancer
agents was injected into the two lines, respectively. External irradiation was
performed 5 times a week at 2 Gy per fraction, to a total of 60 Gy, for 6 weeks.

Toxicity assessment

Toxicities encountered during therapy were evaluated accord-
ing to the National Cancer Institute - Common Terminology
Criteria for Adverse Events v3.0 (http://ctep.cancer.gov/protocol-
Development/electronic_applications/docs/ctcaev3.pdf). The eval-
uation categories were blood cell counts, nausea/vomiting, oral
mucositis, dermatitis, dysphagia, renal function and fever.

Statistical analysis

Overall survival (0S) and local control (LC) rates were estimated
using the Kaplan-Meier method. Cases of residual or recurrent pri-
mary lesion after treatment were considered to be local failures
unless salvage operation was successful. The differences between
stage Il and stage IV OS and LC rates were assessed by the log-rank
test.

Results

Treatment results

For all patients, the median follow-up was 46.2 months (range,
10-76 months). After intra-arterial chemoradiotherapy, primary
site complete response was achieved in 98 (87.5%) of 112 cases,
and residual tumor was seen in 14 (12.5%) cases. Eight patients
(7.1%) was detected local recurrence during follow-up. Thirty pa-
tients (26.8%) died: 21 of pulmonary metastasis, 5 of progression
of the primary lesion, 3 of the cervical lymph node, and 1 of non-
cancer-related causes.

The Kaplan-Meier method was used to estimate the 1-year, 3-
year, and 5-year OS rates, which were 85.7%, 74.6%, and 71.3%,
respectively (Fig. 2a). At 5 years, OS rates of stage Ill and stage IV
oral cancer patients were 83.1% and 64.5%, respectively. Five-year
OS rate of stage Il oral cancer patients was significantly higher
than that of stage IV oral cancer patients (P = 0.033) (Fig. 2a). The
1-year, 3-year, and 5-year LC rates were 82.0%, 79.3%, and 79.3%,
respectively (Fig. 2b). At 5 years, LC rates of stage Il and stage IV
oral cancer patients were 85.1% and 75.4%, respectively. No signif-
icant difference was observed between the LC rates of stage HI and
stage IV oral cancer patients (P = 0.120) (Fig. 2b).

Toxicities
Table 2 shows the acute toxicities experienced during therapy.
Grade 3 or 4 toxicities included mucositis in 103 cases (92.0%),

neutropenia in 34 cases (30.4%), dermatitis in 32 cases (28.6%),
anemia in 30 cases (26.8%), and thrombocytopenia in 8 case
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Fig. 2. Overall survival rate (a) and local control rate (b) using the Kaplan-Meier
method. (a) Three and 5-year OS rates were 74.6%, and 71.3%, respectively. At
5 years, the OS rate of stage Il oral cancer patients was 83.1% (95% confidence
interval, 80.8-85.3%), and the OS rate of stage IV oral cancer patients was 64.5%
(95% confidence interval, 61.0-67.9%), 5-year OS rate of stage 11l oral cancer patients
was significantly higher than that of stage IV oral cancer patients (P =0.033). (b)
Three and 5-year LC rates were 79.3% and 79.3%, respectively. At 5 years, the LC rate
of stage IIl oral cancer patients was 85.1% (95% confidence interval, 83.3-86.1%),
and, the LC rate of stage IV oral cancer patients was 76.1% (95% confidence interval,
73.6-77.3%); no significant difference was observed between the LC rates of stage III
and stage IV oral cancer patients (P=0.120).

Table 2
Toxicity (n=112).

Toxicity No. of patients by toxicity grade
i 1 : Roiimae
© Neutropenia *~ . 15 . 22 31
.Anemia . 36 0390 26
‘Thrombocytopenia .~ - 56 5. 6
Nausea/Vomiting 23 31 24
Mucositis o 9 54 -
Dermatitis .~ . 1300 el 28 ¢
Dysphagia. .~ 1T g2 gl
©* Renal failure = 27 [l R
Fever . . oo 3724 - 9

National Cancer Institute - Common Terminology Criteria for Adverse Events v3.0.

(7.1%). Grade 3 dysphagia occurred in 81 cases (72.3%) with severe
mucositis. Grade 3 toxicities included nausea/vomiting in 24 cases



