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results (dotted line) exhibit the trend of frequency-related decreas-
es. The cyclic fluctuation is scarcely observed on the dotted line.
The significant differences in Fig. 10A and B indicate the impor-
tance of the substantial cyclic fluctuation of ultrasound transmit-
tance at least for sonothrombolytic therapy through the temporal
window.

We obtained our results in experiments using a bone-phantom
plate and model calculations based on multi-layers. Since human
skull bone has a complex geometrical structure with inhomoge-
neous density degrees, fluctuations may be less than those
obtained in this work. Evaluation of fluctuations with human skulls
and temporal bone merits further attention, and both this type of
evaluation and fluctuation-reduction technologies are very impor-
tant for clinical designs of safe and effective sonothrombolytic
therapies.

In this paper, we showed that modulation of ultrasound fre-
quency reduced fluctuations. Because transmittance significantly
fluctuated with frequency (Fig. 2), we tried {successfully) to equal-
ize the transmittance fluctuations by using the PSRF method of fre-
quency modulation. As shown in Fig. 9, the broader a frequency
deviation, the greater the equalization effect. If the medical com-
munity were to further broaden frequency deviation even more
so, the equalization of transmittance might improve. However,
broader frequency deviation is not always preferred. A frequency
far from the center frequency of a transducer will not effectively
convert into ultrasound, and this outcome can generate heat harm-
ful to living bodies will be generated. Taking into account the
above-mentioned facts, we should identify an optimal balance
between equalization and transducer design.

We experimentally verified that ultrasound transmittance
changed according to skin-thickness, frequency, and bone-thick-
ness. Since frequency dependence is different from individual to
individual, we cannot choose a single frequency suitable for every
individual. In the absence of a single optimal frequency, the equal-
ization of the transmittance through ultrasound modulation is a
highly effective and important methodology for sonothrombolytic
therapy.
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Early recanalization rates following intravenous recombinant tissue plasmin-

ogen activator (rt-PA) therapy in acute ischemic stroke
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Purpose: The objective of this study was to assess early recanalization rates following intravenous recombinant

tissue plasminogen activator (rt-PA) therapy by magnetic resonance angiography (MRA) or digital subtraction

angiography (DSA) in patients with acute ischemic stroke in order to plan a clinical investigation for a newly de-

veloped sonothrombolysis system.

Methods: We retrospectively enrolled consecutive patients with acute ischemic stroke who were treated with in-

travenous rt-PA. Early recanalization within 2 hours and 24 hours after the initiation of rt-PA was evaluated by
modified Mori grade on follow-up MRA or Thrombolysis in Cerebral Infarction (TICI) score on follow-up

DSA.

Results: A total of 384 patients were enrolled (243 men, age 74 ¢ 13 years) in the study. Patients were subdivid-
ed into groups based upon arterial location as follows: 63 patients in the internal carotid artery (ICA), 181 in the
middle cerebral artery (MCA [M1 and M2 segments]), 5 in the anterior cerebral artery (ACA), and 14 in the
posterior cerebral artery (PCA). Among parients with major artery occlusion (ICA, MCA, ACA, or PCA), the
rates of recanalization were 37.2% within 2 hours and 57.4% within 24 hours; 8 of 232 patients (3.4%) had
symptomatic intracranial hemorrhage within the initial 36 hours, and 76 of 225 patients (33.8%) had a favor-

able functional outcome (modified Rankin Scale (mRS) 0-1) at 3 months.

Concdlusions: We assessed early recanalization rates and clinical outcome following intravenous rt-PA therapy.

Keywords: sonothrombolysis, acute ischemic stroke, intravenous recombinant tissue plasminogen activator
therapy, recanalization
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Table 1 Recanalization rates within 2 hours after the initia-
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Table 2 Recanalization rates within 24 hours after the
initiation of rt-PA

MRA (modified Mori grade) Patients(% ) MRA (modified Mori grade) Partients(%)
0 1 2 3 Total 0 1 2 3 Total
ICA 9(56.3) 3(1918.8) 3(18.8) 1(6.3) 16 ICA 3(27.3) 4(36.4) 2(18.2) 2(18.2) 11
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M2 4(30.8) 060 5(38.5) 4(30.8) 13 M2 1(10.0)  0(0) 5(50.0)  4(40.0) 10
ACA 1(100.0) 0(0) 0(0) 0(0) 1 ACA 1(100.9) 0(0) 0(0) 0(0) 1
PCA 2(66.7) 1(33.3) 0(0) 0(0) 3 PCA 2(66.7) 1(33.3) 0(0) 0(0) 3
Toral 36 5 20 10 71 Total 20 5 16 i3 54

MRA,DSA (modified Mori grade, TICI) Patients (%)

0 1 2 3 Total
ICA 17(65.4)  3(11.5) 5(19.2) 1(3.8) 26
M1 24(55.8) 2(4.7) 10(23.3) 7(16.3) 43
M2 4(30.8) 0(0) 5(38.5) 4(30.8) 13
ACA 1(100.0)  0©0)  00) 00 |
PCA 2(66.7) 1(33.3)  0(0) 0(0) 3
Total 48 6 20 12 86
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Fig.1 Symptomatic intracerebral hemorrhage within the
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Sammary &zaigmwxd External  low-frequency  ulira-
sound (USD} in combination with microbubbles has been
reporied 1o recandlize thrombotically ovccluded arteries in
animal models. Objective; The purpose of this study was
to examine the enhancing effect of thrombus-targeted
bubble liposomes (BLs) developed for fresh throm-
bus imaging during wltrasonic thrombolysis. Methods: In
vitrol after the adminisbration of thrombus-largeted Bls
or non-targeted BLs, the clot was exposed to low-fre-
quency (27 kHz) USD for 5 min. fn vive: Rabbit iliofe-
moral arteries were thrombotically occluded, and an
émrav@nws injection of either targeted BLs (n =22) or
non-targeted Bls {n = 22) was. delivered. External low-
frequency USD (low intensity, 1.4 W em™, to 12 arteries,
and high intensity, 4.0 W cm™>, to 10 arteries, for both
the targeted BL group and the non-targeted BL group)
‘was applied to the thrombotically occluded arteries for
60 min. In another 10 rabbits, recombinant tissue-type
plasminogen activator (rt-PA) was intravenously adoiinis-
tered, Results: In vitre: the weight reduction rate of the
clot with targeted BLs was sxgmﬁmnﬂy higher than that
of the clot with non-targeted BLs. fnr vivo: TIMI grade 3
flow was present in a significantly higher number of rab-
bits with USD and targeted BLs than rabbits with USD
and non-targeted BLs, or with 1t-PA monotherapy. High-
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intensity USD exposure with targeted BLs achieved arte-

ial recanalization in 90% of arteries, and the time to. rep-
erfusion was shorter than with rt-PA treatment (targeted

BLs, 167 & 5.0 min; r-PA, 413 & 144 min). Conche-
sions: Thrombus-targeted BLs developed for USD throm-
bus imaging enhance ultrasonic disruption of thrombus
both in vitrp and i vive.

Keywords: drug  targeting, liposomes, RGD. peptide,
thrombolytic therapy, ultrasound.

Introduction

Most life-threatening cardiovascular evenis, including
acute coronary syndrome and ischemic stroke, are caused
by arterial thrombosis. Acute ST-elevation myocardial
infarction (STEMI) is characterized by atherosclerotic
plague rupture and occlusive thrombus formation associ-
ated with platelet aggregation [1,2]. Percutancous coro-
nary intervention (PCI) and fibrinolysis are the standard
therapeutic strategies for recanalizing thrombotically
occluded arteries in patients with STEMI [3]. Primary
PCI is performed in most of the STEMI gdnema present-
mg to a PCl-capable facility, with a cardiac catheteriza-
tion laboratory, an interventional cardiologist, and the
appropriate specialized staff and equipment to perform
acnte PCJ{ Enzymatic fibrinolysis for the treatment of
STEMI is less invasive and logistically more convenient;
however, this option gives a lower initlal recanalization
rate, and a higher incidence of coronary reocclusion and
life-threatening  systemic bleeding, and may result in
worse short-term and long-term clinical oulcomes than
direct PCI [4,5]. For ischemic stroke treatment, fibrinoly-
sis is recommended only for selected patients who can be
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treated within 4.5 h of onset, owing to the substantial risk
of intracranial hemorrhage [6-8].

To overcome the limitations of conventional fibrinolytic
therapy, the cavitational and non-cavitational effects of
ultrasound (USD) have been studied and tested in con-
junction with thrombolytic agents to facilitate thrombus
disruption [9-16]. Treatment without the use of a throm-
bolytic agent, but with the combination of echo contrast
microbubbles and USD, has been found to be effective
in vitro and in vivo. This has been theorized to be attrib-
utable to a lower cavitational threshold and enhanced
microstreaming phenomena when microbubbles in con-
junction with USD are used {17-23]. In vivo, transcutane-
ous USD in combination with microbubbles has been
reported to recanalize thrombotically occluded iliofemor-
al, coronary and ascending pharyngeal arteries {18,20-22],
reduce infarction size [23] and improve microvascular
recovery [20] in animal models, without significant side
effects. Clinical trials using transcutaneous USD with mi-
crobubbles in the setting of ischemic stroke have not been
conducted; instead, a combination of USD, microbubbles
and thrombolytic agents has been examined. This combi-
nation strategy improves recanalization rates and pre-
serves brain function as compared with USD and
thrombolytic agents without microbubbles [24-27]. How-
ever, an increased number of intracranial hemorrhages
has also been reported [27].

In order to non-invasively detect thrombus location, we
manufactured thrombus-targeted liposomal bubbles (bub-
ble liposomes [BLs]), which we also expected to enhance
ultrasonic clot disruption. These BLs may avoid the need
for invasive angiography to identify the thrombotically
occluded site prior to the application of therapeutic USD
in in vivo studies [18,20-22]. The BL was composed of
perfluorocarbon gas-containing nanosized liposomes with
Arg-Gly-Asp (RGD) sequence peptides on their surface
lipid layer, which attach glycoprotein IIb-IIla complex
on activated platelets and enhance the visualization of
fresh thrombus by conventional diagnostic ultrasound
examination [28]. We hypothesized that these thrombus-
targeted BLs could also enhance disruption with the use
of therapeutic external USD, and could be used to
develop a fully non-invasive diagnostic and therapeutic
system for the treatment of thrombotic vessel occlusion.
The aim of this study was to examine the enhancing effect
of the newly developed thrombus-targeted liposomal bub-
bles on ultrasonic disruption of the thrombus in vitro and
in vivo.

Materials and methods

Preparation of thrombus-targeted BLs

Liposome-based perfluorocarbon-containing BLs were
composed of 126 mg of 1,2-disteoyl-sn-glycero-phospho-
choline (Avanti, Alabaster, AL, USA), 51 mg of 1,2-

distearoyl-sn-glycero-3-phosphatidylethanolamine-m-poly-
ethylene glycol 2000 with maleimide (Avanti), 30 mg of
cholesterol (Sigma-Aldrich, Tokyo, Japan), CGGGRGDF
peptide (Operon Biotechnologies, Tokyo, Japan), and per-
fluoropropane gas (Takachiho, Tokyo, Japan). We previ-
ously reported the manufacture of these liposome-based
perfluorocarbon-containing BLs [28]. In brief, a mixture
of all reagents except for CGGGRGDF peptide and per-
fluoropropane gas was dissolved in 2.0 mL of chloroform,
and mixed with the same amount of di-isopropyl ether
and normal saline. The mixture was sonicated, with a
probe-type 19.5-kHz ultrasound device at 550 W (XL-
2020 Sonicator; Misonix, Farmingdale, NY, USA), and
then evaporated at 65 °C with a rotary evaporating
system (Tokyo Rika, Tokyo, Japan). After the chemical
solvent had been completely removed, the size of lipo-
somes was adjusted to < 0.2 pm with extruding equip-
ment and a membrane filter (Northern Lipids,
Vancouver, Canada) with sizing filters. To the liposome
liquid, 1 mg of linear octapeptide with the sequence
CGGGRGDF (Operon Biotechnologies) was added, and
allowed to conjugate to the maleimide on the liposomal
surface via thio—ether covalent coupling at room tempera-
ture for 2 h. Gel filtration was then used to remove unre-
acted peptide fragments. The lipid concentration was
measured with the Wako Phospholipid C test (Wako
Pure Chemical Industries, Osaka, Japan) and the RGD-
liposomes were diluted to a final concentration of
20 mg mL~'. The RGD-liposomes were sealed in a 5-mL
vial, and air was exchanged with perfluoropropane gas
(Takachiho); this was followed by 20-kHz USD treatment
with a bath-type sonicating system (Model 3510; Bran-
son, Emerson, CT, USA) for 5 min to generate the
RGD-BLs [28]. Sterile filtration (0.45 pm) was then per-
formed to remove the expanded and oversized BLs. Non-
targeted BLs were prepared with the same methods but
without the addition of RGD peptide. The amount of
perfluoropropane gas trapped in the BLs was estimated
to be ~ 10 uL mg™' lipid, and the diameter of each BL
was 180 + 44 nm as measured by dynamic laser light-
scattering measurements with an ELS-800 particle
analyzer (Otsuka Photonics, Tokyo, Japan).

Therapeutic USD system

For both in vitro and in vivo studies, two different USD
systems (low intensity or high intensity) were used. For
the low-intensity USD study, the Timi3 system was used
(Timi3 Systems, Santa Clara, CA, USA). This device con-
sisted of a low-frequency USD generator (maximum
intensity, 1.4 W cm™2) and a transducer that delivered
27 kHz of USD at a pulse rate of 25 Hz (acoustic
pressure, 0.145 MPa; mechanical index, 1.4). For the
high-intensity study, the therapeutic USD system was
composed of a sine wave pulse generator (MG-422A;
Anritsu, Tokyo, Japan), a radiofrequency power amplifier

© 2013 International Society on Thrombosis and Haemostasis



{2100L; ENI, Rochester, NY, USA}, and a prototype pie-

zoelectric transducer (Fuji Ceramics, Shizuoka, Japan).
The transducer consisied of 10 PZT disks (thickness,
4 mm) tightly bonded together. It was operated in a con-
tinuous-wave mode at a frequency of 27 kHz (acoustic
pressure; 0.346 MPa; mechanical index, 3.2) and an inten-
sity of 40 Wom™ as measured by the calorimetric
method 291

Protocol for iny vitro study on human thrombi

The following i virro investigation conforms with the
principles outlined in the Declaration of Helsinki, and
the protocol was approved by the Ethical Commitiee of
the National Defense Medical Colleze. In total, 60
thrombi were used in this in vitro study. For the prepara-
tion of each thrombus, 9 mL of whole blood was col-
lected in a test tube from a healthy volunteer, placed on a
seesaw-type. shaker, and allowed to coagulate at room
temperature while being shaken and rotated at a speed of
60 rpam. for 1B Targeted BLs or non-targeted Bls
{100 uL, 20 mg mL™" lipid concentration, ~ L.1% v/v}
were added. to the test tube 10 min after the initiation of
coagutation. The formed thrombus was washed with nor-
mal saline, cut into small picces, weighed on an electronic
balance, and placed in a plastic test tube containing 2 mL
of human plasma. Before the therapeutic USD exposure,
attachment of the BLs on the clot was confirmed by con-
ventional LISD imaging, as well a5 by scanning electron
microscopy [28]. The test tube was placed at | em from
the therapeutic USD transducer in a bath filled with
degassed water. Thirty thrombi were exposed to Tow-
intensity USDy 10 without BLs as controls, 10 with non-
targeted BLs, and 10 with targeted BLs. Similarly, 30
thrombi were exposed to high-intensity USD: 10 without
BLs as controls, 10 with non-targeted BLs, and 10 with
targeted BLs. The water temperature was maintained at
37 °C. Bach thrombus was exposed fo low-intensity USD
(27 kHz, 1.4 Wem™) or high-intensity USD (27 kHz,
40Wem™ for Smin. After USD exposure, the clot
was weighed again. The thrombus weight reduction rate
{pre-treatment weight ~ post-treatment weight]/pre-treat-
ment weight » 100 [%]) was calculated as an index of the
thrombolytic effect.

tn vivo study pratocol in an acute thrombotic occlusion
model of a rabbit iliofemoral artery

The animal protocol was approved by the Animal Care
and Use Conmitiee of the National Defense Medical
College, and conformed with the Guide for the Care and
Use of Laboratory Animals published by the US
Mational Institutes of Health (NIH Publication, 8th
Edition, 2011).

A total of 54 New Zealand white rabbits (~ 2.4 kg)
were used: 24 for the low-intensity USD study, 20 for the
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high-intensity USD study, and 10 for the fibrinolysis
study. Each rabbit was anesthetized with 50 mg of keta-
mine and 20 mg of xylazine injected intramuscularly, and
anesthesia  was  rhaintained  with  pentobarbital
(15 mg kg™") delivered via a marginal ear vein. The ade-
quacy of anesthesia was monitored by the Toss of the ear
pinch reflex. Anesthetized rabbits were placed on a warm-
ing plate to maintain the body temperature at 37 °C.
Asepiic techunigoes were used for all surgical procedures.
A SFr sheath was inserted into the right carotid artery, a
balloon catheter was advanced to the right iliofemoral
artery, and the intima was injured by balloon inflation
and scratching, The balloon catheter was then pulled
back, a 0.014-inch goide wire was positioned at the
injured site, and electrical stimulation (3-V batiery) was
applied between the guide wire and skin clectrode
[18,21,28,30]. Thirty minutes later, the right iliofemoral
artery was thrombotically occluded, and the arterial
occlusion was confirmed by angiography. The thrombus
was also imaged with a 9-MHz linear transducer and a
conpventional USD machine 1 min after BL injection
(UF-750XT; Fukuda Denshi, Tokyo, Japan) (frame rate,
24-30/s; mechanical index, 0.3) (Fig. 1).

To determineg the thrombolytic effect of targeted Bls
and USD, we applied the low-intensity or high-intensity
USD transcutaneously over the site of the rabbit iliofe-
moral arterial thrombus in combination with an intrave-
nous injection of non-targeted BLs or targeted Bls. A
total of 44 New Zealand white rabbits with iliofemoral

Fig. 1. (A) Anglographic image of thrombotivally oecluded rabbit
ilac-artery (black arrow) after bulloon inflation and electricai (3-V
battery) stimulation. {B} In sonographic mages, the targeted bubble
{iposomes (BLs) accumulated on the thrombus {white arrows), (C,
D) After combination therapy with low-frequency vltrasound (USD)
and thrombus-targeted BLs, TIMI grade 3 Bow was achieved (Cy,
and the high echogenic area within the iliac artery aimost disap-
peared (white atrowheads) (D).
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arterial occlusions were divided into two groups: 24 for
low-intensity USD, and 20 for high-intensity USD. In
both groups, non-targeted BLs were intravenously admin-
istered in half (12 or 10, respectively) of the rabbits, and
targeted BLs were used in the other half (12 or 10, respec-
tively) of the rabbits.

Before the USD exposure, 200 IU kg™' heparin was
injected intravenously. Angiography was performed every
15 min for a total of 90 min, and the TIMI blood flow
grade was assessed [18,31]. Non-targeted or targeted BLs
(1 mL, ~1.1% v/v) were intravenously injected every
15 min after the angiography. Subsequently, transcutane-
ous USD was applied externally over the site of the
thrombus for 12 min. In the targeted BL and USD
group, thrombus location was also confirmed with a diag-
nostic USD machine (UF-750XT; Fukuda Denshi) and
with angiography (Fig. 1). BL injection and subsequent
USD exposure were repeated four times for a total of
60 min. The vessel was observed for acute thrombotic re-
occlusion for the next 30 min. The recanalization (TIMI
grade 3 flow) rate was calculated, and the reperfusion
time was measured only in cases in which reperfusion was
achieved. All of the angiographic assessments represented
the consensus of two expert cardiologists (T.N. and B.T.)
blinded to group allocation.

In 10 New Zealand white rabbits with iliofemoral arte-
rial occlusions, 27 500 IU kg™' recombinant tissue plas-
minogen activator (rt-PA) (Monteplase, Eizai, Tokyo,
Japan) was intravenously administered within a period of
| min immediately after intravenous injection of
200 IU kg~! heparin. Angiography was repeated every
15 min for a total of 90 min, and the TIMI blood flow
grade was assessed [18,31]. At the end of the experiment,
all rabbits were killed with an overdose of pentobarbital
(75 mg kg™') injected via a marginal ear vein.

Statistical analysis

Results are given as mean value & 1 standard deviation.
In the in vitro study, clot weight reduction rates were
compared by use of ANOVA. In vivo, the reperfusion rates
were compared by use of a 2 x 2 or a 2 x 3 chi-square
test, and the reperfusion times among the three groups
were compared by use of the Kruskal-Wallis test. A
P-value of < 0.05 was considered to be statistically signifi-
cant.

Results

in vitro study

The clot weight reduction rate achieved with low-intensity
USD with targeted BLs was significantly higher than that
with the non-targeted BLs and in the controls without
BLs (25% =+ 11% vs. 14% % 9% and 9% =+ 3%, respec-
tively; P <0.01). Non-targeted BLs gave no significant

enhancement of clot weight reduction (Fig. 2). Similarly,
the clot weight reduction rate achieved with high-intensity
USD in combination with targeted BLs was significantly
higher than that with non-targeted BLs and in the con-
trols (65% =+ 21% vs. 21% £ 9% and 21% + 14%,
respectively; P < 0.01). No significant enhancement of
clot weight reduction was observed when non-targeted-
BLs were used.

On comparison of the effects of low-intensity USD and
high-intensity USD, the clot weight reduction rate was
significantly higher in the high-intensity USD group than
in the low-intensity USD group when USD was applied
without BLs (21% =+ 9% vs. 9% =+ 3%) and with tar-
geted BLs (65% =+ 21% vs. 25% =+ 11%).

In both groups, echo signal enhancement of all thrombi
by targeted BLs declined to control and non-targeted BL
levels after USD exposure.

In vivo low-intensity USD study

Rabbit iliofemoral arterial thrombus was clearly recog-
nized with a conventional USD system with the targeted
BLs, and also confirmed by angiography (Fig. 1). The
Doppler signal enhancement of the iliofemoral arterial
flow by both targeted and non-targeted BLs was observed
even at 12 min after therapeutic USD irradiation. TIMI
grade 3 flow was achieved in eight of 12 rabbits (67%)
with targeted BL and USD exposure; however, TIMI
grade 3 flow was achieved in only one of 12 rabbits (8%)
in the non-targeted BL and USD group (Table 1; Fig. 3).
These differences were statistically significant (targeted
BLs, 67%; non-targeted BLs, 8%; P = 0.003). The time
to reperfusion was ~ 40 min in the group with targeted
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Fig. 2. The in vitro thrombus weight reduction rate ({pre-treatment
weight — post-treatment weight)/pre-treatment weight x 100 [%])
obtained with low-frequency ultrasound (USD): high-intensity USD
exposure for 5 min with the targeted bubble liposomes (BLs), with
the non-targeted BLs, or without BLs (P < 0.01, n = 10, ANOvA);
low-intensity USD exposure for 10 min with the targeted BLs, with
the non-targeted BLs, or without BLs (P < 0.01, n = 10, anova).
The clot weight reduction rate increased with therapeutic USD with
targeted BLs in each intensity study. NS, not significant.
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BLoand USD exposire {Table 1). Thére were three cuses
of bleod flow reduction (TIMI grade 3 to 2) during the
observation period in the targeted BL group (Fig. 3),

In vivo high-intensity USD study and fibrinolysis study

After exposure to low-frequency high-intensity transcuta-
neous USD, TIMI grade 3 flow was achieved in nine of
10 rabbits {96%} with targeted BLs. On the other hand,
recanalization was achived in only two of 10 rabbits
{20%) with USD and non-fargeted BLs, and four of 10
arleries (4(}'%} were recanalized with rt-PA monotherapy
(Table 2; Fig. 4). These differences were statistically sig-
nificant (targeted BLs, 90%: ﬁonwia;geted BLg, 20%: rt-
PA, 40%; P = 0.004). Moreover, the average reperfusion
time for rabbits to achieve TIMI grade 3 flow was signifi-
cantly shorter for those cases with high-intensity USD
1hrombolyms with targeted BLs than for those with high-
intensity USD with non-targeted BLs or for those with

Fable ] Freqw;m,y of TIMI grade 3 flow (A) and time toeach TIMLE

grade 3 flow (B) achieved with a combination of transcutareous

low-intensity ultrasound (USD) and targeted bubble liposomes (BLs)
or non-targeted BLs

Targeted Ncn-tsx:geted

BLs + USD BlLs+ USD Pyatue
» | | |
Frequency, no, {%) 812067y Hiz@® 0.003
8
Mean time (min) 430 4 203 600 =0 NA

Na&,not &p‘piigéhle,

B o TIMI 1
Non-targeted BLs + low-intensity USD

“Time (min)
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ordimw thmmb{;lysis with  rt-PA  (targeted BLs,
16.7 # 5.0 min; non-targeted BLs, 60.0 % 0 min; rt-PA,
413 % 144 min; P =0.007; n=10) (TableZ). There
were no cases of acute reocclusion, and all recanalized

arteries maintained TIMI grade 3 flow, whereas two cases

of acute reocchusion occurred during the procedure and
the observation peried in the non-targeted BL group
(Fig. 4).

Discussion

This study demonsirated significant enhancement of ultra-

sonic thrombus disruption by the thrombus-targeted BLs
and external low-frequency USD system i vitro and

in vive, and the possibility of a completely non-invasive

treatment that combines the identification of thrombus
position with rapid clot disruption. This stady validates
the use of the low-frequency USD system with targeted
BLs for rapid, effective and comprehensive thrombolytic

treatment. The combination of USD and targeted BLs

played a primary role in this study in both the diagnosis

and treatment of thrombotic vaseular oeclusions.

In many of the previous studies dealing with in vive

USD clot disruption and using microbubbles to reinforce
the USD energy, invasive angmgraphy was used {o iden-

tify the precise location of the thrombus, and to guide the
manipulation: of the therapeutic USD probe {9,10,18,21].
Otherwise, transcranial Doppler was used to monitor
deteriorated blood flow, or a large transducer was used to
cover the area of vessel occlusion [25-27,32], Recently, we
developed thrombus-targeted ixposamal bubbles for USD

imaging of fresh thrombus. This i vitro and in  vive

B2 T 2

Hatelys

[ Jmms

Targeted BLs +1 w~xmenszty usp

45 80 80
Time {min)

Fig. 3. Schematic presentation showing TIMI flow grades of the arteries treated with low-intensity ultrasound (USD) with non-targeted bubble
liposomes (BLs) and targeted BLs. TIMI grade 3 flow was achieved in 67% of arferies with targeted BLs and in only 8% of arteries with non-

targeted BLs (£ = 0. 003, 2 x 2 chissquare test).
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study showed that the USD image of thrombus could be
identified at a glance with a conventional diagnostic USD
machine with the targeted BLs, as also found in our pre-
vious study [28]. This enhanced thrombus imaging facili-
tated successful USD thrombolysis without invasive
angiography.

The targeted BLs significantly enhanced ultrasonic clot
disruption in vitro and in vivo when used with both low-
intensity and high-intensity USD. In particular, with
high-intensity USD exposure with targeted BLs in vivo,
arterial recanalization was achieved in 90% of acute
thrombotically occluded rabbit iliofemoral arteries within
20 min from the beginning of the diagnostic procedure.
This speed of treatment potentially surpasses that of the
PCI procedures, which, on average, require at least
90 min to achieve reperfusion from arrival at the hospital

Table 2 Frequency of TIMI grade 3 flow (A) and time to each TIMI
grade 3 flow (B) achieved with a combination of transcutaneous
high-intensity ultrasound (USD) and targeted bubble liposomes
(BLs) or non-targeted BLs, or recombinant tissue-type plasminogen
activator (rt-PA) alone

[3]. This rapid and non-invasive therapy shows promise in
acute cardiovascular medicine, as diagnostic and thera-
peutic USD equipment is compact in size, inexpensive,
and does not require dedicated laboratory space and spe-
cialized PCI staff.

These results were equivalent to those of the sono-
thrombolysis study by Culp et al., in which a combina-
tion of 2-MHz USD and eptifibatide-tagged microbubbles
opened acute intracranial thrombotic occlusions in six of
eight pigs without the use of a thrombolytic agent [22].
Recently, Alonso et al. reported that diagnostic 2-MHz
USD in combination with abciximab immunobubbles
induced thrombolysis (increased plasma D-dimer levels)
without lytic agents in rats [33]. However, the arterial
recanalization was not assessed, as a partial thrombotic
occlusion model of the rat carotid artery was used. Xie
et al. also reported that diagnostic USD (1.5 MHz) treat-
ment with platelet-targeted microbubbles in combination
with half-dose recombinant prourokinase gave a 53%
coronary arterial recanalization rate at 30 min in pigs
[20]. These studies demonstrate that clinically used diag-
nostic USD frequencies can be applied to thrombus disso-
lution with thrombus-targeted microbubbles. However,

Targeted Non-targeted their thrombolytic effect was relatively limited, except for
BLs + USD BLs+USD  rt-PA P-value  the intracranial model {22], presumably because the cavi-
A) tational energy generated by high-frequency USD (MHz)
Frequency, 9/10 (90) 2/10 (20) 4/10 (40) 0.004 and microbubbles was relatively low in the absence of a
no. (%) closed space such as a skull, where USD energy could be
B enhanced by standing wave formation [34]. To overcome
M‘(’a'? ‘)""c 16.7+£50 6000 413+ 144 0.007 this limitation, we used low-frequency (kHz) USD as a
mn therapeutic device to achieve a higher recanalization rate.
Bl Tvio [ Jmms
rt-PA alone Targeted BLs + high-intensity USD
I I |
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Fig. 4. Schematic presentation showing TIMI flow grades of the arteries treated with recombinant tissue-type plasminogen activator (rt-PA)
alone, with high-intensity ultrasound (USD) with non-targeted bubble liposomes (BLs), and with high-intensity USD with targeted BLs. TIMI
grade 3 flow was achieved in 90% of arteries treated with USD with targeted BLs, in only 20% of arteries treated with USD with non-targeted
BLs, and in 40% of arteries treated with rt-PA monotherapy (P = 0.02, 2 x 3 chi-square test).
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Low-frequency USD is advantageous, because it pene-
trates deeper into tissue and has less thermal effect than
high-frequency USD [35]. Low-frequency USD has been
reported to recanalize canine iliofemoral and coronary
arteries without tissue damage [9,10,21,36], and has been
safely applied in combination with thrombolytic agent in
humans with STEMI [13], with a USD intensity as low as
that used in our low-intensity USD study. However, there
are still safety concerns regarding the application of high-
intensity, low-frequency USD with microbubbles, and
these should be clarified in a future study.

Nano-sized BLs could have some potential disadvan-
tages. It is assumed that BLs release less energy than
larger microbubbles when they collapse. In fact, the non-
targeted BLs showed negligible enhancement of USD clot
disruption in vitro. Moreover, only 8-20% cases of
thrombosed rabbit iliofemoral arteries recanalized in vivo
with non-targeted BLs. Theoretically, each BL itself is
too small to reflect USD waves with the frequency used
in this study. However, we previously demonstrated that
the targeted BLs are highly concentrated around and
within the thrombus, by using scanning electron micros-
copy, and that they markedly enhance ultrasonic throm-
bus imaging [28]. Consequently, as shown in this in vitro
and in vivo study, we found marked enhancement of the
thrombolytic effect by attaching the thrombus-targeting
ligands on the same BL structure. The small size of the
BLs, with a mean diameter of 180 nm, could also have
some advantageous effects. A BL size of <l pm ensures
both a long in vivo circulation time and deep penetration
into thrombi. The longer the circulation time, the more
opportunity the targeted BL has to attach to the activated
thrombus. Deep penetration into thrombi through the
fibrin network allows for greater accumulation of targeted
BLs within thrombi. These two features of small BLs
were favorable, when USD energy was applied, for
disruption and reduction of the culprit thrombus.

Liposomes are usually considered to be non-toxic,
unless they are administered at very high doses [37]. Poly-
ethylene glycol is also considered to be non-toxic, and is
excreted unmetabolized in the urine [38]. The RGD pep-
tide is an octapeptide, and is considered to be non-toxic
and non-immunogenic [39,40]. Perfluoropropane is an
inert gas, used as a constituent of commercially available
echo contrast agents such as Optison and Definity [41],
and is exhaled from the lungs [42]. Therefore, this echo
contrast agent is generally considered to be non-toxic,
although safety in humans remains to be demonstrated.

In a clinical setting, lower-intensity USD has some
advantages over high-intensity USD in terms of safety.
However, low-intensity USD exposure with targeted BLs
achieved only a modest thrombolytic effect in this study.
When low-intensity USD is used, an alternative approach
is necessary to enhance the resonance phenomenon
caused by the interaction between USD and the BLs. As
the RGD peptide is not an ideal targeting ligand, because

© 2013 International Society on Thrombosis and Haemostasis
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of its broad cross-reactivity with a number of integrins,
one possible option is to achieve a higher concentration
of the BLs on the thrombus by using a more effective tar-
geting ligand. The other option is to use larger BLs,
which generate a higher amount of cavitational energy
during collapse. However, the BLs should be small
enough to penetrate into the thrombus. Therefore, the
most effective size of BLs remains to be determined.
Another option is to combine targeted BL-enhanced
USD thrombolysis with conventional fibrinolytic therapy.
The dose of the fibrinolytic agent, such as tissue-type
plasminogen activator, could be reduced with this strat-
egy. Further study is needed to elucidate this issue.

The targeted BLs enhance imaging of the culprit
thrombus and enable manipulation of the therapeutic
USD probe, targeting and directing it towards the culprit
thrombus. Furthermore, the combination treatment with
targeted BLs and high-intensity, low-frequency USD
achieved a 90% recanalization rate, which is markedly
higher than that with rt-PA monotherapy. This method
has the potential to be a reperfusion strategy that could
be more rapid than any other method, including PCI.
The absence of acute reocclusion with this therapeutic
approach might be attributable to minimal mural throm-
bus being left in the culprit lesion. Further study is
needed to identify the most suitable targeting ligand and
BL size for generating the maximum thrombus disruption
and achieving the most effective thrombolysis with low-
intensity USD.

Limitations

There are some technical limitations regarding thrombus
formation in both the in vitro study and the in vivo study.
We prepared all in vitre clots from the blood of a single
individual, to examine the effects of USD and targeted
BLs on clots with homogeneous lytic activities. However,
this could simultaneously be a limitation of this study,
because individual lytic response can differ as a function
of the different levels of inhibitory enzymes and/or vary-
ing concentrations of plasminogen. Moreover, in vivo
hyperacute thrombi could be more fragile than those in
clinical culprit lesions.

Reocclusion of the culprit artery was not observed after
successful recanalization with low-frequency USD and tar-
geted BLs. However, the observation period after recanali-
zation in this study might not be long enough to exclude
the possibility of reocclusion, which may occur later. There
are some safety limitations. It is known from the simula-
tion study of intracranial sonothrombolysis [34] that USD
sometimes causes standing wave formation and unneces-
sary acoustic cavitation, especially in brain tissue, even
outside the targeted clot. Regarding the coronary and
peripheral arteries, low-frequency, high-intensity USD
energy can be delivered transcutaneously for clot disrup-
tion without concomitant tissue damage in animal models,
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especially when coupled with the use of a cooling system
to prevent thermal injury [9,10,21,36]. However, low-fre-
quency USD could cause unexpected non-linear cavita-
tional effects, and its safety has to be clarified in
combination with microbubbles before clinical application.

Conclusions

Perfluorocarbon gas-containing liposomal nanobubbles
with activated thrombus-targeting RGD peptides devel-
oped for USD thrombus imaging are novel echo contrast
agents that can markedly enhance USD thrombolysis
both in vitro and in vivo. The combination of USD and
thrombus-targeted BLs could be used as an effective and
completely non-invasive recanalization therapy that does
not require angiography to detect acute thrombotic vessel
occlusion or therapeutic thrombus dissolution.
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Combination of Bubble Liposomes and High-Intensity Focused
Ultrasound (HIFU) Enhanced Antitumor Effect by Tumor Ablation

Nobuhito Hamano,** Yoichi Negishi,*** Kyohei Takatori,” Yoko Endo-Takahashi,” Ryo Suzuki,’
Kazuo Maruyama,b Takuro Niidome, and Yukihiko Aramaki?

¢ Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of

Received July 31, 2013; accepted October 8, 2013

Ultrasound (US) is used in the clinical setting not only for diagnosis but alse for therapy. As a therapeu-
tie US technique, high-intensity focused ultrasound (HIFU) can be applied to treat cancer in a clinical set-
ting. Microbubbles increased temperature and improved the low therapeutic efficiency under HIFU; however,
microbubbles have room for improvement in size, stability, and targeting ability. To solve these issues, we re-
ported that “Bubble liposomes” (BLs) containing the US imaging gas (perfluoropropane gas) liposomes were
suitable for ultrasound imaging and gene delivery. In this study, we examined whether BLs and HIFU could
enhance the ablation area of the tumor and the antitumor effect. First, we histologically analyzed the tumor
after BLs and HIFU. The ablation area of the treatment of BLs and HIFU was broader than that of HIFU
alone. Next, we monitored the temperature of the tumor, and examined the antitumor effect. The tempera-
ture increase with BLs and HIFU treatment was faster and higher than that with HIFU alone. Moreover,
treatment with BLs and HIFU enhanced the antitumor effect, which was better than with HIFU alone. Thus,
the combination of Bl.s and HIFU could be efficacious for cancer therapy.

Key words

Ultrasound (US) imaging is a widely used diagnostic tech-
nique that allows for real-time imaging and combines the
advantages of noninvasiveness with easy access by the public
and low cost. In addition, US is used in the clinical setting
not only for diagnosis but also for therapy. Recently, as a
therapeutic US technique, high-intensity focused ultrasound
(HIFU) has been applied for the treatment of prostate cancer
and liver cancer in a clinical setting.” HIFU can induce ther-
mal elevation and lead to ablation and coagulative necrosis for
targeted tissue. Although the concept of HIFU can be ideal of
cancer therapy, HIFU has some disadvantages. Because the
ablation area of HIFU exposure is narrow, HIFU requires a
long time for cancer therapy. Microbubbles increase heat gen-
eration mainly by increasing inertial cavitation and improve
the therapeutic efficiency under HIFU exposure®; however,
microbubbles have room for improvement in size, stability,
and targeting ability. To solve these issues, we previously de-
veloped “Bubble liposomes” (BLs: approximately 500nm).
These are polyethylene glycol (PEG)-modified liposomes
that contain echo-contrast gas, which can function as a gene
and short interfering RNA (siRNA) delivery tool with US
exposure in vitro and in vivo.>¥ However, it is not yet known
whether BLs increase the temperature of tumor tissue and
enhance the ablation area and antitumor effect under HIFU
exposure as microbubbles. In this study, we examined whether
BLs and HIFU could enhance the ablation area of tumors and
the antitumor effect.
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MATERIALS AND METHODS

Preparation of Liposomes and BLs To prepare liposomes
for BLs, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)
and 1,2-distearoyl-sn-glycero-3-phosphatidyl-ethanolamine-
polyethyleneglycol (DSPE-PEG,,,-OMe) were mixed at
a molar ratio of 94:6. The liposomes were prepared by a
reverse-phase evaporation method, as described previously.?
In brief, all the reagents were dissolved in 1:1 {v/v) chloro-
form—diisopropylether. Phosphate-buffered saline was added
to the lipid solution, and the mixture was sonicated and then
evaporated at 47°C. The organic solvent was completely re-
moved, and the size of the liposomes was adjusted to less than
200nm using extrusion equipment and a sizing filter (Nucle-
pore Track-Etch Membrane, 200nm pore size, Whatman ple,
U.K.). After being sized, the liposomes were passed through a
sterile 0.45- um syringe filter (Asahi Techno Glass Co., Chiba,
Japan) for sterilization. The lipid concentration was measured
using the Phospholipid C test (Wako Pure Chemical Indus-
tries, Ltd., Osaka, Japan). BLs were prepared from liposomes
and perfluoropropane gas (Takachiho Chemical Inc., Co., Ltd.,
Tokyo, Japan). First, Sml. sterilized vials containing 2mL
of liposome suspension (lipid concentration: 1mg/ml) were
filled with perfluoropropane gas, capped, and then pressurized
with 7.5 ml of perfluoropropane gas. The vials were placed in
a bath-type sonicator (42kHz, 100W, Bransonic 2510J-DTH,
Branson Ultrasonics Co., Danbury, CT, U.S.A) for 5min to
form BLs. The mean size of the BLs was determined using
light-scattering with a zeta potential/particle sizer (Nicomp
380ZLS, Santa Barbara, CA, US.A).

Animals and Tumor Models Male BALB/c mice (6
weeks old) were purchased from Tokyo Laboratory Animals
Science Co., Ltd. (Tokyo, Japan). All animal use and rel-
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evant experimental procedures were approved by the Tokyo
University School of Pharmacy and Life Science Committee
on the Care and Use of Laboratory Animals. Colon26 cells
(1X10° cells/mouse) and Matrigel 50 4L (BD Biosciences,
San Diego, CA. U.S.A) were inoculated subcutancously in
the flank of mice. In vivo histological and antitumor studies
were performed when the tumors were 100-200mm’. In vivo
temperature rise test was performed when the tumors were
approximately 300 mm?.

Histological Analysis Tumor-bearing mice were treated
with intratumoral injection of BLs (50 ug/50 4l) and HIFU
exposure (Frequency: 3MHz, Duty: 100%, Intensity: 1.5kW/
em? Time: 60s). Next day, each tumor dissected, and fixed
with 4% paraformaldehyde substituted with 20% sucrose and
then embedded in optimal cutting temperature compound
(Sakura Finetech, Co., Ltd., Tokyo, Japan) and frozen at
-80°C. Fach tumor section was prepared with a width of
6 um and mounted on a poly-L-lysine coated slide. The tumor
section were processed by both hematoxylin and eosin (H&E)
and nicotinamide adenine dinucleotide reduced (NADEH)
tetrazolium reductase (NADH-TR) staining.” The tissue sec-
tions were incubated at 37°C for 1h in 150mlL of Tris~HCl
buffer (pH 7.4) containing 150mg of nitro blue tetrazolium
(WAKO. Japan) and 120mg of f-NADH (WAKO, Japan). The
tissue sections were washed with distilled water, various con-
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centrations of acetone (30, 60, 90, 60, and 30%), and finally
mounted with glycerol gelatin (Sigma-Aldrich). H&E staining
was also performed on the tumor sections using the standard
technique. The ablated area seen by NADH-TR staining was
measured using Imagel software.

In Vive Antitumor Efficacy Tumor-bearing mice were
treated with intratumoral injection of BLs (50 ug/50 ul) and
HIFU exposure (Frequency: 3MHz, Duty: 100%. Intensity:
1.5kW/em?, Time: 60s), next day tumor volume was moni-
tored. Then, this cycle was repeated three times.

RESULTS AND DISCUSSION

First, we performed histological analysis of tumor tissue
after BLs and HIFU exposure. BLs (lipid volume: 50 ug/50 pl.)
were administered using an intratumoral injection (n=5).
Then, tumor-bearing mice were exposed to HIFU (frequency:
3IMHz, rate: 100%, intensity: 1.5kW/em?, time: 60s). Tumor
sections were prepared and processed by both H&E stain-
ing and NADH-TR staining. To identify tumor ablation area,
NADIH-TR staining was used to differentiate the viable (blue
regions) and nonviable (white/clear regions) tumor tissue. The
ablation area of the treatment of Bls and HIFU was ten times
more than treatment with HIFU alone (Fig. 1). When tumor-
bearing mice were also exposed to HIFU, outward damage
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Fig. 1.

Histological Analysis of Tumor after Treatment with HIFU Exposure

Mice were implanted s.c. with 1X10° of colon26 cells into the flank. After 5-6d of implantation, they were treated with intratumoral injection of BLs and HIFU ex-
posure {frequency: 3MHz, rate: 100%, intensity: 1.5kW/om?, time: 60s). Each tumor was dissected, and the tumor section were sliced at 6#m (#=5). (A) Each section
underwent H&E staining (left panel) and NADH-TR staining (right panel). Scale bars represent 500 ym. NADH-TR staining show viable tissue (blue) and nonviable tissue
(clear/white). (B) The ablation area (red circle) of the tumor was measured by Image J. *p<0.005.
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Temperature Increase in Tumor Tissue Treated with BLs and HIFU Exposure

Tumor-bearing mice were treated with BLs and HIFU exposure (frequency: 3MHz, rate: 100%, intensity: 1.5kW/em?, time: 3005, BLs: 50 ug/50 #L.), and the tumor tem-
perature monitored. Each value is the average and 8.D. (#=7). *p<<0.005 compared with HIFU. (A) Scheme of tumor temperature measurement; (B} Temperature increase

in tumor treated with HIFU alone or Bl.s and HIFU.

(e.g., ablation, necrosis) to normal tissue (e.g, liver, kidney,
and spleen) was not observed (data not shown). From these
results, in order to verify that the ablation of tumor was due
to thermal elevation by the treatment of BLs and HIFU expo-
sure, we monitored temperature of tumor tissue (n=7) in time-
course by thermometer (TM-300, IK-300, AS ONE, Osaka,
Japan) (Fig. 2). As shown in Fig. 2, the temperature of the
tumor tissue rose to 45°C with continuous exposure to HIFU
for 3min, while the temperature of tumor tissue by treatment
with BLs and HIFU reached 45°C in a mere 20s, rose to 50°C
in 1min, and finally reached 55°C in 3min. Generally, tissue
heated to over 55°C by an ablation technique such as HIFU
has been reported as “ablative hyperthermia,” which has
been used as a definitive treatment of accessible solid tumor,
whereas tissue heated to 40-45°C has been reported as “mild
hyperthermia,” which has been shown to be effective as an
adjuvant for both radiotherapy and chemotherapy.>” These
results suggested that the ablation area of the tumor in this
study was due to high temperature (50-55°C).

Next, as treatment with Bls and HIFU showed that the
ablation area of the tumor was broader than that with HIFU
alone by increasing temperature, the antitumor effect of BLs
and HIFU treatment was evaluated in tumor-bearing mice.
Tumor-bearing mice were treated with intratumoral injection
of BLs and HIFU exposure, and tumor volume was monitored
the following day. This cycle was repeated three times. As
shown in Fig. 3. the BLs and HIFU group had significantly
suppressed tumor growth compared with the control group
(p<<0.01). In addition, the tumor growth inhibition efficacy
of the BLs and HIFU group was better than that of the HIFU
alone group {p<<0.05). It has been reported that local high-
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Fig. 3. Antitumor Effect after Treatment with BLs and HIFU Exposure

Tumor-bearing mice were treated with intratumoral injection of Bls and HIFU
exposure (frequency: 3MHz. rate: 100%, intensity: L5kW/iem®, time: 60s, BLs:
50 ug/50 yL). Tumor volume of tumor-bearing mice was monitored. Each value is
the average and S.D. (n=4). * p<0.01, **p<<0.05.

temperature hyperthermia (50-55°C) enhanced the indices of
the T helper 1 (Thl) immune response, such as interleukin-2
(IL.-2), interferon-gamma {(IFN-y), and tumor necrosis factor-
alpha (TNF-a)¥; therefore, it could be suggested that the anti-
tumor effect of BLs and HIFU exposure was due to the abla-
tion effect and immune response.

In this study, we observed that treatment with BLs and
HIFU could enhance the ablation area of the tumor and the
antitumor effect. The ablation area with Bls and HIFU treat-
ment was broader than with HIFU alone. We next monitored
the temperature of tumor tissue with BLs and HIFU treat-
ment. In this experiment, the temperature increase with BLs
and HIFU treatment was faster and higher than with HIFU
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alone. Morcover, BLs and HIFU treatment enhanced the anti-
tumor effect, which was better than with HIFU alone. Thus,
the combination of BLs and HIFU could be efficacious treat-
ment for cancer therapy.
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Evaluation of Active Control of Bubble Liposomes in a Bifurcated
Flow under Various Ultrasound Conditions
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Abstract Bubble liposomes (BLs), which are gas-encapsulated liposomes several hundred nanometers in

diameter, are expected to be developed as a novel tool for gene and drug delivery using ultrasound acoustic
radiation force. However, since BLs are several hundred nanometers in diameter, difficulties exist in controlling
their behaviors in blood flow under ultrasound exposure, since acoustic radiation forces have less effect on these
small bubbles. In this study, we investigated the feasibility of active control of BLs in an artificial blood vessel
under ultrasound exposure and attempted to evaluate the controllability. Then, we investigated the appropriate
ultrasound conditions for active path selection of BLs in a bifurcated flow by applying acoustic radiation force. We
prepared a single transducer to orient BLs toward one desired path. Two other transducers were targeted at the
two paths after the bifurcation. We evaluated the areas of trapped BLs in the two paths after the bifurcation, to
determine which path had increased BLs. The result showed a significant increase in area of trapped BLs in the
desired path compared to the other path. Then, we defined the induction index of BLs by evaluating the area of
trapped Bls, and changed the ultrasound conditions for active path selection of BLs by varying the sound
pressure and frequency. We found that more BLs could be oriented to a desired path at higher sound pressure.

For further study, we are aiming at active control of BLs in vivo.

Keywords : Bubble liposome, active control, acoustic radiation force.

Adv Biomed Eng. 8: pp. 21-28, 2014.

1. Introduction

Many studies of drug delivery system have used
microbubbles (MBs) as a drug carrier in the human body.
The presence of bubbles improves the effects of ultra-
sound therapy by accelerating the temperature increase
in thermal therapy [1, 2] and inducing sonoporation to
allow uptake of larger molecules into cells in physical
drug delivery [3-5]. We have previously reported our
attempt to propel microbubbles in flow[6, 7]by utilizing
aggregate formation of bubbles, which is effective to
propel bubbles before entering an ultrasound field to be
exposed to greater acoustic radiation force. We have
elucidated the conditions of ultrasound and flow velocity
for active path selection of bubble aggregates in an
artificial blood vessel. However, we used MBs that
mimicked ultrasound contrast agent, and they were
developed for industrial purpose and not for medical use.

This study was presented at the Symposium on Biomed-
ical Engineering 2013, Fukuoka, September, 2013.
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In other studies, we used another type of MBs Sonazoid to
realize trapping of MBs in flow{8]and artificial emboliza-
tion in capillary model[9]. Although Sonazoid is commer-
cially available for contrast enhancement of echography,
it is difficult to modify the surface of the membrane. On
the other hand, the recently developed Bubble liposomes
(BLs) have been found to be safe in vive, with easily
modified targeting ligand. We expect that BLs had the
potential to become a drug delivery tool using ultrasound.

Considering that BLs are several hundred nano-
meters in diameter, difficulties exist in controlling their
behaviors in blood flow under ultrasound exposure, since
acoustic radiation forces have less effect on these small
bubbles. And, it is difficult to detect the behavior of BLs in
brightness because the suspension is diluted from the
original BL preparation because of the diffusion in the
human body.

In this study, we attempted active control of BLs in an
artificial blood vessel. For active path selection of BLs, we
prepared a single transducer to orient Bls toward one
desired path. To evaluate controliability of BLs quantita-
tively, two other transducers were targeted at the two
paths after the bifurcation. We evaluated the areas of
trapped BLs in the two paths after the bifurcation to
determine which path had increased BLs. Then, we
investigated the optimal ultrasound conditions for active
path selection of BLs by varying sound pressure and
frequency.



