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F1cure 3: Effect of clathrin-mediated endocytosis inhibitors on cellular uptake of MWNT-7. The SSC ratios of (a) BEAS-2B cells and (b)
MESO-1 cells pretreated with various concentrations of chlorpromazine are shown. The SSC ratios of (c) BEAS-2B cells and (d) MESO-1 cells
pretreated with various concentrations of phenylarsine oxide are shown. The cells were compared with control cells pretreated with inhibitor
solvent. Mean + SD.n = 4 or 6, *P < 0.05,**P < 0.01, and *** P < 0.001.

(Met-5A) [39]. However, although they showed transmission
electron microscopy (TEM) images of A549 alveolar epithe-
lial cell lines to conclude that the cells do not internalize
CNTs, no TEM images for Met-5A were presented, and opti-
cal microscope images of low magnification (x20) were only
shown. Lindberg et al. reported genotoxicity of MWCNTs
based on TEM images showing that the Met-5A cells inter-
nalize CNTs [40]. Moreover, our time-lapse data clearly and
directly indicate that HBECs and HMCs endocytose MWC-
NTs actively (Movies S1 and S2) (see Supplementary Material
available online at http://dx.doi.org/10.1155/2015/793186). We
also have already reported that the BEAS-2B cell line derived
from human bronchial cells and MESO-1 cells derived from
human mesothelioma cells internalized some MWCNTs [28,
36]. Therefore, we used inhibitors of endocytosis, to clarify
the internalization mechanism of CNT further using BEAS-
2B cells and MESO-1 cells rather than HBECs and HMCs, res-
pectively.

We investigated the mechanism of CNT uptake using
inhibitors for three endocytosis pathways (clathrin-mediated,
caveolae-mediated, and macropinocytosis), with the SSC
ratio as an index. We have already shown that SSC ratio

increases concentration dependently over time in cells that
only internalized CNTs [28]. The SSC ratios. of the con-
trol, which was not pretreated by inhibitors in BEAS-2B
and MESO-1 cells, were 1.355-1.426 and 1.137-1.258 in 2h,
respectively. It was observed that the SD of the SSC ratios
tended to increase with cell passage number, likely because we
analyzed under sixteen passages for both cell lines. Therefore,
few statistically significant differences were noted when we
assayed the SSC ratios of nystatin as a caveolae-mediated
endocytosis inhibitor and 5-(N-ethyl-N-isopropyl)amiloride
as a macropinocytosis inhibitor.

Two clathrin-mediated endocytosis inhibitors suppressed
the ratio in a concentration-dependent manner in both cell
lines (Figures 3(a)-3(d)). In BEAS-2B cells, the maximum
concentration of chlorpromazine (50 yM) decreased the SSC
ratio to 1.039, whereas the SSC ratio with 2 M phenylarsine
oxide was 1.040. In MESO-1 cells, the lowest SSC ratios were
1.032 and 1.025 with treatment with 50 uM chlorpromazine
and 5 uM phenylarsine oxide, respectively. Because the base-
line SSC ratio for which the cells were not exposed to CNTs
was 1000, clathrin-mediated endocytosis seems to be the
main mechanism for cellular uptake.
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FIGURE 4: Effect of caveolae-mediated endocytosis inhibitors on cellular uptake of MWNT-7, The SSC ratios of (a) BEAS-2B cells and (b)
MESO-1 cells pretreated with various concentrations of nystatin are shown. The SSC ratios of (c) BEAS-2B cells and (d) MESO-1 cells
pretreated with the various concentrations of indomethacin are shown. The cells were compared with control cells pretreated with inhibitor

solvent. Mean + SD.n =4, "P < 0.05, **P < 0.01.

The results for caveolae-mediated endocytosis inhibitors
were complicated. Nystatin decreased the SSC ratio in both
cells significantly except at 1yM in MESO-1 cells (Figures
4(a) and 4(b)). In detail, MESO-1 cells displayed a tendency
for concentration dependency, whereas the inhibition did not
depend on the dose in BEAS-2B cells. In contrast, although
indomethacin tended to show concentration-dependent
inhibition in both cell lines, there was no statistically signifi-
cant difference (Figures 4(c) and 4(d)). The difference in the
results may be caused by the inhibition mechanism. Nystatin
disrupts caveolar function and binds to sterol in the plasma
membrane [41-43]; indomethacin blocks the internalization
of caveolae and the return of plasmalemmal vesicles [44, 45].
However, we considered that caveolae-mediated endocytosis
pathway may partially contribute to the internalization of
CNTs for the following reasons: (1) the inhibition rate of
nystatin, which was not concentration-dependent, was 30.7%
and was the same as the inhibition rate (27.9%) with the
highest concentration of indomethacin (100 uM) in BEAS-
2B cells. (2) In MESO-1 cells, both inhibitors showed a
tendency for concentration-dependence, and the inhibition

rate provided by indomethacin, which inhibits the essential
parts of the endocytosis pathway, was higher than that by
nystatin (35.2% and 23.9%, resp.). The inhibition of statin
binding to the sterol may have been responsible for difference
among cell types.

5-(N-Ethyl-N-isopropyl)amiloride, which inhibits the
macropinocytosis pathway, seems to suppress CNT uptake in
a concentration-dependent manner, although the difference
did not reach significance except at 80 yM in MESO-1 cells
(Figures 5(a) and 5(b)). The inhibition rates of BEAS-2B cells
and MESO-1 cells were comparable at 42.7% and 56.6% at the
highest concentration (80 uM). The role of macropinocytosis
in CNT uptake has not been extensively studied. Hirano et
al. demonstrated that macrophage receptor with collagenous
structure- (MARCO-) transfected CHO-K1 cells takes up
MWCNTs via membrane ruffling in a process similar to
macropinocytosis [46]. They also reported that MARCO was
absorbed in MWCNTs to which macrophages were exposed
[47]. However, it was not clear whether macropinocytosis for
CNTs occurs in nonphagocytic cells. Our results indicate that
macropinocytosis plays an important role in CNTs uptake.
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FIGURE 5: Effect of a macropinocytosis inhibitor on cellular uptake of MWNT-7 cells. The SSC ratios of (a) BEAS-2B cells and (b) MESO-
1 cells pretreated with various concentrations of 5-(N-ethyl-N-isopropyl)amiloride are shown. The cells were compared with control cells

pretreated with inhibitor solvent. Mean + SD. n = 3, *P < 0.05.

The latest information for cellular uptake of nanomateri-
als has been reviewed and suggests that three different mech-
anisms of endocytosis exist including clathrin- and caveolae-
independent endocytosis, and also endocytosis depends on
particle physical-chemical properties, experimental condi-
tions, and cell type in nonphagocytic cells [48]. We consider
that CNT uptake is also subject to the same influences in
an interdependent manner because the total inhibition rate
when independently inhibited pathways were considered
together easily exceeded 100%, which means that other
pathways function in a compensatory manner, even when
one pathway is inhibited. Moreover, other pathways may
exist because there are some reports indicating several types
of clathrin- and caveolae-independent endocytosis, and the
endocytic mechanism is especially unexplained in the non-
phagocytic cells [49-51]. In fact, it was not possible to clarify
the mechanism underlying the observed suppression of CNT
uptake in BEAS-2B cells cultured in FBS-free medium [32].
That study also indicated that the degree of aggregation is an
important factor but we could not clarify this issue. We mea-
sured the SSCratio in the comparatively early stage of 2 h after
CNT exposure because high concentrations of the inhibitors
showed cytotoxicity. Within 2h, a small fibrous agglomerate
containing some MWCNTs was seen at the bottom of the
dish. Although it seems likely that our inhibitor results reflect
actual endocytosis, it is unclear whether the nonagglomer-
ated MWCNTSs observed after 2 h at the bottom in Movie S1
and Movie S2 show the same result. However, there appeared
to be a common cellular uptake pattern for the MWCNTs.

In conclusion, we found that human normal bronchial
epithelial cells and mesothelium cells endocytosed MWC-
NTs. The mechanism of endocytosis seemed to be not only
one but a combination of three pathways: clathrin-mediated
endocytosis, caveolae-mediated endocytosis, and macropin-
ocytosis. Although clathrin-mediated endocytosis played the
most important role, other pathways may be involved to
varying degrees. The cellular uptake of MWCNTs is essential

for MWCNT toxicity in the context of genotoxicity. It may
thus be necessary to prepare materials that are not endocy-
tosed to develop the nanomaterials having not only useful
but also hazardous properties, as we alluded to in a previous
study [28]. We have already reported that both BEAS-2B
and MESO-1 cells did not endocytose MWCNTs dispersed in
carboxymethyl cellulose. Therefore, this and previous studies
suggest that biocompatible nanomaterials can be developed.
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control group. Studies with primary human osteoblast cultures confirmed the bioactivity of these scaffolds, and the in
vivo regeneration of segmental critical size bone defects in a rabbit model demonstrated that this material induces new
bone defect bridging, with clear evidence of regeneration of original radial architecture and bone marrow environment.
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Effects for osteosarcoma cells by carbon nanotubes
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Sarcomas such as osteosarcoma are treated with surgery and chemotherapy by anticancer drugs. The anticancer drugs
cause various severe side effects, and prospective enough effects may not be obtained. So-called nano-particles smaller
than cells have a property to enter cells and they are expected as drug delivery system (DDS). We heretofore reported
biocompatibility and safety of the carbon nanotubes (CNT). We report potential as DDS for chemotherapy to
osteosarcoma cells with CNTs.

The 143B cells (human osteosarcoma cell line) were seeded at 5.0x10° cells/10cm culture plate. After 24 hours, the
culture medium was renewed to the medium contained 1 pg/ml or 10 pg/ml multi-walled CNT (MWCNT). Doxorubicin
hydrochloride (DOX) (0.1uM, 1.0pM, 5.0pM) was used as positive control. Each group was n=3. After more 24 hours,
we observed the cells with light microscope and counted the number of 143B cells of each plate.

In the light microscope images of the 143B cells that we added MWCNTSs before 24 hours, the MWCNTSs were taken in
the cells. In the MWCNT 10 pg/ml group, much MWCNTs were taken in the 143B cells than the MWCNT 1 pg/ml
group. The cell number after 24 hours culture was 23.3x10° cells/plate in control, 10.3x10° cells/plate in DOX 0.1 uM
group, 5.6x10° cells/plate in 1.0 uM group, 2.8x10° cells/plate in 5.0 uM group, 21.3x10° cells/plate MWCNT 1

pg/ml group and 16.3x10° cells/plate MWCNT 10 pg/ml group.

When the MWCNTs are added to the osteosarcoma cell line; 143B cells, the MWCNTSs are taken into the cells and
inhibited a cellular proliferation in concentration-dependency. By adhering anticancer drugs to the MWCNTs, we
expect to improve invasive efficiency to sarcoma cells of the anticancer drugs, to enhance the chemotherapeutic effect
and to reduce the chemotherapeutic side effects.

Disclosure: The authors declare no competing interests.
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“Time-elapsed” or “image-guided failure™ assessment of bone is a relatively new technique that uses sequential image
acquisition to analyse trabecular bone mechanics under a given loading regime. To date, this procedure has been
employed to analyse trabecular mechanics during uniaxial compression [1, 2], screw pull-out [3], and screw push-in
tests [4]. Nazarian et al. (2004) validated the use of this method for the assessment of microstructural trabecular
mechanics, demonstrating no difference in the macroscopic behaviour of cancellous bone specimens under continuous
or step-wise loading conditions [2].

These methods have provided valuable insight into the failure mechanisms of bone under specific loading conditions.
Work within our laboratory, however, has sought to better understand the interactions between bone and implant during
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