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ground residues (Supplementary Figure S4B). However, as
expected, conserved residues were not always near RNA
binding sites. .

Describing structural features with normahzed Laplac1an co-
ordinates

We next investigated the effect of addmg structural infor-
mation via LN coordinates, which are a descrlptlon of the
protein based on graph theory with a single parameter (o)
that controls the resolution or granularity of the model (see
Materials and Methods). When taking norms of the Lapla-
cian coordinates, information regardmg the absolute target
residue spatlal position is lost. For this reason, a combina-
tion of the sequence- based control featules and LN values
calculated under any given o value (global or local) falled
to augment the AUC of the ROC curve significantly. Tn-
terestingly, however, when we built up a multidimensional
LN vector at multiple o levels, the discrimination power
of the neural network was 51gn1ﬁcantly enhanced. The rea-
son for this is that missing positional information due to
norm calculation was compensated for by the set of LN val-
ues, which contain geometric information. Simply speaking,
buried residues have a smaller average LN value than ex-
posed ones. For exposed resxdues under a given ¢ value, a
large LN corresponds to a convex surface, whilea small one
reflects a concave surface.

We next investigated the relatlonshlp between protein—
RNA distances and LN values, as well as the distribution
of LN values on global and local scales (Supplementary
Figure S5). On a global scale, as shown in Supplementary
Figure S5A, the median value-and the deviation: of dis-
tances between surface residues and RNA increased with
the normalized LN value (md1cat1n g a transition from con-
cave to convex from. left to right, respectively). However,
as the LN value approached 1, the median distance de-
creased slightly. From the dlstrlbutlon patterns of LN val-
ues taken from RNA bmdmg and non-binding residues, as
well as all surface residues (Supplementary Figure S5B), we

found that RNA-binding residues showed a statistically sig- -

nificant (P-value < le-15) shift toward smaller LN values
when compared with non-binding residues or background
residues, which means that RNA is more likely to interact
with residues located on globally concave surfaces. Inter-
estingly, the frequency of RNA-binding residues with a LN
value close to 1 was also higher. These residues are located
at extremely convex points. Next, we checked the distribu-
tion of local LN values for RNA- binding residues interact-
ing with a globally concave surface (surface residues with
global LN values smaller than 0.45 as shown in Supplemen-
tary Figure S5B). We can see from Supplementary Figure
S5C that the distribution pattern shows two peaks; one ex-
ists at a relatively small local LN value, corresponding to
concave surfaces, while the other exists ata moderately large
value,. 1ndlcatmg convex points, The frequency of contacts
for flatter regions (i.e. around 0.5) was lower.

After manually checking many structures, a general rule
could be summarized as follows: An RNA molecule is more
likely to bind to globally concave surfaces of a protein, and
to locally convex or concave sites within that milieu. On a lo-
cal scale, however, convex (i.e. protrudlng) res1dues are more

likely to mediate RNA contacts. In Figure 1B, LN values for
the cys4-CRISPR RNA complex (PDB entry 4AL5) at dif-
ferent o values are mapped onto the protein surface. ROC
and PR curves based on non-ribosomal and the full dataset
are given in Supplementary Figure S6. Here, the AUC in-
creased 3.3 and 1.6% for the non-ribosomal and full sets,
respectively, after combining the LN feature w1th the con-
trol sequence features.

Contributions from solvent ASA

We found that neither predicted absolute ASA nor relative
ASA normalized by the ASA of the corresponding amino
acid in an extended tripeptide (Ala X-Ala) could noticeably
improve classifier performance in agreement with another
study (16). This arises, in part, from the fact that RNA can
make contact with an exposed amino acid side chain even
when the backbone is buried or conversely with an exposed
backbone with a buried side chain, as illustrated in Fig-
ure 1C. Thus, overall residue ASA is not necessarily the best
predictor of RNA-binding propensity. In particular, in the
case of non-specific interactions involving the protein back-
bone, overall residue ASA can be much smaller than that
of the residue as a whole. Using. our novel normalization
procedure, however, which splits the ASA into three com-
ponents (total, side chain and main chain), RNA-binding
and non-bmdmg residues could be distinguished, with an
increase in the AUC of 1.9 and 1.3% for the non-ribosomal
and full sets, respectively (Supplementary Figure S7). Here,
a neighbor list of length 11 was used to include information
about residues in a local surface patch. ‘

Physicochemical prosperities of neighboring residues and pre-
dicted secondary structure

We found that both physicochemical features encoded from
a neighboring residue list'in an ascending distance order
(Supplementary Figure S8), or predicted secondary struc-

ture for a sequential residue fragment (Supplementary Fig-
ure 89) could modestly increase the performanceﬂof the neu-
ral network. For the physicochemical feature; a neighbor list
of length 21-was used. For the predicted secondary struc-
ture, a shdmg wmdow of size Swasused.

Putting it all together

After combining the above-mentioned sequence (including

the terms used in the control method) and structural fea-
tures, we compared the performance of our model with that
using only the sequence-based control method. The number
of columns for each kind of feature and the size of frag-

ment window used (either a sequential window or a spa-

tial window). are summarized in Table 1. A performance
summary of individual features and all features combined
together can be found in Table 2. Finally for each coding
fragment window, a 668-column feature vector was used.
We found that our novel feature-coding scheme-could sig-
nificantly increase the prediction:performance not only in
terms of the. AUC but also in terms of PR measurements
for both datasets, as shown in Figure 2 (non-ribosomal and

full ROC and PR curves for binary. prediction) and Sup-

plementary Figures S10 and S11 (di-nucleotide curves for
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Figure 2. Performance of all features. (A) Non-ribosomal dataset. Blue
curves indicate the performance of the control method (sequence features
used in the SRCPred method (12)), and red curves show the performance
when all features are used. (B) Full dataset. By varying the output cutoff of
the classifier, the TP rate against the FP rate is plotted on the ROC curve
for cach, cutofl value. Similarly, the precision rate against the TP rate is
plotted on the PR curve for each cutoff value.

non-ribosomal ‘and' full sets). Importantly, contributions
from different features were approximately additive, result-
inginan increase in-the AUC of 6.8 and 4.1% for the non-
ribosomal and full sets, respectively, which indicates a low
redundancy. between features. The new features that con-
tributed the most information were the LN and the normal-
ized ASA. When using the EC feature instead. of the PSSM
feature, the performance decreased-only slightly (data not
shown). This is a non-trivial result as the PSSM feature re-
quires 20 columns for each residue while the EC feature re-
quires just one. Therefore the novel features described here
are both information-rich and relatively compact. From, the
PR plots, we can see that, when training with the non-
ribosomal dataset, the highest precision approached only
0.7 when sensitivity was extreiely low. In contrast, the sen-
stt1v1ty values estimated from the complete’ dataset under a
precision rate of 0.7 approached 1 (P-value of t-test < le-
12). In contrast, with-the full dataset, which contains twice
the number of RNA binding sites, precision approached 1.0
at low sensitivity. Therefore, the neural network could learn
from ribosomal proteins in the full dataset and achieve a
better prediction-even on. non-ribosomal complexes. This

implies-that; although ribosomal and non-ribosomal pro-

teins may be different in their RNA bindirig modes, they ap-
parentlyshare common features aswell. We only considered
RNA-binding residues under a 3.5 A distance cutoff within
the same BU as ‘true’; consequently, non-binding residues
made up 89.4% of our RB205 dataset. This ratio was ~85%
when using a 5 A distance cutoff for RNA-binding residues.
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In the best performing model (average sensitivity and speci-
ficity 0.775, sensitivity 0.763 and specificity 0.787) on the
RB205 dataset, non-binding residues were predicted to be
72.9%.

- We next took a closer look at the reasons for FP and
FN predictions. We found that FP could be evolutionar-
ily conserved, exposed or charged, which could indicate a
role in mediating protein—protein interactions rather than
protein—RNA ‘interactions. Though use of the LN feature
suppressed such FP to a great extent, some residues local-
ized at protein—protein interfaces that were chemically simi-
lar to RNA-binding residues were incorrectly positively pre-
dicted. With regard to the FN predictions, to a certain de-
gree these were due to the ASA term. That is, relatively
buried RNA-binding residues are harder to correctly iden-
tify as part of a binding site. Note that the relative im-
portance among RNA-binding residues is also a factor.
Some residues are crucial while others are more auxiliary.
Residues that surround other residues in strong RNA con-
tact are classified as RNA binding according to the distance
criterion but might play a more important role in support-
ing the structure of the binding site than in mediating RNA
contact directly. Our predictor overlooked some of these
supporting residues and aaRNA is expected to perform
better at identifying core binding residues than aux1ha1y
residues. Finally, some exposed and protruding residues in
RNA contact were predicted to be non-binding due their lo-
cal environment; after averaging over neighboring residues
the ASA of the protruding residue can be reduced.

Robustness. to structural noise

Since the performance of structure-based classifiers could
be over-estimated when input structures are in their RNA-
bound conformations, we tested the robustness of our
model by using structures built by homology modeling us-
ing template structures selected within various sequence
identity thresholds. The distribution of templates under five
sequence identity thresholds is shown in Supplementary
Figure S12. The number of protein chains that was modeled
under different identity thresholds and their averaged root-
mean-square deviation from native structures are listed in
Supplementary Table S3. Note that even when using tem-
plates from the top group, where sequence identity can be
as high as 100%, predicted structures were not identical to
the template because we carried out energy minimization
on the models without RNA. Also, depending on the tem-
plate, the number of predicted residues differed in general,
especially when low sequence identity templates were used.
Therefore, under different sequence identity cutoffs, we re-
built the PDB dataset to include only residues that could be
reproduced in the model. Performance evaluated on the ho-
mology models built using the five different sequence iden-
tity thresholds are listed.in Figure 3. We can see that, even
at a lowest sequence identity threshold (<30%), incorpo-
1at1ng structural features was significantly better than us-
ing sequence features alone. Moreover, when high quality
but non-identical templates were used (identity <100%),
the AUC was nearly identical to that of the bound struc-
ture. These results imply that the aaRNA method is robust
against typical levels of input noise.
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Table 1. Summary of feature columns and fragment sizes

Feature Name No. of columns

No. of residues per fragment window

21-bit Sparse Coding 21 per residue

GAC : 20 per fragment
PSSM 20 per residue
EC 1 per residue
LN 5 per residue

Normalized ASAs
Physicochemical (PC) property
Predicted secondary structure

3 per residue
10 per fragment
8 per residue

11 sequential residues (a sliding window of size 5)
whole protein sequence

11 sequential residues

11 sequential residues

11 sequential residues

11 spatial residues (a neighboring window of size 10)
21 spatial residues (a neighboring window of size 20)
11 sequential residues

Since the GAC is calculated from a'single protein sequence, for each coding fragment, & GAC vector will be appended. For the PC feature, for 4 coding

fragment a list of 21 neighboring remdues will return 10 values

Table 2. Performance summary of indi\iidual features and 4l features combined together .

Feature name ‘Non-ribosomal dataset

* ‘Complete dataset

Sequence-based control (SBC)

SBC+ EC

SBC + LN

SBC + Normalized ASAs

SBC + Physicochemical (PC) property
SBC + Predicted secondarystructure
All together

0.728 +/-0.001
0.741 +/—0.001
0.761 +/—0.001
0.7468 +/~0.0004
0.7424 +/—-0.0007
0.7374 +/—0.0004

10.796 +/—0.001

0.812 +/~0.001
0.8196 +/~0.0003
0.828 +/—0.001

0.8253 +/—0.0007
0.820 +/-0.001

0.8185 +/-0.0008
0.8526 +/~0.0008

Performance is measured in terms of AUC (mean = Std) evaluated from five repetitions of five-fold cross-validation. SBC method indicates the sequence

features that adapted from the SRCPred method (12)

Benchmark testing on RB106, RB144, RB198, RB44 and
RB67

According to a recent study using a 5 A cutoff to define
RNA-binding (16), the AUC of different classifiers using
PSSM features and their derivatives varied from 0.77 to
0.81. The best-performing method was the predictor RN-
ABindR 2.0. In the aforementioned study, a balanced train-
ing dataset of positive and undersampled negative residues
was prepared, while in our tests the datasets represented the
actual distributions observed in the PDB, in which there are
far more non RNA-binding residues. Nevertheless, when
trained and tested on three standard benchmark- datasets
(RB106, RB144 and RB198) and evaluated in the same
way (residue-based and protein-based evaluation on struc-
ture data), our additional features exhibited considerable
improvement over sequence-based features alone, and ex-
ceed the previously reported AUC limit of 0.81 by 2-3%,
as demonstrated in Figure 4. In Table 3 the results of these
three benchmark tests are summarized. Performance dif-
ferences were assessed both at the residue level (Bench-
mark [r]) and at the protein level (Benchmark [p]). The
AUC distribution of the protein-chain based evaluation is
shown in Supplementary Figure S13. In both residue-level
and protein-level assessments the improvement in perfor-
mance of aaRNA over the alternative methods was highly
significant (P-values <107 and <1079, respectively). To
be complete the number of RNA-binding and non-binding
residues in the three benchmark datasets collected under a
3.5 or 5 A distance cutoff are listed in the Supplementary
Table S2. The performance of our model built from three:
benchmark datasets using a <3.5 A cutoff as the RNA-
binding definition can be found in Supplementary Figure
S14. When a smaller cutoff was used, performances of mod-
els on three benchmarks all increased. '

In prediction tests, the same RNA binding residue dis-
tance cutoff of 3.5 A was used. Prediction comparison be-
tween aaRNA and BindN+ methods based on merged and
cleaned RNABindR 2.0 datasets is shown in Supplemen-
tary Figure S15. We can see that the aaRNA method out-
performed the BindN+ method in terms of ‘AUC. In addi-
tion, when applying our model to the RB44 dataset, which

. has no structures in common with our training dataset, our

model achieved better performance than the sequence and
structure-based methods tested in (16,30) in most cases.
Using a residue-based evaluation; the AUC, MCC and F-

score calculated from our predictions were 0.8445, 0.483

and 0.593 (see Table 4), respectively, in contrast to the au-
thor’s Meta-predictor (30), which achieved an AUC of 0.835
and an MCC of 0.460. This Meta-predictor was built from
three best-performing predictors out of seven.sequence-
based methods evaluated in (30), and performed better than
any, of its component methods. Using a protein-based eval-
uation, aaRNA achieved better performance than other se-
quence or structure-based predictors in terms of MCC ex-
cept the DRNA method, the MCC of which is close to and
slightly h1gher than the aaRNA method. We notlced that on
a protein basis, the structure-based method DRNA was ac-
curate when predicting proteins structurally similar to those
in the training set. When query structures were uncharac-
terized by the predictor before (e.g. the RB67 benchmark),

the predlctlon error'was more substantial, as shown in Ta-
ble 5. In spite of the fact that the mean MCC of the DRNA
on the RB44 dataset is still high after making average over
all protein chains, the prediction accuracy is limited when
new protein structures are introduced. A detailed compar-
ison of Accuracy, Specificity [+] (Precision), Sensitivity, F-
measure, MCC and AUC (if available from the predictors)
on the RB44 berichmark can be found-in Table 4. A com-
parison of ROC and PR curves 1s given in Supplementary
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Table 3. Summary of benchmark (RB106, RB144 and RB198) results in terms of AUC (mean == Std)

Benchmark [r] RNABindR 2.0 PSSM Sequence-based control aaRNA

RB106 0.81 0.776 = 0.001 * 0.803 & 0.001 * 0.8251 == 0.0009
RB144 0.81 0.782 4 0.001 * 0.801 = 0.002 * 0.830 = 0.001
RB198 0.80 0.7696 4 0.0007 * 0.7974 + 0.0007 * 0.8343 £ 0.0004
Benchmark {p} RNABindR 2.0 PSSM ‘ Sequence-based control aaRNA

RB106 0.74 0,721 £ 0.119 ** 0.735 £ 0.109 ** . 0.765 + 0.116
RB144 0.74 0.723 £ 0.118 ** © 0733 £ 0111 ** 0.778 4 0.105
RB198 0.73 0.716 = 0.114 ** . 0.738 4 0.106 ** 0.784 £ 0.103

" “The corresponding ROC plots and AUC distribution patterns are given in Figure 4 (residuc-based evaluation) and Supplementary Figure $13 (protein-
‘based evaluation), respectively. RNABindR 2.0 is the best-performing sequence-based method from various approaches evaluated in the work (16). Its
reported performance is listed. Sequence-based control method represents three sequence features of the aaRNA, which are adapted from the work SR-
CPred (12). In Benchmark [r], AUCs were measured on a protein-residue basis, and reported AUCs are the average results of five repetitions of five-fold
cross-validation: The average AUC of the aaRNA method is significantly greater than that of the PSSM or sequence-based control method using a t-test.
In Benchmark [p}, AUCs were individually calculated for each protein chain, and a paired Wilcoxon test was applied to check whether the distribution of
the aaRNA AUC is shifted to the right relative to that of the PSSM and scquence-bdsed control. The 51gn1ﬁcance of differences between the alternative
methods and aaRNA is indicated by * for P-values < 107 and ** for P-values < 10710
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Figure 3. Perfotmdnce evaluation using homology models. The left panel
(A) shows the performance on the non-ribosomal set and the right panel
(B) shows the performance on the full set. The figure shows the perfor-
mance for-the top, <100%;.<90%, <50% and <30% homologs in sub-
figures. Since the number of residues generally decreases as the threshold ° ‘
is lowered, pcrformance is only comparable within a given set. The per- ) S A EEER: omﬁ;ssm&%w 05 0107 03 g';\(;e:’g%; o5 E5To
formance using bourid structures, homology models and sequence-based ' :

control are indicated by ‘PDB’, ‘Homo’ and ‘Seq-CTRL.

" True Positive Rate (Sensttivity)
°

g oo o

Figure 4. Performance of our feature-coding scheme on three benchmark
datasets under a 5 A distance cutoff for RNA- -binding residues. The three
benchmarks shown are: RB106 (A), RB144,(B) and RB198 (C). The label

. . ) . . ‘PSSM” indicates the AUC achieved with PSSM features only. The label
Flgure S16A. Since the number of residues in the raw RB44 ‘Seq-CTRL indicates the result with the sequence-based control and the

dataset and the homology model datasets are different, pre- label “4aaRNA’ for all of our proposed features.
diction results for the two methods are not directly compa-
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Figure 5. Comparison of prediction results of aaRNA,V BindN+ and SR-
CPred. The figure shows the Csy4-crRNA complex (PDB entry 4AL5)
(A) actual contact pattern of the complex Red colored residues are in

RNA contact undera 3.5 A cutofT (B) mapping of 2aRNA bmary bmdmg ) '

propcnsﬁws onto residues, with high (low) colored red (blue). (C) residues

inred are posmve]y pr edlcted by the auRNA under a stringency of 85% ex-

pected specificity. (D-E) show the raw cmd the thrcshold-cahbrated (85%
expected specificity), respectively, for BindN+ colored in the same way. (F)
prediction results for SRCPred for any di-nucleotide under a 0.05 expected
precision.

, rable. However, as Supplementary Figure S16B shows, use
of homology models does not impait aaRNA AUC signifi-
cantly, suggesting that the performance reported here is ro-
bust against such small changes in the input data. When
testing different predictors on the most up-to-date RB67
benchmark, aaRNA performed better than all other pre-
dictors either -on a residue- or a protein-basis. Structural
features introduced in aaRNA shed some light on the hall-
marks of RNA-binding residues common tovarious RNA-
binding proteins, which resulted in higher prediction power
when exploring novel proteins. Results for the RB67 bench-
mark are listed in Table 5. The corresponding AUC and PR
curves can be found in Supplementary Figure S17.

In addition to ‘the benchmark - tests presented above,

‘we provide an illustrative example in:Figure 5, the Csy4--

crRNA complex. In general, sequence-based predictors
were more likely to predict charged, polar or aromatic
residues on the surface as positive binding sites regardless
of their local structural environment. In contrast, due to
spatial features introduced here,"aaRNA"gave more prior-
ity to such residues when localized in characteristic RNA
binding sites, as learned from the training set. Hence, the
aaRNA method could effectively decrease the number of
FP predictions, as compared-to Figure 5C, E, and F. Tm-
portantly, these structural features could facilitate identi-
fication of RNA binding sites that are ‘invisible from the
point of view of the linear amino acid sequence. Asa result,
more residues in actual RNA contact could be predicted
by aaRNA, and the resultmg binding patch appeared more
native-like, as illustrated in Fxgure 5Band C.

aaRNA server

The aaRNA server was built by using the model trained
from the complete dataset (RB205). The aaRNA server ac-
cepts protein sequences or structures in FASTA and PDB

~ formats, respectlvely Structures can be input as PDB iden-
tifiers or files in PDB format. When only sequence infor- -

mation is provided, a homology model will be built in ad-
vance of the prediction. When a structure includes multi-
ple chains that function together as a‘complex, the com-
plex can'be treated as a single entity or split into individ-
ual chains and the features will be computed accordingly.

~ The output includes binary (binding/non-binding) and di-

nucleotide propensities as a list of scores(between 0 and 1)
indexed by the residue mimber of the target protein. A plot
is also displayed showing the binary and di-nucleotide bind-
ing propensities. Users can refer to the di-nucleotide specific
binding probabilities in addition to the binary scores when
target RNA is enriched with a specific di-nucleotide com-
position or certain types of di-nucleotides are of interest. To
facilitate analysis, surface maps of EC, LN under local and
global scales, and binary binding propensities are dlsplayed

_side by side in JSmol Applets on ‘the result page. A high-

quality-surface map can be locally reproduced with Pymol
after downloading a tar-compressed file for this purpose.
Depending on the query protein, the time used for predic-
tion can vary significantly. Once a job is finished, users will
be notified by email with a link containing the result page.

DISCUSSION
In this study, we have looked at protein~=RNA interactions

from the point of view of the protein and attempted to pre- .

dict where and in what way an RNA molecule would bind.
If we consider the most general case, as represented by the
‘full’ dataset, Figure 2B indicates an AUC-based accuracy
of 85%. This value can-be interpreted as the probability
that a randomly chosen ‘true’ RNA-binding residue will
be ranked above a randomly chosen ‘false’ RNA-binding

residue. If we examine the corresponding PR curve, we can -

see that there is a roughly linear tradeoff between precision
(defined ‘as the faction of predicted residues that are true
RNA binders) and recall (the fraction of true RNA binders

~ predicted). This, in turn, indicates that we can associate a
residue-level confidence with our.predictions, a result that

is useful for downstream analysis. In terms of such analy-
sis, we currently envision two concrete outcomes from thlS
work, one global and one local.

A global approach is to use- aaRNA to 1dent1fy novel

'RNA- -binding proteins on a genomlc scale. This would po-

tentially be beneficial if used in tandem with other high-
throughput analyses such as microarray or RNAseg-based
gene expression data. Since many such datasets have already
been made public for cell lines of interest to. specific research
domams such as immunology (https:/fwww.i immgen. org)
or cancer (http INifesciencedb,jp/cged/), data mining for
RNA-binding proteins could facilitate further discrimina-
tion between transcnptxondl and post-transcr1pt10nal regu-

’latlon of gene expression. Currently, aaRNA has only been

applied to bona fide RNA-binding proteins, and no attempt
has been made to distinguish binders from non-binders.
However, such a binary classification would appear to be
a natural extensxon that is not blased toward obvious RNA
binding motifs.

A more local extension of the current wo1k would be
to utilize predicted RNA binding propensities in protein—

‘
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Table 4. Summary of the independent benchmark RB44 results in terms of MCC -

Specificity [+] Sensitivity e .
Evaluation Method Accuracy (Precision) (Recall) F-measure. - MEC AUC
aaRNA 0.823 0.551 0.643 . 0.593 . 0.483 0.845
BindN+ 0.835 0.614 0.468 0.531 0.439 T 0819 -
Residue- RNADbIndR 2.0  0.805 0.514 0.532 0.523 0.401 0.801
based Seq-CTRL 0.804 0.510 0.600 0.552 0.430 0.807
KYG 0.771 0.449 0.638 0.527 s 0,392 0.808
DRNA 0.788 0.480 0.660- - ©0.556 v 0.430 N/A-
OPRA 0.746 - 0.403 0.551 - 0465 C2031L N/A
. aaRNA 0.793 0.477 0.625 0.525 o 0395 0.819
BindN+ 0.755 0.429 0.699 0.520 : 0.380 0.791 *
Protein- ‘RNAbindR 2.0 0.737 0.415 0.593 0.474 : 0.326 0.761 **
based Seq-CTRL 0.763 0.459 0.547 0.473 0.343 0.782 **+*
KYG 0.727 0.397 0.672 0.486 0.334 0.775 ##**
DRNA 0.776 0.482 0.618 0.521 0.400 N/A
OPRA 0727 0.346 0.467 0.362" 0.211 N/A

The same RNA-binding residue distance cutoff of 3.5 A was used. Two evaluation methods (residuc-based and protein-based) are used to estimate the
performance of different predictors. Because the output of DRNA and OPRA methods provides no score describing residues’ RNA-binding propensities,
an'ROC analysis cannot, be performed: to estimate their AUCs: Except the DRNA method evaluated on a protein basis, which got a slightly higher
MCC, aaRNA achieved better MCCs and. AUCs than other sequence or structure-based methods, both in residue-based and protein-based performance
evaluation. Paired Wilcoxon tests on protein-averaged AUCs of aaRNA and other methods mdncatcd significant differences (P* < 3e-4, P** < 8e-7, P*#**
< 5¢-8 and P*H** < 2¢-4).

Table S. Summary of the independent benchmark RB67 results in terms of MCC

Specificity [+] Sensitivity
Evaluation Method 1Accuracy (Precision) (Recall) F-measure - MCC AUC
aaRNA 0.882 0.437 0.494 0.464 0.399 0.842
W BindN+ .. 0.862 0.372 0.491 0.423 0.351 0.814
Residue- RNADbindR 2.0 0.867 0.376 - 0438 0.404 -0.331 0.798
based Seq-CTRL 0.886 0.443 0.401 . 0.421 0.358 0.811
) KYG 0.804 0.274 0.542 0.364 0.284 . 0.780
DRNA 0.842 0.298 0.392 0.339 0.254 - N/A
OPRA . 0.843 -0.301 0.403 0.345 0.261 N/A
-aaRNA 0.844 0.428 0.449 0.398 10.323 0.814
) BindN+ 0.828 0.377 0.463 0.397 - 0301 0.780 *
Protein- RNAbindR 2.0 0.750 0.296 0.616 0.372 0.272 0.764 **
based" "~ Seq-CTRL 0.797 0.355 0.488 0.372 0.286 0.787 ***
. KYG 0.769 0.298 0.505 0.349 0.240 0.716 ¥**+*
DRNA 0.795 0.319 0.397 0.331 0.229 N/A
OPRA 0797 0.242 0.259 0.203 0.116 N/A

Different predictors were compared in the same way as the RB44 benchmark: When tested on this up-to-date benchmark, the aaRNA got a superior

performance-than all others. Paired Wilcoxon tests on protein- averagcd AUCs of 2aRNA and other methods indicated 51gn1ﬁcant differences (P* < 2e-4,
CPEE < De-5, PrE¥ < Te-5 and PH*¥* < 4e-9).

RNA docking simulations. Current docking methods are
‘not optimized for protein-RNA interactions and there is
no standard statistics-based potential for such studies. Ob-
vious contributions to the binding energy, such as electro-
statics, surface burial, etc., can be computed, but there is
‘ot currently an estabhshed framework for combining them
into an overall score. The importance of charged, polar
and aromatic protein residues to RNA-binding has been
reportcd previously (36,37);. however, considering the fact
that the number of possible Van der Waals contacts be-
tween protein and target RNA (~92% of total interactions)

exceeds by far the number of hydrogen bond contacts, an -

equally important factor to protein-RNA interaction could
“be shape complementarity at the binding interface. Since
RNA is a highly flexible molecule, it makes practical sense
" to map RNA-binding propensities onto relatively rigid pro-
tein molecular surfaces. RNA-folding methods in combina-
‘tion with flexible docking could then be used to generate

)

models for downstream experimental validation. This type
of approach would be particularly attractive for transient
protein~-RNA interactions, which are likely to occur in situ-
ations such as regulation of mRNA decay, host-pathogen
interactions  and. processing. of noncoding RNAs. Along
these lines, one way of improving prediction accuracy will
be to take RNA foldinginto consideration. While this will
by nomeans be easy, aaRNA. provides a foundation for such
future endeavors.

SUPPLEMENTARY DATA v
Supplementary Data are available at NAR Online.
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ARTICLE ABSTRACT

Article history: Because vaccination is an effective means to protect humans from influenza viruses, extensive efforts
Received 31 January 2014 have been made to develop not only new:vaccines, but also for new adjuvants to enhance the effi-
Received in revised form 27 May 2014 cacy of existing inactivated vaccines. Here, we examined-the-adjuvanticity of synthetic hemozoin, a
Accepted 22 July 2014

synthetic version of the malarial by-product hemozoin; on' the vaccine efficacy of inactivated whole
influenza viruses in a mouse model. We found that mice immunized twice with hemozoin-adjuvanted
inactivated AfCalifornia/04/2009 (H1N1pdm09) or A/Vietnam/1203/2004 (H5N1) virus elicited higher

Available online xxx

ﬁm‘gg:‘vims virus-specific antibody responses than did mice immunized with non~adjuvahted counterparts. Further-
Vaccine more, mice immunized with hemozoin-adjuvanted inactivated viruses were better protected from lethal
Hemozoin challenge with influenza viruses than were mice immunized with non-adjuvanted inactivated vaccines.
Adjuvant Our results show that hemozoin improves the immunogenicity of inactivated influenza viruses, and is
Antibody thus a promising adjuvant for inactivated whole virion influenza vaccines.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction: ' ‘

Despite the worldwide surveillance network of influenza
viruses; the,incidence.and prevalence of influenza are hard-to pre-
dict, as exemplified by the influenza (H1N1)2009 pandemic{1,2}].
Vaccination ‘stands-on-the frontlines of influenza infection con-
trol: both live attenuated and inactivated ‘influenza vaccines are
currently available[3, 4] The live attenuated vaccines are more effi-
cient than inactivated vaccines at inducing the mucosal immune
responses that play an important role in combating influenza
virus infection [5,6]. However, because of the safety concerns such

* Corresponding author at: Division of Virology, Department of Microbiology and
Immunology, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai,
Minato-ku, Tokyo, Japan. Tel.: +81 3 5449 5504; fax: +81 3 5449 5408.

E-mail addresses: kawaoka@ims.u-tokyo.ac.jp, kawaokay@svm.vetmed.wisc.edu
(Y. Kawaoka).

http://dx.doi.org/10.1016/j.vaccine.2014.07.079
0264-410X/© 2014 Elsevier Ltd. All rights reserved.

as the emergence of revertant and/or reassortant viruses, these
live. vaccines are licensed in a limited number of countries. By
contrast, inactivated vaccines- have few safety concerns and are
globally available. While they efficiently induce humoral immune
responses, a high dose (usually 15 p.g) of the inactivated vaccine
is required to provide adequate immunity [7,8]. Therefore, there is
room for improvement in the current influenza vaccines.

Vaccine is generally assessed.on the basis of immunogenicity,
safety, and costs [9]. To enhance the immunogenicity of the inactiv-
ated vaccines, adjuvants, such as aluminum compounds and salts,
have been considered [10]. Adjuvants are defined as immune mod-
ulators that are added to inactivated vaccines to boost the immune
responses, enable the use of lower amounts of antigens, and thus
expand the vaccine supply [10,11]. Although most of the inactivated
influenza vaccines currently used are injected via the intramus-
cular or subcutaneous routes, previous studies have shown that
intranasal vaccinations induce antibodies more effectively than do
intramuscular or subcutaneous vaccinations [ 12-14]. However, the
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alum compounds that are generally used as adjuvants for intra-
muscular administration do not enhance the efficacy of intranasal
vaccines; therefore, to improve the efficacy of intranasal vaccines,
novel intranasal adjuvants are required [15].

Malaria parasites digest hemoglobin in red blood cells result-
ing in the production of potentially toxic heme metabolites [16].
To protect themselves from oxidative damage, the parasites poly-
merize toxic heme enzymatically into a safer insoluble substance,
hemozoin [17]. Recently, hemozoin and a chemically identical
synthetic version of hemozoin (called B-hematin) have been inves-
tigated for their potency as novel adjuvants, and the molecular
pathway underlying their immunological function has also been
studied. Such studies have demonstrated that purified hemozoin is
a non-DNA ligand for Toll-like receptor 9 (TLR9).that.may activate
innate immune cells via TLR9 [18-20]. This latter point has been a
subject of debate, however, because the adjuvant effect of synthetic
hemozoin is dependent on MyD88 and not TLR9 [21]. Recently, we
reported that hemozoin enhances the protective efficacy of a subcu-
taneously administered influenza HA split vaccme inaferret model
[22]

We speculated that synthetrc hemozoin (hereafter referred to
only as hemozoin) could serve as a novel intranasal adjuvant
for the inactivated influenza vaccine. Accordingly, here we eval-
uated the adjuvanticity of hemozoin on the vaccine efficacy of
intranasally administered inactivated whole virion influenza vac-
cines in a murine lethal infection model. The results indicate that
hemozoin is a promising adjuvant for inactivated whole virion
influenza vaccines. :

2. Materials and methods
2.1. Cells and viruses-

Human embryomc krdney HEI<293T cells were maintained in
Dulbecco’s modified Eagle medium (Lonza Basel, Sw1tzerland) sup-
plemented with 10% fetal. calf serum (Invitrogen, Carlsbad, CA).
Madin- Darby canine kidney (MDCI()‘cells were maintained in min-
imum essential medium (MEM) (Invitrogen) supplemented:-with
5% newborn calf serum (NCS)(Sigma, St. Louis, MO). All cells were
maintained in a humidified mcubator at37°Ci in 5%, COZ

A/California/04/2009 (HIN1;  Ca04), which is an early isolate of
influenza (H1N1) 2009pandemicviruses, and mouse-adapted Ca04
(MACa04) [23] viruses were-propagated-in MDCK cells as previ-
ously described [24]. A/Vietnam/1203/2004 (H5N1; VN1203)virus,
arepresentative strain of highly pathogenic avian influenza viruses,
was grown in MDCK cells and in 10-day-old embryonated chicken
eggs to use as challenge viruses and as vaccine and ELISA antigens,
respectively. All work involving live VN1203 virus was carried out
at the ABSL-3 laboratory of the Influenza Research Institute, UW-
Madison, followmg the protocol desrgned by lnstltutlonal Animal
Care and Use Committee (IACUC).

2.2. Inactivated influenza virus and adjuvant

To inactivate MDCK cell-propagated Ca04 virus and egg-
propagated VN1203 virus, formalin (final concentration, 0.1%) was
added to the viruses, which were then incubated at 4°C for 1 week.
The inactivated viruses were purified through a 10-50% sucrose
density gradient and resuspended in phosphate-buffered saline
(PBS) as described prevrously [25] Inactivation of Ca04 viruses
was confirmed by passaging them twrce mMDCK cells nd exam-
ining their cytopathrc effect; rnactlvatron of VN1203 viruses was
confirmed by passaging them twice ine bryonated chrcken eggs
followed by hemagglutmatlon assays.

‘3and6 post-challenge ‘three mice each were euth

Synthetic hemozoin, was purified from hemin chloride (>98%
pure, Fluka) by using the acid-catalyzed method described previ-
ously [21] and was re-suspended in endotoxin-free water with no
detectable levels of endotoxm The synthetic hemozoin concentra—
tion was calculated in mM a mg of hemozoin i in 1ml of water was
equal to 1 mM). :

2.3. Immunization and protection studies

For the immunization and protection studies with Ca04 virus,
six-week-old female BALB/c mice (n=13 per group) were anes-

- thetized with isoflurane and intranasally administered with 50 .l

of PBS, 9 mM hemozoin only, inactivated Ca04 only [5 x 10° plaque-.

'fornung unit (PFU), ‘which corresponds to 0.1 g when the total
'amount of viral protern was measured by usrng a BCA protem

assay (Thermo. Scientific)], or inactivated Ca04 a uVanted with
9 mM hemozoin, twice with'a 2-weekinterval between the 1mmun—
izations. Three weeks after the final’ admlmstratlon three ‘mice

fromeach group were euthanized for collectron of bronchoalveolar

‘lavage fluid (BALF) and nasal washes. The remammg mrce (n 10
‘per group) were mtranasally challenged with 10-fold 50% mouse

lethal doses’ (MLDSO) of MACaO4 'virus. On days 3 and 6 post-
challenge, ‘three mice each were euthamzed and their lungs were
collected homogemzed with MEM contammg 0. 3% BSA, and exam-
ined for virus titers by usrng plaque assays ‘in MDCK cells The body
welght and survrval of the remalmng challenged mlce {(n=4 per

For VN1 203 vrrus four—week old female BALB/c mice (n 16 per
group) were immunized as descrlbed above. Two weeks after the
last immunization, five mice from each group were euthamzed for
collection of BALF and nasal washes The remamlng mrce (n =11 per
group) were challenged with 100 MLDSO of VNlZO 'vrrus On days
‘ and their
lungs were collected homogemzed wrth MEM cont ng0. 3%. BSA,
and examined for virus titers by using plaque assays ‘in MDCK cells.
The body werght and survival of the remaining challenged mice
(n=5 per group) were momtored dally for 14 days.

24. Detection of virus~speciﬁc antibodies

Virus- specrﬁc armbodres in nasal washes, BALF, and serum were

k detected by usingan ELISA as prevrously described [25- 27] Briefly,

96-well ELISA plate wells were coated wrth approxrmately 03 pg
(in 50 wl).of purlﬁed Ca04 or VN1203 virus treated with disruption
buffer (0.5 M Tris- HCl [pH. 8. 0], 0.6 M KCl,:and 0. 5% Trlton X-100)
or sarkosyl, respectwely After incubation of the virus-coated plates
with the test samples, virus-specific.IgA. and lgG antlbodres inthe
samples were detected by using anti-mouse IgA and IgG goat anti-
bodies conjugated to horseradish peroxidase (Kirkegaard & Perry
Laboratory Inc., Gaithersburg, MD, Rockland) respectlvely

2.5. Hemagglutination inhibition assay (HI assay )

~ To detect HI antibodies against Ca04 and VN1203 an HI assay
was performed as descnbed prevrously [28 29]. Briefly, sefum sam-
ples were treated with receptor-destroying enzyme (RDE; Denka
Serken Co.; Ltd.) by incubating at 37°C for 16— 18 h followed by

,mactrvatron at 56°C for 30 min. One volume of turkey or. horse red

blood cells (RBCs) was then added to 20 volumes )
the sera were 1ncubated for 1h on ice with mtermrt ntmrxmg
The samples were then centrrfuged at 900 x g for 5 mi ,‘and the
supernatants were transferred tonew tubes foruse in ‘the Hl assay.
Serially diluted sera (2 fold dllutlons) were mrxed w1th 4 HA units
of virus antigen and’ incubated with 0. 5% turkey RBCs or 1% horse
RBCs to determme the extent of hemagg]utmauon mhlbrtlon
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'2.6. Statistical analysis

~“Statistically significant differences in the virus-specific titers
(P<0:.05 and P<0.01) and the survival rates of the challenged mice
(P<0.05) were assessed by use of a one-way ANOVA followed by a
Dunnett’s test and Log-rank statistical analysis, respectively.

3. Results

3.1. Hemozoin enhances influenza virus-specific antibody
_responses.in mice

To examine the effect of hemozoin on antibody responses
elicited by immunization with mactlvated influenza viruses, we
"mtlanasally admlmstered BALB/c mice with hemozoin-adjuvanted
inactivated virus (Ca04 or. VN1203 virus, 5 x 108 plaque-forming
" units (PFU), the total-amount. of viral protein was 0.1 pg) twice
with a 2- week 1nterval between the immunizations. At three or
two weeks. after the, ﬁnal admmlstranon we exammed the anti-
‘ body responses to the admmlstered Ca04 or VN 1203 virus by using

an ELISA to measure the amount of [gG in the serum and IgA in the
BALF and nasal washes (Fxg 1). Neither IgG nor IgA against Ca04
or VN1203 virus was appremably detected in ~any samples from
the PBS- or hemozoin-administered mice. Under these condmons
‘ although one mouse immunized with non- -adjuvanted inactiv-
ated Ca04 (Fig. 1A upper panel) and. one mouse immunized with
non-adjuvanted inactivated VN1203 vxrus (Fig. 1B upper panel)
produced virus- specific IgG in the serum at a detectable level,
all of the mice immunized with hemozom adjuvanted inactiv-
ated CaO4 (n=3) or VN1203 (n=5) virus elicited significantly
) hlgher levels -of virus- spec1ﬁc 1gG in ‘the serum. We also exam-
,jlned the functmnal propertles of the elicited antibodies by using
hemagglutmatlon 1nh1b1non (HI) assays. For both the Ca04 and
VN1203.viruses, greater HI tlters were obtalned after vaccination
*w1th hemozom—adjuvanted inactivated viruses than with non-
adjuvanted 1nactlvated viruses (Flg 1A and B upper, right panel),
although the titer difference for Ca04 virus between the hemo-
zoin group and the control groups was not statistically significant
(Fig. 1A upper, right panel). Of note, although the addition of hemo-
zoin did not enhance IgA production in the nasal washes or BALF
of the inactivated Ca04 virus-immunized miice, some of the mice
“immunized with ‘the hemozoin-adjuvanted inactivated VN1203
virus did produce ‘high' levels of virus-specific IgA in their nasal
‘washes and BALF (Fig. 1B lower panels). Taken together, these
- results indicate that hemozoin enhanced the immunogenicity of
inactivated influenzaviruses; resulting in more efﬁc1ent productlon
of virus- spec1ﬁc antlbodles .

3.2. Hémozbin enhances the efficacy of inactivated influenza
vaccine against lethal challenge in mice

To further assess the adjuvanticity of hemozoin, mice immu-
_nized twice with hemozoin-adjuvanted inactivated Ca04 or
“VN1203 virus were. challenged with a lethal dose of MACa04

(10 MLDSO) [23] or VN1203 (100 MLDsg)- virus (Fig. 2). In-the
MACa04 challenge group, although all of the PBS-administered
‘mice and 75%, of the hemozoin- administered or inactivated Ca04
“virus- -immunized mice died, all of the mice immunized with
hemozoin- adjuvanted 1nact1vatecl Ca04 virus survived (Fig. 2A).
‘Intriguingly, no sngmﬁcant difference was found in Ca04 virus titers
in the lungs among the mouse groups tested (Table 1). These results
‘suggest that the adjuvanticity of hemozom was sufficient to protect
mice l’rom lethal challenge with MACa04 virus.

" For VN1203 virus, all PBS- and hemozoin-administered and
mactlvatecl VN1203 virts-immunized mice died following the

Table 1
Virus titers'in the lungs of immunized mice challenged with mouse-adapted Ca04
virus.?

Immunization Day after challenge Virus titer (mean logio
PFU +SD/g) in: lungs
3 8.1 £0.03
PBs 6 6.5+ 03
. 3 8.2+ 0.03
Hemozoin 6 6.6 + 0.06
Inactivated 3 8.1+02
Ca04 virus 6 57+ 1.0
Hemozoin-adjuvanted 3 8.0x02
inactivated Ca04 virus 6 6.2 +04

3 Mice were intranasally immunized twice with the indicated agents (50 pl per
mouse) and challenged with 10 MLDso of MACa04 virus (50 l per mouse) 3 weeks
after the final immunization. Lungs were collected from mice (n=3)ondays3 and 6
after challenge and examined:for virus titers by use of plaque assays in MDCK cells.

Table 2
Virus titers in the lungs of immunized mice challenged with VN1203 virus.?

Immunization Day after Virus titer (mean loge
challenge PFU +5D/g) in: lungs
3 6.3 +£0.2
PBS 6 63+ 02
; 3 6.6 £ 0.2
Hemozoin 6 63£02
Inactivated 3 6.7 £ 0.3
VN1203 virus 6 5.6 +04
Hemozoin-adjuvanted 3 6.4 + 0.3
inactivated VN1203 virus 6 6.0+ 0.4

# Mice were intranasally immunized twice with the indicated agents (50 pl per
mouse) and challenged with 100 MLDsp 0f VN1203 virus (50 pl per mouse) 4 weeks
after the final immunization. Lungs were collected from mice (n=3)on days 3 and 6
after challenge and examined for virus titers by use of plaque assays in MDCK cells.

lethal challenge (Fig. 2B). By contrast, 60% of the mice immunized
with hemozoin-adjuvanted inactivated 'VN1203 virus survived
although mice of all- groups experienced body weight loss
(Fig, 2B). In- accordance with the results of the MACa04 virus
challenge, the addition of hemozoin to inactivated VN1203 virus

‘immunization. did not affect the virus titers in the lungs of

VN1203 virus-challenged mice: (Table 2). These results suggest
that hemozoin enhanced the~vaccine efficacy of the inactiv-
ated influenza-viruses by modulating host responses, but not by
directly inhibiting virus replication. Overall, these results suggest

. that hemozoin is a promlsmg adjuvant for inactivated influenza

vaccines.

4. Discussion

Here, we examined the effect of an adjuvant candidate, hemo-
zoin, on the vaccine efficacy of inactivated whole virion influenza
vaccines against lethal challenge [in a mouse model. Signifi-
cantly better virus-specific antibody responses were induced by
hemozoin-adjuvanted inactivated virus than by inactivated viruses
(Fig. 1). We further demonstrated that the hemozoin-adjuvanted -
inactivated viruses protected mice from lethal challenges more

. efficiently than did their non-adjuvanted counterparts with no
" effect of virus titers in the lungs (Fig. 2, Tables 1 and 2).

These results indicate that hemozoin is a promising candidate
as an effective adjuvant for inactivated whole virion influenza
vaccines. ,

We observed significantly higher levels of IgA specific for
VN1203 virus in the BALF and nasal washes, and of serum IgG, in
mice immunized with hemozoin-adjuvanted inactivated VN1203
virus than in mice immunized with non-adjuvanted inactivated
VN1203 virus-immunized mice (Fig. 1B). These results suggest
that hemozoin enhanced the mucosal immune responses and
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Fig. 1. Virus-specific antibody responses in immunized mice. Virus-spécific antibodies were detected by means of ELISA and HI assays with purified Ca04 (A) or VN1203 (B)
virus as a viral antigen. igG antibody titers (upper, left panels) and HI titers (upper, right panels) in serum and IgA antibody titers in.the BALF (lower, left panels), and nasal
washes (lower, right panels) from mice‘intranasally mock-immunized with PBS or hemozoin orimmunized with non-adjuvanted or hemozoin-adjuvanted inactivated virus’
were measured. Values represent antibody titers in individual mice (A:n=3,B:n=5), Statlstlcally significant differences (* P<0.05,**; P<0.01) are indicated.

may potentially compensate for the well-recognized weakness of
inactivated vaccines [30,13,31]. By contrast, enhanced IgA pro-
duction by the hemozoin addition was not observed with the
Ca04 virus counterparts (Fig. 1A). This contradiction may reflect

a difference in immunogenicity between the Ca04 and VN1203 .

viruses. Further study is required to clarify the mechamsms by
which hemozoin promotes IgA responses after immunization with
inactivated vaccines. In addition, hemozoin-adjuvanted inactiv-
ated virus protected mice better than non-adjuvanted inactivated
viruses although virus titers inlungs were similar between animals
immunized with and without the adjuvant (Fig. 2, Tables 1 and 2).
This finding suggests that hemozoin enhanced the vaccine efficacy
of the inactivated influenza viruses by modulating host responses.
In the current study, we measured viral loads only in respiratory
organs, which are the primary sites of influenza virus replication
even for strains that cause systemic infection (e.g., VN1203 virus).

Afurther study to examine the inhibitory effect of hemozoin onsys-
temic spread of influenza viruses may explain the better protection
afforded by hemozoin-adjuvanted-vaccine,

Although hemozoin is a ligand for TLR9 [18-20], studies using
TLR9- or MyD88-deficient mice suggest that the potent-adjuvant
effect of synthetic hemozoin'is mediated not via TLR9; but through
MyD88 [21]. In addition, previous ‘studies have demonstrated
that hemozoin stimulates innateinflammatory responses,inducing
neutrophil recruitment via MyD88 [21,32]. Thus, one of the pos-
sible mechanisms underlying the hemozoin-mediated enhanced
efficacy of inactivated influenza vaccine may be that hemozoin
induces the balanced Th1/Th2 responses in a MyD88-dependent
manner, leading to the improved immunogenicity of the inactiv-
ated influenza viruses and to-the better protection against lethal
challenge with-influenza viruses. Of note, one of four mice admin-
istered with only hemozoin survived after the lethal challenge with
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Fig. 2. Body weight changes and survival of mice challenged with Jethal doses of viruses. Mice were mock-immunized with PBS or hemozoin, or immunized with non-
adjuvanted or hemozoin-adjuvanted inactivated virus twice with a 2-week interval in between the immunizations. Three or four weeks after the final immunization, mice
were intranasally challenged with 10 MLDso of MACa04 virus (A: n=4) or 100 MLDsg of VN1203 virus (B: n=>5), respectively. Body weight (left panels) and survival (right
‘panels) were monitored for 14 days after challenge. Values are expressed as mean changes in body weight : SD (left panels). Statistically significant differences in the survival

rate of immunized mice (*: P<0.05) are indicated (A: right panel).

MACa04 virus (Fig. 2A), suggesting that hemozoin itself might have
protective effects against influenza virus infection. Additional study
is required to clarify the inhibitory effect of hemozoin on influenza
virus infection.

In conclusion, here, we demonstrated the potential of hemo~
zoin as a novel whole virion influenza vaccine adjuvant. Because
the mechanism by which hemozoin enhances immunogenicity
remains unclear, we should continue to evaluate the adjuvantic-
ity of hemozoin in the context of influenza vaccination. In addition,
to establish the efficacy of hemozoin as an adjuvant, further studies
are needed including studies in an additional animal model such as
ferrets.
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Label-free Raman imaging of the macrophage
response to the malaria pigment hemozoin+
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Hemozoin, the ‘malaria pigment’, is engulfed by phagocytic cells, such as macrophages, during malaria
infection. This biocrystalline substance is difficult to degrade and often accumulates in phagocytes. The
macrophage response to hemozoin relates to the severity of the disease and the potential for malaria-
related disease complications. In this study we have used Raman spectroscopy as a label-free method to
investigate the biochemical changes occurring in macrophages during the first few hours of hemozoin
uptake. We found a number of distinct spectral groups, spectrally or spatially rélated to the presence of
the hemozoin inside the cell. Intracellular hemozoin was spectrally identical to extracellular hemozoin,
regardless of the location in the cell. A small proportion of hemozoin was found to be associated with
lipid-based components, consistent with the uptake of hemozoin into vesicles such as phagosomes and
lysosomes. The spatial distribution of the hemozoin was observed to be inhomogeneous, and its presence
largely excluded that of proteins and lipids, demonstrating that cells were not able to break down the bio-
crystals on the time scales studied here. These results show that Raman imaging can be used to answer
some of the open questions regarding the role of hemozoin in the immune response. How different com-
binations of hemozoin and other molecules are treated by macrophages, whether hemozoin can be
broken down by the cell, and more importantly, which co-factors or products are involved in the sub-
sequent cell reaction are the expected issues to be elucidated by this technique.
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Introduction

Malaria infection is widespread in many tropical and subtropi-
cal regions of the world, affecting millions of people every year
and with treatment costs of more than 12 billion US dollars in
Africa alone.' Several different species are known to cause
malaria, with Plasmodium falciparum responsible for the
majority of malaria cases in Africa.”> During the erythrocytic
infection cycle the Plasmodium parasite catabolizes hemo-
globin consuming between 50 and 80% of the hemoglobin
present in an infected erythrocyte.® This is compartmentalized
in the vacuole of the parasite and converted into hemozoin, an
insoluble crystalline material, often referred to as the malaria
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pigment. As parasite maturation progresses inside the erythro-
cytes, the cells rupture and release their contents, including
parasites and hemozoin at concentrations equivalent to
10-16 mM of free heme,? into the bloodstream.

The host response to malaria infection is regulated by both
innate and adaptive immune systems. The action of the innate
immune system is thought to be in response to infected erythro-
cytes and a number of parasite components including glyco-
sylphosphatidylinositols, parasitic antigens and hemozoin.*
The exact nature of the immune response generated, in par-
ticular the magnitude and the timing of the release of
immune mediators such as cytokines, chemokines and other
effector molecules, has been suggested to be a deciding factor
in the disease outcome.>® Recent studies have indicated that
the presence of hemozoin in circulation acts as an immuno-
activator””® with the activation of macrophages, common for
viral and bacterial infections postulated to be of importance.’
However, a few studies have indicated hemozoin may also have
immunosuppressive properties (Shio et al. have summarized

. the overall findings of many studies of hemozoin on immune

responses’) while others theorize that it is not hemozoin itself,
but other cellular components, such as malarial DNA
that trigger the immune response.'® Nevertheless, hemozoin
is known to accumulate in phagocytic cells, including
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‘and hemozoin in clinically relevant samples

Paper
macrophages,'"> and the build-up of hemozoin-containing
phagocytic cells in infected patients is correlated with the
severity of the disease™® as well as being an mdrcator for
malaria infection associated complications such as severe
malarial'anaemia.®'*

While a_number of technlques are available for detectmg
hemozoin, Raman spectroscopy, in conjunctron with chemo—

metric data analysis, can be used to study the brochemrcal i

composition of cells, tissues and small organisms e. g15 19

This allows it to be used to study the reaction of macrophages
after hernozom uptake. It has recently been demonstrated to
be effective in detecting and monitoring free hemozoin**?!
224 and, is poten-
tially ideal for srmultaneously measurmg both the presence of
hemozoin and the accompanylng cellular changes in macro-
phages. Raman spectroscopy has several advantages when it
comes to measuring hemozoin in cells Firstly, itisa label-free
technique and therefore does not require the addition of dyes,
stains or other markers that may perturb the cells. Secondly,
as water does not generate significant background Raman
signals, live cells can be measured, eliminating cellular
changes that may occur upon drying or fixing. Thirdly, due to
strong resonance enhancement (when exciting at 532 nm)‘and
since hemozoin has a unique spectrum,; it :allows' sensitive
detection and can be unambiguously distinguished from other
non-resonant cellular components.: Finally, since ' Raman
signals are derived from the molecules themselves, Raman
imaging allows the possibility of detecting fundamentally new
information in the cell on the immune response to hemozoin.
In this study we used Raman spectroscopy to ‘study the cel-
lular changes associated with the uptake of the hemozoin into
macrophages. We found that, due to the resonance enhance-
ment associated with hemozoin, detection of other molecules
in the macrophage cells can be challenging. Therefore, we also
used principal component analysis (PCA) as a method to
decompose the obtained spectra into components based on
the largest variances in Raman spectra obtained from un-
exposed and exposed macrophages. The results indicate that

View Article Oniine

Analyst ‘

Penicillin-streptomycin and murine M-CSF (PeproTech, 20 ng

1“1) Then, cells were plated onto quartz-bottomed dishes at
a densxty of 1 x 10° cells per dish (3.5 cm _diameter) and
immersed in 2 mL of RPMI 1640 (wrthout serum in order to
increase the rate of hemozoin uptake during the expenment)
and incubated at 37 °C for 6. hours. To provide : systematic
sample preparatlons, hemozoin exposed cells were prepared by

-adding synthetic hemozoin to the extracellular medium, to a

concentration of 100 pg mL™". The cells were then incubated
for a further three or five hours before rinsing and re- covering
with 2 mL RPMI 1640 (without serum or phenol red) immedi-
ately prior to Raman measurements. . Hemozoin reference
images for comparison to image. results were recorded by
depositing hemozoin onto a quartz dish (with no cells present)
and covering with 2 mL of RPML '

Raman spectroscopy

. Rarnan spectral nnages were recorded using a Raman micro-

scope - (Raman -11, Nanophoton, Japan) operating in imaging

‘mode (slit scanning with line illumination). All images were .

recorded using 532 nm excitation focused onto the sample via
a x60 water immersion objectlve Cells were illuminated with a
power density of approximately 3.41 mW pm™ 2 (at the sample)
for 5 seconds per line, resulting in total collection tirnes of
between 5.5 and 12.5 minutes, dependlng on the size of the
cells. The hemozoin reference i image was recorded in the same
manner but with slightly reduced laser power (2 95 mW. pm 2.
and the hemozorn reference spectrum was extracted from an
image recorded at reduced laser power (2.27 mW pm™?) and
exposure time (2 seconds per line) to avoid absorbance from
any large hemozoin crystals present in the field of view.

Data processing and analys1s

Two main analysis methods were used in this study, singular
value ‘decomposition (SVD) and principal component analysis
(PCA). SVD is a decomposition technique where vectors maxi-
mize the energy- contrlbutlon in therr projection drrectlon an,d

hemozoin is contained in different chemical environments in th

within the cell which change over time. This is consistent with

‘hemozoin being taken up and then processed or delivered to

different environments during the time course of phagocytosis
within the macrophage cells.

Materials and methods
Cells and hemozoin preparation

Synthetic hemozoin was prepared as previously reported.?® To
generate macrophages, bone marrow cells were flushed from
C57Bl/6 mice femurs and tibias and erythrocytes were lysed.
All animal experiments were conducted-in accordance with the

‘guidelines of the Animal Care and Use Committee of Research

Institute for Microbial Diseases and Immunology Frontier
Research Center of Osaka University. Cells: were cultured for 5
days with RPMI1640 medium contalmng 10% FBS and 1%
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the dataset allowm us, in this case, to better visualise the

ompose the Raman spectral images
into components that maximize the variance contained within

MATLAB R2010b (The Mathworks, USA). The orig-
1nal Raman images were cropped to exclude large regions
where o cells were Ppresent hese ,ropped images were then

reconstructed using the SVD components accountlng for 10%
of the total ‘energy of the original data. This limit was selected
after visual inspection of the rejected projection vectors to
ensure they did not contain strong features #.e. confirming that

This journal is © The Royal Society of Chemistry 2015
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the rejected data was noise-related. The reconstructed spectra
were then smoothed using a Savitsky-Golay function (10 points,

" 2nd order), False color images were obtained by calculating the

average signal under the peaks of interest and assigning a

‘particular color to each peak (see figure legends for details).

“All presprocessing and analysis steps for PCA were per-
formed using the Eigenvector PLS-toolbox 6.71 and MIA-
toolbox 2.3 (Eigenvector Research Inc., USA) operating in

"MATLAB. Raman images were cropped to remove regions of

the image where no cells were present. These cropped images
were then concatenated to form a composite image prior to
PCA and the creation of the overlaid images. In all datasets,
Raman spectra were baseline corrected using a 4th order poly-
nomial weighted least squares algorithm, 5 point smoothing

" in the spectral dimension (zero order), and a 3 point window

median filter in the image dimension and were mean-centered
prior to PCA. The latter was performed using random subsets
cross validation, with 10 data splits and 3 iterations. Principal

-~ component (PC) scores images were transferred to GIMP (GNU

image manipulation program) where each PC was assigned an
individual color to create the overlaid images. The original
PCA results are provided in ESI S1.7

The hemozoin reference image (ESI S21) was preprocessed
and PCA performed using the same settings as for the macro-
phage images. The reference spectrum generated from hemo-
zoin image data was obtained by averaging an 11 x 11 pixel
block and was baseline corrected using a 4th order polynomial
weighted least squares algorithm and scaled to the intensity of

" the ~1379 em™ band in the loadings plot for PC1.

Results and discussion

In this study we used two main approaches to analyze the spec-
tral data. Firstly we. have .identified molecules of interest,
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through spectral inspection, in order to identify chemical
changes within the cells after hemozoin exposure. This has
been performed using both raw data, where the spectra are
dominated by hemozoin, and denoised data (using singular
value decomposition (SVD)), for improved visualization of the
weaker Raman bands originating from macrophage cellular
components. In this approach, low energy components are
assumed to be noise and are discarded, producing clearer
images for subsequent analysis,”’ especially for lower intensity
bands which would be more affected by noise contributions in
the spectra. Our second approach was to use principal com-
ponent analysis (PCA) to split the data into different com-
ponents (where PC1 contains the greatest amount of variance
contained in the dataset, PC2 contains the next most, and so
on) and assess potential relationships (e.g. correlation, anti-
correlation) between different components, correspondmg to
different biomolecules, within the data.

Macrophages engulf hemozoin particles during exposure

Fig. 1 shows visible .images of the macrophages with and
without exposure to hemozoin as well as examples of typical
Raman spectra obtained in each 'case. The overlay of the
Raman band envelope between 1330 and 1425 cm™ (shown in
green) exhibits a very strong intensity in exposed éells, high-
lighting the presence of hemozoin, while unexposed macro-
phages exhibit negligible intensity levels. Comparison of the
spectra confirms the very-intense bands for the-exposed cells
originate - from hemozoin, while the unexposed cells- only
exhibit weak bands in this region. Unexposed macrophages
showed -an overall rounded shape whereas the cells that have
been exposed to hemozoin are generally more elongated and
larger in size. These macrophages show a dramatic change in
internal morphology with the formation of many large vacu-
oles that can be seen as a series of circular formations within
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~Fig. 1. Presence of hemozom in cells:as detected ‘by. Raman spectroscopy.: Left: Visible images of macrophages from unexposed cells (top) and

those after three (m«ddle) and five (bottom) hours exposure to hemozoin are overlaid with the. intensity. of the hemozoin band envelope between
1330 and 1425 cm™ (green). The white scale bar represents 25 um. Right: Typical Raman spectra (after baseline .correction) from unexposed cells
(black) and cells after exposure to hemozoin {three hours ~ red, five hours — blue).
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each cell. In some cases pseudopodia can also be seen in the
visible images (particularly at 3 hours exposure to hemozoin)
In general, hemozoin is found as an mhomogeneous distri-
bution throughout the cytoplasm of the macrophage cells. It is
not found in central parts of the cell indicating that it rernams
in the cytoplasm and does not cross.into the nucleus. In most
cells, although some hemozom is observed in the very big
vacuoles present in some cells the hemozom tends to be most
concentrated in the remaining reglons of the cytoplasm.

Hemozoin is found closely associated with specrﬁc lipid-and
protein vibrations

Fig. 2 shows SVD noise- redueed images for unexposed and
hemozoin exposed cells, hxghhghtmg a number of Raman
bands of interest. Fig. 2a shows the presence of hemozom in
red (~1640 cm™Y) and the location of asymmetric CH, and
CH, stretching modes (~2940 cm™ shown in green),”® high-
uch as. lipids and

lighting the presence of cellular materi
proteins. The ‘asymmetric CH,
appear to be relatively uniform
cells (top panel), but in hemo
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,1s non-uniform with regions of the cytoplasm exhibiting

greater intensity than that of the center of the cells As seen for
the data presented in Fig. 1, Fig. 2a also shows that hemozom
in red, is non-umformly dlstrlbuted in the cell cytoplasm after
exposure. There appears to be no 51gn1f1cant difference in
hemozom distributions at 3 and 5 hours of exposure. Although
both the asymmetric CH,.and. CH; stretching and the hemo-
zoin are. 1nh0mogeneously distributed in the cytoplasm, there

is only a small degree of overlap (shown i in yellow) Instead the

regrons where the asymmetrlc CH, and CHj vibrations. are
most intense are often found adjacent to the positions of high
hemozoin concentration. However, the distribution of sym-
metric CH; vibrations (~2880 cm™, shown in green in 2b)
often overlaps with the hemozom distnbutlon as shown by
the significant yellow colormg in Fig. 2b.

In the fingerprint region (below ~1800 cm -, some targets
of interest can be obscured by the strong hemozoin signal in
exposed macrophages i bands arising
from two 1mportant bi d nucleic
Stri . 2¢ and d
1462 cm™

Fig. 2 SVD noise- reduced |mages of

B A N o |

posed macrophages (a) Top unexposed cells mlddle cells after 3. hours of

exposure to hemozoin, bottom: cells after 5( hours of exposure to hemozom Asymmetnc CHZ and. CHz stretchmg is depicted in green {area under
the Raman band at 2935 cm*l) and hemozoin in. red (area under the Raman band at 1638 em™). (b) Cells after 3 hours of exposure to- hemozoin:
Symmetnc CH; and CHs stretchmg is dep ed in green (Raman band at 2870 cm‘l) and hemozoin in red as before c) Cells after 3 hours of
exposure to hemozoin. Fatty acids (Raman band at ~1462 cm™) are shown in cyan and hemozoin in red. (d) Cells after 3 hours ‘of exposure to hemo-
zoin. Nucleic acids (Raman band at ~803 cm™Y) are depicted in cyan and hemozoin in red. The white scale bars represent 25 pm.

Analyst This journal is © The Royal Society of Chemistry 2015



Published on 19 January 2015. Downloaded by Osaka University on 05/02/2015 08:25:55.

*originating from fatty acids®® (2¢) and ~803 cm

View Article Online

Analyst Paper
~" arising from  Chemometric analysis shows the uptake of hemozoin is
nucleic acids®® (2d) are shown in cyan. It should be noted that associated with various cellular changes

the hemozoin and CH,/CHj related bands are relatively strong  Chemometric analysis can help overcome the difficulties in
in the Raman spectra collected so that other bands of interest  observing the distribution of additional biomolecules within
are very difficult to-image by simply highlighting the area the hemozoin exposed ‘macrophages. Turning to principal
under the band due to the considerable overlap of such bands  component analysis (PCA),*® the PCA scores (Fig. 3) and corres-
with those from hemozoin. Both figures show that the distri- ponding loadings (Fig. 4) of the macrophages show a break-

‘bution of these bands is different to that of hemozoin, down of the cell reaction upon exposure to hemozoin, allowing

however interpretation is limited by the signal to noise ratio in  separation of the hemozoin signal from that of other com-

. the spatial distribution- of the bands. This is particularly ponents presentin the cells.

noticeable in the cyan channel in Fig. 2d. The results pre- Since concentrated heme exhibits strong Raman scattering,

~ sented up to this point do not employ chemometric tech- PC1 is dominated by the presence of hemozoin, giving rise to

niques for spectral analysis. To further analyze the presence the high intensity scores seen in multiple regions of the cells
and combinations of biomolecular components, multivariate after 3 and 5 hours exposure and low scores in control cells.
chemometrics methods become necessary. The scores plots indicate that hemozoin is found throughout
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Fig. 3 Principal component analysis score images for the measured cells. Images for each of the prmcrpal components are shown in the top two
rows PC1 (shown in' red);, PC2 (blue), PC3 (green = positive features, purple = negative features) and PC4 (yellow-orange - positive features, cyan ~
negative features). A merged image of all four PCs {created from a direct overlay of the PC1to PC4 i lmages ‘with no intensity adjustments) is shown
in the bottom panel. All'scores images show control cells (i.e. unexposed cells) on the top row, cells after three hours exposure to synthetic hemo-

* zoin in the center row and after 5 hours exposure to hemozoin in the bottom row. The white dotted lines represent the edges of the individual

images that were concatenated before PCA analysis. The white scale bars represent 25 pm. The original PCA output including scores values are
given in ESI S1.
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Fig. 4 Loadings plots for each of the principal components shown in
Fig. 2. PC1 (shown in red), PC2 (blue), PC3 (green) and PC4 (yellow-
orange). -

the exposed cells (with the exception .of central regions -
suggesting again that hernozoin is located in the cytoplasm
but not in the nucleus) Wrthm the cytoplasm there are
regions that reflect very strong PC1 contnbutrons, suggestlng
an mhomogeneous distribution of hemozom, as was also
observed in the raw and SVD denoised data i in Fig. 1 and 2.

However, not all of the PCI loadings vector shoulcl be attrib-
uted to hemozoin, smce some small contrlbutlon also comes
from the presence of the rnacrophages themselves. Cells
contain a number of heme-based compounds which appear in
Raman imaging®' and other. blomolecules ‘can also give rise to
bands in similar or overlappmg posxtlons to those seen for
hemozom If we subtract a reference spectrum of hemozoin
from PC1 we are left with a weak spectrum (Fig. 5) that con-
tains features in the fingerprint region consistent with nucleic
acids (bands between 800-850 and 1000-1100 cm* arising
from the phosphate backbone®®*>4), proteins (especially in
the Amide I and Amide III regions*) and lipids (e.g: ~1090
and 1436 cm™?, ref. 28) - 1nd1cat1ng a cell component-based
remainder of PC1,

Some of the observed response to hemozorn (PC2) appears
to be a redistribution of existing molecules in the cell in order
to accommodate the hemozoin uptake. PC2 shows significant
rearrangement of endogenous macrophage molecules In the
control cells, the same spectral components are 1ntense and
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Fig. 5 Difference spectra of hemozoin from PCA loadings. Top panel
shows the ‘loadings- vector for PC1 and a hemozoin Raman spectra
scaled to the intensity of the band at 1379 cm™in the PC1 loadings
vector. The bottom panel shows the dn‘ference between the two spectra
(PC1 loadmgs minus hemozom spectrum)

largely homogenous Large regions also_appear within the
macrophage where PC2 is excluded and these correspond
directly to the distribution of hemozoin seen in PC1. Spectral
analysis shows PC2 appears to contain a number of broad
bands that may originate from phosphate (799 and 1066 cm™Y)
as well as relatively weak CH stretchmg (high wavenumber
region) and possible beta sheet (1661 cm™") or amino acid
vibrations (1617, 1598, 1175 and 1126 cm™ - tryptophan and
tyrosme) 15,28,36-38 Therefore, it is probable that membrane-
based components make a srgmﬁcant contribution to PC2 (e.g.
glycohprds, glycoprotems, phosphohprds) whereas the pres-
ence of relatlvely high scores in the nucleus may also indicate
contrlbutlons from proteins and nucleic acids contained in
the nucleoplasm as well as nuclear membranes. The drsplace—
ment is particularly obvious in the cells at 3 hours where the
majority of the intensity of PC2 is seen in the center and edges
of the cells. For a number of the cells the short pseudopodra
also show 1ntense PC2 scores.

The advantage of the Raman spatial mapping of molecular
components. is that we can look for co- locahzatxon, mutual
exclusion, and other relations between cellular components.
PC1 and PCZ are observed to be approxxmately mutually exclu-
sive in then: spatlal distribution. The next component, PC3 is
predommantly observed in close prox1m1ty to, but not co-locaf

lized with PC1 (see merged sxgnals in Fig. 3) lndlcatmg that

PC3 may be related to the macrophage response to the pres-
ence of hemozoin. To identify the molecules in PCS we need
to examine the spectral features, which are present as both
positive: and -negative peaks. The spectral importance of :any
component depends on its intensity, and not ‘on-its sign. In
PC3, the negative features in the loadings plot show simi-
larmes to those of hemozoin. The distribution of the negatlve
aspect of PC3 shows features in several isolated regions within
the exposed macrophages after three hours of exposure to
hemozoin, becoming more concentrated at the edges of the
cells after five hours of exposure.
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“Turning to the positive features of PC3, we observe several
bands of interest, dominated by the CH stretching region,
mainly indicating lipid-based vibrations. The corresponding
positive half of the scores plot shows that these lipid-based
components are predominantly found in the cytoplasm of the
macrophage cells. They show some overlap with the hemozoin
distribution (PC1). This is especially evident in the macro-
phages exposed to hemozoin for three hours, indicating some
important step in the cell response. The positive features are
lower in intensity than the negative features, indicating a less
pronounced significance.

Raman cellular imaging often highlights lipids, especially
in the high wavenumber region, due to the abundance of CH,

In principal component 4, the features are predominantly posi-
tive, and contain significant lipid contributions. Along with
the CH,, contributions from other lipid bands arising from

=C, C-C and CO,~ vibrations are visible in the fingerprint
region.”®?73% Aside from lipids, additional bands associated
with amino acid vibrations (e.g. at 1008 cm™ phenylalanine)

" and f-sheet protein conformation (~1665 cm™) -are

present.””*®** In unexposed cells, this lipid-dominated com-

ponent is evenly distributed. With hemozoin exposure, two

"éffects can be observed, firstly, the increase in volume and sub-

sequent effect of dispersing the lipids over a larger area with a
decrease in the Raman intensity. The second observable
change in response to the presence of hemozoin is the more
granular appearance of the lipid components (visible at 3 and
5 hours in the positive channel of PC4 in Fig. 3). For principal
component 4, the negative features are relatiVely weak and
therefore of less. utility in providing information on biochemi-
cal changes. However, they do appear exclusively in cells that

‘have been exposed to hemozoin, and are stronger after five

hours of expoksyure. They appear only at the regions of highest
hemozoin content (as shown in PC1). Due to the spatial
overlap ‘between these features and PC1, we might expect the

‘negative PC4 component to be related to hemozoin. Inspection

of the bands proves otherwise: the spectrum is composed of
several bands - 603, 781, 805, 824, 1070, 6116, 1148,

1199 cm™*. These bands are not typically thought of as

“marker” bands, since many molecules contain such Raman
bands®** although a number of these correspond closely to
nucleic acid vibrations.*® If higher signal to noise could be
achieved, comparing band ratios or using pattern-matching
algorithms may provide further information on these mole-
cules which appear to be associated with the biological

- response to hemozoin.

Hemozoin:is located in phagosomes and lysosomes after

uptake into macrophages

‘Macrophages can engulf foreign bodies, such as hemozoin, via

several process including phagocytosis, endocytosis and pino-
cytosis.*? In"all these processes the foreign body is drawn up
into:the' macrophage cytoplasm but kept isolated by a mem-
brane. Therefore, it is possible that the co-localization of
hemozoin with symmetric CH; and CHj stretching vibrations
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observed in the SVD data is a result of the formation of a mem-
brane around the engulfed hemozoin crystals.

One of the most striking results from PCA is the observation
that hemozoin accounts for the majority of spectral features in
both PC1 and the negative component of PC3. Although both
PC1 and PC3 are clearly hemozoin-based, the slight differences
in uptake rate or processing by the cell can reflect important
differences in the cell response. While the spectrum of hemo-
zoin has been studied in numerous reports, the method of
preparation can affect the spectra. We noted two spectral
forms of hemozoin-in our synthetic samples, which vary in
several spectral features, including the band strength at
around 1162 cm™ (see ESI 821 for details). Qualitative com-
parison of the PCA analysis from the reference image (ESI S27)
and the macrophage cells (Fig. 3.and 4) indicates that the two
forms of hemozoin are both present in the stimulating
sample, and that the these two forms do not reflect the same
distribution within macrophage cells. Spectrally, PC1 indicates
some co-localization of hemozoin with several different macro-
phage cell components (Amide, nucleic acid and lipid bands),
while PC3 indicates a different form the hemozoin and is
anticorrelated with lipid-based components. This could indi-
cate that the macrophage processes the two hemozoin sub-
types differently.

This is also consistent with the picture which emerges from
the SVD data (Fig. 2). Although SVD denoising does not
provide separate variance-based component spectra in the
same way that PCA analysis does, strong components such as
lipids and hemozoin are readily recognizable in the denoised
data. From Fig. 2 we can see that lipid features are co-localized
to a large extent with hemozoin. This indicates that some lipid
presence is involved with, or mediates, the later change of
hemozoin environment. This may indicate the fusion between
the phagosome and lysosome, and occurs on a timescale
consistent with the results obtained by Tassin et al*® who
observed the formation of two classes of lysosome that were
involved in the late stages of endocytosis/phagocytosis. One
class appeared after approximately three to five hours and was
seen to preferentially accumulate material that was hard to
degrade. Such lysosome-like vesicles often persisted for 2-3
days, while lysosomes .with degradable contents usually dis-
appeared after approximately 3 hours.** ‘

The spectral analysis can provide some insight into ulti-
mate fate of the hemozoin. Known features of phagocytosis
include later phagosome-lysosome fusion, with the result that
at later times hemozoin is present within relatively more acidic
lysosomes.** If hemozoin, components are indigestible, they
are likely to accumulate.*> A number of complex biological
regulation pathways regulate the phagosomal (and lysosomal)
environments, For example, pH is maintained through a
balance between vacuolar H+-ATPase activity, counterion con-
ductance and H+ ‘leak’ from the phagosome/lysosome,**4¢
Lysosomes contain a cocktail of enzymes, acids and peroxides
that break down engulfed material, but hemozoin appears
stable in these environments. Components that appear to cor-
respond to aggregation of hemozoin, particularly the spatial
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