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Introduction

Epidemiological studies showed that treatments with bacterial
and viral products might be efféctive therapeutic strategies for
suppressing the development of allergic responses [1-3]. Admin-
istration of mycobacteria, including Mycobacterium bovis-Bacillus
Calmette Guerin (BCG), has been thought to be eﬁectlvc for
preventing the development of asthma by induction of Thi- -type
immune responses [4], regulatory T (Treg) cells [5,6] and NKT
cells [7,8]. On the other hand, recent data have revealed that
Mycobacterium tuberculosis infection induced not only IFN-y but
also IL-17, which promotes granuloma organization followed by
neutrophil recruitment, and I1.-22, which promotes regeneration
and protects against tissue damage [9]. In addition, vaccination
with the mycobacteria-secreted immunogenic protein Ag85A had
important links with Th1/Th17 cell induction and Treg cell
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reduction [10]. However, the role of mycobacteria-mediated
Th17-related cytokines in allergic asthma remains unknown. )

The airway epithelium and innate immune cells are considered
to be essential controllers of inflammatory, immune and regener-
ative responses to allergens that contribute to asthma pathogenesis
[11]. Dysfunction of the epithelium leading to chronic injury was
suggested. to be a consequence of sustained airway inflammation
that is associated with Th2-driven adaptive immunity.[12]. Tissue
homeostasis at exposed surfaces of the lung is regulated by Thi7-
related cytokines, especially 1L-22, in the innate immune system
[13]. Therefore, the functional and structural maintenance of
tissue might be necessary to induce both innate and adaptive
immunity.

One 1mmun0gen1c protein that can mduce a strong Thl-type
immune response in hosts sensitized by BCG is thought to be
Ag85B. Ag85B is one of the most dominant protein antigens
secreted from all mycobacterial species and has been shown to
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Figure 1. Functions of rAg85B in allergic inflammation. Experimental design used to investigate the effects of rAg85B on OVA-induced allergic
lung inflammation (4). BALB/c mice were intraperitoneally immunized with OVA on days 0 and 14. On days 21 to 25 after the first immunization, mice
were exposed to aerosolized 5% OVA for 20 min. Three hours prior to OVA inhalation, the mice were i.p. (100 ng; days 0 and 14) and i.n. (20: ug; days
. 21,23, and 25) administered rAg85B. One day after the last challenge, the BAL cells were counted (B) and OVA-specific serum IgE concentrations were
determined by ELISA (C). Flow cytometry of BAL cells from naive or OVA sensitized-BALB/c.mice treated with PBS or rAg85B, stained with anti-Gr-1
and anti-Siglec-F. Numbers adjacent to outlined area indicate percent of eosinophils (Gr-1%", Siglec-F"), and neutrophils (Gr-1*, Siglec-F™9) (D).
Formalin-fixed tissue sections were stained with hematoxylin' and eosin to visualized cell recruitment (upper row, scale bar, 100'mm), Masson's
trichrome (center row, scale bar, 100 mm), and a-smooth muscle actin (lower row, scale bar, 50 mm). Numbers in quadrants indicate the score scale
from:0 to 5 in each. (E). Data are representative of at least three independent experiments. (*P<<0.05, **P<0.01 compared with OVA control. error
- bars, s.d.; n=6 mice). '
doi:10.1371/journal.pone.0106807.g001

induce substantial Th cell proliferation and vigorous Th1 cytokine
production in humans and mice [14]. In addition, we have
‘reported the possibility of using Ag85B DNA as an immunological
strategic tool to induce both Thl and Treg cells in immunother-
apy for atopic dermatitis and allergic asthma [15,16].
In the present study, we found that highly purified recombinant
 Ag85B protein’ (rAg85B) had’ suppressive effects depending on
induction of Th1 immune résponses in a mouse model of allergic
lung 'inflammation. Remarkably, rAg85B “administration also
promoted- IL-17 and IL-22 production in both Thl7 cells in
lymph nodes (LLNs) and various innate immune cells such as
gamma delta T (y8T) cells, NKp46* cells, lymphoid tissue inducer
(LTi)-like cells, and CD11c* cells in BAL fluid. More interestingly,
Thl7-related cytokines induced by rAg85B were involved in
enhancement of the expression of genes related to maintenance of
tissue’ homeostasis. This is the first report demonstrating that

cells in a manner dependent on Th17-related cytokines in order to
retain tissue integrity. '

Materials and Methods

Animal and Ethic Statement

Specific pathogen-free BALB/c mice (six-week-old, female)
were purchased from CLEA Japan. All of the experiments in this
study were performed in. accordance with the Guidelines for
Animal Use and Experimentation, as set out by the National
Institute of Biomedical Innovation. The protocol was approved by
the Animal Welfare and Animal Care Committee of the National
Institute of Biomedical Innovation (Permit Number: DS23-8R2).
All animal procedures were used to minimize animal pain and
suffering. o

mycobacteria major secreting protein Ag85B plays an important
role in the regulation of allergic airway inflammation by inducing
not only a Thl-response but also recruitment of an IL-17 and/or
IL-22-producing Th cell subset in LNs and innate immune BAL
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Experimental protocol

BALB/c mice were intraperitoneally immunized with 10 pug
ovalbumin (OVA) with 1 mg aluminum hydroxide on days 0 and
14. On days 21 to 25 after the first immunization, mice were
exposed to aerosolized 5% OVA for 20 min. Three hours prior to
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OVA inhalation, the mice were intraperitoneally (i.p.) (100 ug;
days 0 and 14) and intranasal ly (i.n.) (20 pg; days 21, 23, and 25)

administered rAg85B. OVA-sensitized Balb/c mice were chal- -

lenged intranasally with PBS, rAg85B, rAg85B plus 5 pg anti-IL-
17 Abs and/or 10 pg anti-IL-22 Abs (R&D Systems) with the
same time course as that of rAg85B .n.. administration. The
isotype-matched control antlbody for neutralization experiments
was set using normal goat IgG control (R&D systems).

Recombinant protein Ag85B production

Plasmids containing the Ag85B gene were transformed into E.
coli TG1. The expressed inclusion body (IB) was harvested from
the disrupted cell pellet by 2 homogenizer with lysis buffer (30 mM
sodium phosphaste, 100 mM NaCl, 5 mM EDTA and 0.5%
Triton X-100). This IB of Ag85B was unfolded in 8 M urea and
refolded by dilution to 0.4 M- urea. The urea in the refolding
buffer was removed by anion exchange chromatography using
20 mM Tris buffer and 20 mM Tris buffer with 1 M NaCl
(pH 8.5). The refolded Ag85B was loaded on a cation exchange
column, and crude Ag85B was passed through the resin using
50 mM NaOAc buffer and 50 mM NaOAc buffer with 1 M NaCl
(pH 6.0). Finally, Ag85B was purified by anion exchange
chromatography using 20 mM Tris buffer and 20 mM Tris buffer
with 1 M NaCl (pH 7.6)." -

Endotoxin test

The endotoxin value of Ag85B was measured by Kinetic
turbidimetric LAL assay kit (Lonza). Test was carried out
according to' the manufacture’s instruction. The endotoxin value
was measured kinetically on ELISA after mixing sample and LAL
reagent -and was calculated automatically according to standard
curve. Purified Ag85B had a purity ‘of >95% analyzed by ‘SDS-
PAGE and contaminated less than 0.02 EU/mg of endotoxin.
Protein quantitation was carried out by UV spectroscopy at
280 nm.

Isolation and analyscs of lymph node and BAL cells

BAL cells were prcpared according to a published protocol [16].
Single cell suspensions from BAL fluid and mediastinal lymph
nodes (MLNs) were obtained by crushmg through cell strainers.
Cells were stained with antibodies to the following markers: CD3,
CD4, CD8, CD19, CD11b, LDllc CD25, v8 TCR, NKp46, Gr-
1, Siglec-F, CD127, IFN-y, IL-4, Foxp3, IL-17 and IL-22 (BD).

Table 1. Effects of rAg85B to Toll-Like and NOD-Like Receptor.

The Role of Ag85B on Allergic Inflammation via IL-17 and 1L-22

For analysis of intracellular cytokine production, cells were
stimulated directly by incubation for 5 h with 50 ng/ml PMA

~and 750 ng/ml ionomycin (Sigma-Aldrich) at 37°C and with
10 pg/ml brefeldin A (eBioscience) added in the last 3 h. Flow

ytometry data collection was performed on a FACS Calibur (BD).

ff_ﬁF,iIes were analyzed using CellQuest Software (BD).

Quantification of cytokines and chemokines

Concentrations of cytokines and chemokines in BAL fluid and
pernatants of OVA-restimulated lymph node cells were
determined by ELISA using commercial kits from R&D Systems.

 Twenty-four hours-after the last OVA sensitization, MLNs and

BAL fluid were harvested. MLNs were cultured with 50 pg/ml
OVA, and cytokines in the culture supernatant were determined
48 h after incubation. The BAL fluid were measured directly.

The ‘organs were. removed and ‘placed in 4% buffered
paraformaldehyde (PFA). overnight. Excess paraformaldehyde
was removed by incubation in-fresh PBS. Fixed tissues were
4°C in 70% ethanol. PFA-fixed lung sections were
hematoxylin and eosin, Masson’s. trichrome, and o-

stained

" smooth muscle actin. Peribronchial infiltrates, fibrosis, and smooth
- muscle hyperplas1a were assessed by a semiquantitative score (0-5)

by a pathologist.

Quantitative real-time PCR

RNA was.isolated from -whole lung. tissue using mechanical
homogcmzatlon and TRIzol reagent (Invitrogen) according to the
manufacturer’s instructions;,"RNA concentrations were measured
with a Nanodrop  ND "1000" (Nucliber). OmhiSCript reverse
tanscriptase was used according to the protocol of the manufac-
turer (QIAGEN) for the production of cDNA in a reaction volume
of 20 ul. Primers for quantitative real-time RT-PCR were
designed with the Universal ProbeLibrary Assay De51gn Center
(Roche Applied Science). Reactions were run on an RT-PCR
system (LightCycler 480; Roche Apphed Science) Samples were
normalized to b-actin and displayed as fold induction over naive or
untreated controls unless. otherwise stated.

TLR/NLR ligand-screening
The presence of TLR and NLR ligands were tested on
recombinant human embryonic kidney 293 (HEK293) cell lines

No ligand

receptor

The results are provided as optical density values (650 nm).
The values represent the means and standard deviations of three screenings.

doi: 10 1371/journal.pone.0106807.t001 )
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rAg85B

TLR/NLR ligand screening were performed by invnvoGen, as described in Methods.

control (+)
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Figure 2. Administaration of rAg85B induced immune deviation from a Th2-response towards a Th1, Th17-related response in
OVA-stimulated LN cells. OVA-immunized {i.p., day0 and 14) and sensitized (5% aerosolized-OVA, day21 to 25) BALB/c mice were challenged with
PBS or rAg85B protein (i.p. (100 pg; days 0 and 14) and i.n. (20.pg; days 21, 23, and 25)). At 24 h after the-last OVA sensitization, mediastinal lymph
nodes (MLNs) from naive or OVA sensitized BALB/c mice treated with PBS or rAg85B, were harvested. MLNs were cultured with. OVA (50 ug/ml), and
cytokines in the culture supernatant. were determined 48 h after incubation by ELISA. Data are representative of at least three independent
experiments (*P<0.05, **P<0,01 compared with OVA control. error bars, s.d.; n=6 mice).

"doi:1 0.1371/journal.pone.0106807.9002

which utilize a nuclear factor-kB inducible SEAP (secreted
embryonic alkaline phosphatase) reporter gene as the read-out.
These HEK293-derived cells are functionally expressing a given
TLR or NOD gene from human or mouse. A recombinant
HEK293 cell line for the reporter gene only was used as negative
control. Positive control ligands are heat-killed Listeria monocyto-
genes (HKLM) for TLR2, Poly(I:C) for TLR3, Lipopolysaccharide
(LPS); K12 for TLR4, Flagellin for TLR5, CL097 for TLR7,
CL075 and poly(dT) for TLR8, CpG ODN for TLR9, C12-
iEDAP for NODI, and L18-MDP for NOD2. rAg85B (10 pg/

~mL) was added to the reaction volume. TLR/NLR ligand
screening were performed by InvivoGen.

Statistical analysis

Data are shown as-means®t:SD: Statistical, significance. of
differences between the OVA-control group and rAg85B-treated
group was assessed by the non-parametric Mann-Whitney U-test.

Statistical comparisons between groups of rAg85B+isotype control

and rAg85B+neutralization antibody were performed using the
non-paramatric Kruskal-Wallis H-test.. :

Results

. Effects on allergic inflammation by administration of
rAg85B
To investigate the role of rAg85B in pulmonary allergic
inflammation, we examined the frequently used mouse model of
ovalbumin (OVA)-induced allergic lung inflammation. The mice
were intraperitoneally (i.p.) (days 0 and 14) and intranasally (i.n.)
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(days 21, 23, and 25) administered with rAg85B (Fig. 14). The
purity of rAg85B was evaluated by silver staining of SDS-PAGE
gel (Fig. S1} and the Limulus Amebocyte Lysate (LAL) assay (less
than 0.02 EU (endotoxin units)/ml). Furthermore rAg858B was not
contaminated with any TLR/NLR binding immune stimulants
(Table 1). Twenty-four hours after the final OVA challenge,
inflammatory cell recruitment into the lungs was analyzed. The
OVA-induced allergic manifestation was suppressed with a
decrease in the total number of bronchoalveolar lavage (BAL)
cells and serum IgE level in the rAg85B-administered mice
(Fig. 1B, 1C): A marked reduction in eosinophil (Gr-1(+)/Siglec-
F(+)) infiltration was observed by flow cytometric (FACS) analysis
of BAL in rAg85B-administered mice (Fig. 1D). In association with
decreased eosinophilia, neutrophil (Gr-1(+)/Siglec-F(-) ) recruit-

_ ment ‘was: seen in.rAg85B-administered mice (Fig. 1.D). These

results were confirmed b}} histopathological observation -of
hematoxylin and. eosin, (H&E) staining (Fig. 1E). Mice adminis-

“tered rAg85B showed inhibition of infiltration of cells. (Fig. 1E).

Lung sections were also stained with Masson’s trichrome to
evaluate fibrosis; and stained with o-smooth muscle actin. Sizes of
both the peribronchial smooth muscle area and lung fibrosis area
were-increased. in OV A=sensitized- control mice; however, mice
administered rAg85B showed strong suppression of both fibrosis
and o-smooth muscle actin expression as well as reduction in
inflammation severity assessed by H&E staining (Fig. 1E). These
observations indicated that rAg85B has a critical function of
regulating airway inflammation in- a mouse model of allergen-
induced asthma. Moreover, rAg85B in. administration induced
wound repair including suppression of both fibrosis and a-smooth

September 2014 | Volume 9 | Issue 9 | e106807
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Figure 3.1FN-y and IL-17-producing CD4 T cell subsets proliferated in lymph nodes after rAg85B administration. OVA-immunized (i.p.,
day0 and 14) and sensitized (5% aerosolized-OVA, day21 to 25) BALB/c mice were challenged with PBS or rAg85B protein (i.p. (100 ug; days 0 and 14)
and i.n. (20 pg; days 21, 23, and:25)). At 24 h after the last OVA sensitization; mediastinal lymph nodes (MLNs) from naive or OVA sensitized BALB/c
mice treated with PBS or rAg85B, were harvested. MLNs were stimulated with ionomycin and PMA for 5'h; and with brefeldin A-added in the last 3 h,
Flow cytometry of stimulated MLNs from naive (upper) PBS-treated (middle) and rAg85B protein-treated: (lower) OVA-sensitized mice'stained with
specific antibodies indicated marker. Numbers in quadrants indicate percent of cells in each (A). Absolute numbers of various cell populations (above
graphs) in-ymph nodes (8,Q). Data are representatwe of three mdependent experiments (*P<0.05, **P<0 01 compared with OVA control. error bars,

s.d.; n=6mice).
doi:10.1371/journal. pone 0106807 9003

muscle actin expression. Incldentally, previous data showed that
either i.p. (days 0, 14) or i.n. (days 21, 23, and 25) challenge with
rAg85B did not ‘induce strong suppression of Th2-response in
OVA-sensitized mice (data not shown).

Immune dewatlon from a Th2-response ‘towards a Tht,
Th17-related response by rAgBSB administration

We next assessed the production of OVA-specific cytokines in
lymph node cells after in vilro stimulation with OVA (Fig, 2). Cells
from medlastmal lymph nodes (mLNs) were stimulated in vitro
with OVA and the production of various types of cytokines was
assessed. The level of the ‘Thl cytokine IFN-y in culture
supernatants of cells from rAg85B-administered mice was
increased. On the other hand, the levels of Th2 cytokines IL.-5
and IL-13 in culture supernatants. of cells from rAg85B-
administered mice were lower than those in culture supernatants
of cells from control mice. Similarly, mice administered rAg85B
showed inhibition of production of the CGL5 (RANTES) and the

PLOS ONE | www.plosone.org

thymus- and actlvatlon»regulated chemokme CCL17 (TARC

which contribute to allergic inflammation. Production” of IL-17,

IL-22 and TNF-a was also enhanced in' culture supernatants of
OVA:stimulated 'mLN -cells from tAg85B-administered mice.
These results suggested that Thl and Th17 cytokines ‘are crucial
factors in the suppressive effect of rAg85B on-airway inflamma-
tion.

CD4* T cells producing IFN-y and IL-17 were increased in
mediastinal lymph nodes by rAgSSB admlmstratlon
We next -examined Th cell responses in the mouse asthma
model by intracellular staining analysis. mLN cells were stimulated
with or without PMA and ionomycin, and cell fractions were
analyzed by intracellular cytokine staining. Stained CD4* T cells
producing IFN-y or IL-17 were increased -in mice administered
rAg85B, whereas IL-4-secreting cells.were decreased in those mice
(Fig. 34, 3B). On the other hand, rAg85B administration was not
associated with the induction of Treg cells, which express Foxp3

September 2014 | Volume 9 | Issue 9.| e106807
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Figure 4;5Admin‘:i‘stration of rAg85B resulted in the reduction of .

Th2 cytokine and chemokine levels and in the enhancement of
Th1 and Th17 cytokine levels in BAL fluid. OVA-immunized (i.p.,
day0 and 14) and sensitized. (5% aerosolized-OVA, day21 to 25) BALB/c
mice were challenged with PBS or rAg85B protein (i.p. (100 pg; days 0
and 14) and i.n. (20 pg; days 21, 23, and 25)). At 24 h after the last OVA
sensitization, BAL fluid from naive or OVA sensitized BALB/c mice
treated with PBS or rAg85B, were harvested. Levels of cytokines in the
BAL fluid were measured directly by ELISA. Data are representative of at
‘least three independent. experiments (*P<0.05, **P<0.01 compared
with OVA control. error bars, s.d.; n=6 mice).
doi:10.137 1/journal.pone.0106807.g004

and CD25, in LNs (Fig. 34, 3B, 52). These results were the same

for not only the fraction of CD4" T cells but also-the fraction of .

-GD4" cells: producing cytokines in- mLNs- (Fig. 3C). These results
suggested *“that - rAg85B administration "was involved ‘in the
induction of IFN-y or IL-17-producing CD4" T cells and CD4~
cells in LNs.

Mice administered rAg85B showed reduction in levels of
Th2 cytokines and.chemokines. levels and increase in.
levels. of Th1.and Th17.cytokines in BAL

The pathogenesis. of asthma is associated with many cell types
and several molecular/cellular pathways in. the lung. Therefore,
‘we investigated. whether rAg85B administration regulates various
cytokines associated with the pathogenesis of allergic inflammation
in BAL fluid. Control mice in which allergic inflammation
developed showed increased production of Th2 cytokines and
chemokines in BAL fluid, such as IL-13, IL-5 and TARC. Mice
administered rAg85B showed inhibition of the induction of IL-13,
IL-5 and TARC (Fig. 4). Furthermore, enhancement of TFN-v, IL-
17 and IL-22 production was observed in BAL fluid from mice
administered rAg85B. Production of chemokines secreted from
non-T cells, CCL20 and ‘CXCL13, was also increased in BAL
fluid from rAg85B-administered mice. The chemokine GCL20 is
thought to be associated with the recruitment of Thl7 lympho-
cytes and LTi-like or NK-like cells [17,18], and CXCL13 is a
chemokine ligand of C-X-C motif receptor 5 (CXCR5) that is

PLOS ONE | www.plosone.org
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expressed on Lti-like cells. These findings suggested that rAg85B
administration  was involved in induction of immune responses
from both CD4" T cells and other innate cells in BAL fluid of mice
in which allergic inflammation has developed.

rAg85B administration elicits IL-17-producing CD4-
negative cells rather than CD4* T cell subsets in BAL fluid

To determine the peripheral Th cell population in the lungs of
rAg85B-treated mice, BAL cells from experimental mice were
analyzed by intracellular cytokine staining. The percentages of
IFN-y and IL-17-positive cells: from rAg85B-administered mice
were higher than those from control cells in agreement with the
results of FACS analysis of mLN cells (Fig. 54), and Treg cells in
BAL fluid from rAg85B-administered mice were also the same as
the results for mLN cells (Fig. 54). The absolute number of CD4*
T cells stained for IL-17 was-not increased in BAL cells from
rAg85B-administered _mice, unlike: the results for mLN cells;
however, total’ IL-17-secreting; cells, CD4~ IL-17" cells, were
increased in' rAg85B-administered.-mice compared with those in
control mice (Fig. 58, 5C). CD4” IFN-y-producing cells were
observed in BAL fluid from rAg85B-administered mice as same to
CD4* cells. In addition, IL-4-secreting CD4* cells were decreased
in rAg85B-treated mice, whereas IL-4-producing CD4 ™ cells were
not observed. These observations indicated that IL-17 was
produced by CD47 cells rather than by CD4" T cells in BAL,
unlike IFN-y and IL+4: Furthermore, the types of BAL cells greatly
changed after rAg85B treatment (Figure S3).

* rAg85B administration was involved in recruitment of

innate immune cells that secrete IL-17-related cytokines
in BAL fluid

Recent studies have demonstrated that IL-17 was not only
secreted by Th17 cells:and the source of Thl7-related cytokines
was modified in: various. .environmental conditions [19]. Mice
administered rAg85B showed infiltration of CD4-negative im-
mune, cells, which secreted IL-17. cytokine .in BAL fluid (Fig. 4,
Fig. 5). From these findings, we: next investigated the proportions
of infiltrating CD4 ™ cells that produce IL-17, including y8T cells,
IL-7R* Lin™ cells (L Ti-like cells), CD3 ™~ NKp46™ cells and CD11¢"
cells, in BAL fluid from experimental mice. OVA-sensitized
BALB/c mice administered rAg85B, but not mice administered
PBS, showed an increased number of innate immune cells in BAL
fluid (Fig. 64). The percentages of CD4" and CD8" T cells in BAL
fluid from rAg85B-administered mice were similar to those in BAL
fluid. from-control mice. However, the percentages of y8T cells,
LTi-like cells, NKp46™ cells, and CDI1 ic* cells in BAL fluid from
rAg85B-administered mice were higher than. those in BAL fluid
from control mice (Fig. 64). Since innate immune cells, which
secrete IL-17 and related cytokines, IL-22, were thought to be
induced by rAg85B administration, we next explored the source of
IL-17-related cytokines. in BAL fluid. Small numbers of IL-17-
producing Y8T cells, LTi-like cells and CDIllc* cells were
observed  (Fig. 6D, 6F, 6G), while production of IL-17 from
CD8+ T cells and NKp46™ cells was not detected (Fig. 6C, 6E). In
the present study, a Thl7-related cytokine, I1.-22, was also
detected in BAL fluid from mice administered rAg85B. (Fig. 4). All

-of the cells from BAL secreting Thl7-related cytokines, including

CD4* T cells, y8T cells, NKp46™ cells, LTi-like cells and CD11c*
cells, that were examined in this study showed IL-22 production in

micé administered rAg85B (Fig. 6B, 6D, 6E, 6F, 6G). On the

* other hand, production of IL-17 from NKp46" cells and CD11c*

cells were not detected (Fig. 6E, 6G). Although it is now known
that NKT cells, alveolar macrophages and neutrophils might also
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produce IL-17 in (fgrtain conditions, the numbers of these TL-17-

secreting cells in BAL fluid from rAg85B-administered -mice:
showed little -or no-change compared with those in the control’

group in our experimental setting. Remarkably, these responses
induced by rAg85B were observed in allergic animals but not in
naive ones (data not shown).

Functions of IL-17 and IL-22 in rAg85B-administered mice

We next investigated the importance of Thl7-related cytokines
by using neutralizinig ‘antibodies (Abs) to IL-17 and IL-22 in
rAg85B-administered experimental mice. Administration of neu-
tralizing Abs to IL-17 and IL-22 did not show any systemic
inhibitory effects induced by rAg85B as a result of IgE production
(Fig. 7A4). Furthermore, neutralization of IL-17 and 1L-22 did not
restore the functions of rAg85B with immune deviation from a
disease-promoting Th2 response towards a Thl response, whereas
inhibition of TARC production regulated by rAg85B was reversed
by neutralizing 11-22 Abs treatment (Fig. 7B). These results
suggested that IL-17 and IL-22 induced by rAg85B have little or

PLOS ONE | www.plosone.org

- no wsystéfnic inhibitory éffe,ct on the ‘d‘evelopment of allergic
- inflammation in the lung. Neutralization of IFN-y 4t the challenge

phase also “had little or: no suppressive effect on - serum - IgE
expressions and eosinophilia“induced by rAg85B treatment. (data
not shown). The number of mﬁkratmg cells in' BAL fluid were also
not changed in mice administered neutralizing Abs to IL-17 and
IL-22 (Fig. 7C); however, fractions of infiltrating cells it BAL fluid -
were different. Neutralization of IL-17 by IL-17-specific Abs
prevented neutrophil infiltration by rAg85B administration in the
airway, and this preventive effect on infiltration 'of neutrophils was
partial in IL-22-specific Abs administered mice: (Fig. 7D). Eosin-
ophilia suppression by rAg85B administration was reversed by
neutralizing IL-22° Abs treatment (Fig. 7D). These results parallel
previous observations of the specificity of IL-17 and IL-22 effects
[20]. Enhancement of innate immune cell recruitment induced by
rAgB85B was fully reversed by neutralizing 11.-17 Abs treatment, -
and this rAg85B effect was partially reversed by administration of
neutralizing IL-22 Abs in y8T cells (Fig. 7D). These results showed
that Th17-related cytokines induced by rAg85B have pivotal roles
in innate immune cell recruitment in BAL fluid and in severity of
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The Role of Ag85B on Allergic Inflammation via IL-17 and IL-22

(A) CD4/CD8 T cell 18T cell NKp46™ cell Lti-ike cell  CD11c* cell

b 4

() ; (C) cpg*
$+103 o H control tloo]
° ' M ragsss o - 4
i ol 0.2] -4
§ 0.2 0.3
— s
& 00| o, 5
2 ° 20.1
@ o g =
Yol 5 0 0.
%" ~L ‘ : ND. N.D. ol
o 0.0 A7 22 L1722
L-22 ——»
(E) (F)  Ltilike
A A 9‘2
g
.8 . 0.2 0.2
° g 63| 5 - ax
o T 2 =
oM go. To.1 01
3 £ z =
> z Al - 8
g I\ P> e s 5 1.5 R K 0
Sk N R - .
= L1722 = 17 122 A7 122
i

IL-22 ———> [-22 ——>
Figure 6. Innate immune celis that secrete Thi17-related cytokines are induced by rAg85B administration in BAL fluid. OVA-
immunized (i.p., day0-and 14) and sensitized (5% aerosolized-OVA, day21 to 25) BALB/c mice were challenged with PBS or rAg85B. protein (i.p.
(100 pg; days 0 and 14) and'i.n. (20 pg; days 21, 23, and 25)). At 24 h after the last OVA sensitization, BAL fluid:from.naive or OVA sensitized BALB/c
mice treated with PBS or rAg85B, were harvested. BAL cells were stimulated with ionomycin and PMA for 5 h, and with brefeldin A added in the last
3 h. Flow cytometry of BAL cells from PBS-treated (upper) and rAg85B protein-treated (lower) OVA-sensitized mice stained with anti-CD3, anti-CD4,
anti-CD8, anti-Gr-1, anti-yd TCR, anti-NKp46, anti-CD11¢, anti-CD127 (IL-7R) and Lineage specific marker (CD3, CD19, Gr-1, CD11b, CD11c). Numbers in
quadrants-indicate percent of cells in each:(A). Intracellular IL-17- and IL-22 staining’in indicated cells by flow cytometry (dot plots) and absolute
numbers of those cell populations (side graphs).in the BAL fluid (B, C, D, E, F, G). Data are representative of atleast two independent experiments

_ (**P<0.01 compared with OVA control..error bars, s.d;; n=6 mice).
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lung: inflammation but not in regulated systemic allergic inflam-
mation involving Th responses. -

-Administration of rAg85B-promoted Th17-related innate
responses in the lung ’
Our data suggested ‘an important link between rAg85B and
airway ‘innate immune cells producing IL-17 and IL-22 that
contributed - to the homeostasis expression of Thl7-related
cytokine response genes. However, these two cytokines induced
by tAg85B administration did not clearly show ‘inhibitory effects
on systemic allergy responses (Fig. 74, 7B). From these findings,
we next explored the relationship between the roles of airway
innate immune cells and wound repair in mice that received in.
‘administration of rAg85B. Mice that received IL-17 or IL-22 or

PLOS ONE | www.plosone.org 8

both neutralizing antibodies showed a marked induction of fibrosis
and actin _staining . but . incomplete cancellation -of rAg85B
suppressive effects at the same levels as, those in OVA control
mice (Fig. 84). Histological findings suggested that IL-17 and IL-
22 induced by rAg85B in, administration were partially involved
in regulation of local tissue allergic inflammation. The inhibition of
rAg85B effects by neutralizing Abs of IL-17 and IL-22 to allergic
inflammation was partial; however, tissue repair in lungs was seen

_in rAg85B-administered mice by histopathological examination.

These results led us to hypothesize that IL-17 and IL-22 induced
by rAg85B induced local tissue remodeling/repair molecules. To
confirm this, the induction of tissue homeostasis-related gene
expression in rAg85B-administered mice was examined by real-
time RT-PCR. Rb2, Cyclin D1 and c-Myc are associated with

September 2014 | Volume 9 | issue 9 | e106807
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wound healing, tissue repair and remodeling including prolifera-
tive ‘molectiles ‘[21]. Mucl [22,23], matrix metalloproteinase 13
(MMP18) [24], and the extracellular matrix proteins decorin and
dermatopontin [25] produce protective mucus. Lymphotoxin-beta
(Ltb) is a molecule related to signaling in stromal cells to produce
factors that organize lymphoid ¢ells into lyniph' nodes [26]. The
transcription of Reg3y is involved in tissue repair and antimicro-
bial responses [27]. The expression of these genes ‘involved in
innate immune response-mediated signaling ‘was  significantly
enhanced in-the lungs of rAg85B-administered mice (Fig. 8B).
The increases in mRNA levels of all molecules other than Reg3y
and dermatopontin were inhibited by treatment with neutrahzmg
Abs of IL-17 (Fig. 8B). On the other hand, the expression of
mRNA of molecules enhanced by rAg85B administration was
decreased after treatment with TL.-22 neutralizing Abs except for
Rb2, Cyclin DI, ¢-My¢, Mmpl3 and Mucl (Fig. 8B). These
results suggested that IL-17 and IL-22 induced by rAg85B
administration affected induction of pulmonary innate response.
In conclusion, IL-17 induced by rAg85B admlmstratlon induced
the expression of various types of wound healing, tissue repair and

PLOS ONE | www.plosone.org

I, Siglec:F*), neutrophils (Gr-1%, Siglec:F"®9), v8T cells (Gr-1"%9, y5TCR"
(CD3"%9,'NKp46'), LTi like cells (CD3"9; L-7R"), and absolute numbers of those cell populations (side graphs) in BAL fluid-(D). Data are ref
of at least two independent expefiments (*P<0.05, **P<0.01 compared with rAg8SB+|sotype control cha!lenged group error bars, S, d

NKp46+ cells

remodeling molecules. Interestingly, 11-22 in rAg85B-immunized
mice induces the exprcssmn of molecules miainly  ‘associated
antimicrobial responses such as Regﬁy, decorin, dermatopontm .
and Ltb. In summary, Thl and Th17 cells are induced in reglonal
lymph nodes by administration of rAg85B; however ‘Th17 cells
are not mduced in BAL unlike in Th1 cells. IL-17 is produced by
innate immune cells with IL-22 productlon IL-17 and IL-22 are
unportant in not only anti- -allergic effects, such as eosinophil

~ inhibition, but also wound healing and tissue repair in the lung

(Fig. 9).
Discussion

Results of several experimental studies on mycobacteria
involving mycobacterial ‘antigens' in ‘mouse models of allergic
airway inflammation have been reported. In murine asthma
models, intranasal administration of BCG suppressed asthma
‘manifestations probably through ‘Th1 response [2 4], Treg cells

[5,6,28], or NKT cells [7,8,29]. In our experimental setting using
rAg85B protein, we did not find any detectable effect or
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Figure 8. Ag85B administration promotes Th17-related innate responses.in the lung. OVA-sensitized BALB/c-mice (5% aerosolized-OVA,
day21 to-25) were-challenged intranasally with:PBS (control), rAg85B (rAg85B.+ isotype control), rAg85B:plus neutralizing IL-17 (rAg85B +IL-17Ab) or
IL-22 (rAg85B + IL-22Ab), or a.combination-of both antibodies. (rAg85B +IL-17/22Ab) on.days 21, 23; and 25. The isotype-matched control antibody
was treated.with the same time course.as-neutralization Ab i.n. administration. Lungs from:naive or:OVA sensitized BALB/c-mice treated with PBS or
rAg858B with/without:neutralization Ab/were:sampled-one day after the:last- challenge for histological analysis and quantification of mRNA levels.
.Lung:sections:were stained with-hematoxylin.and eosin: (left-row, scale bar,- 100-mm), Masson's.trichrome {center row, scale bar, 100-mm), a-smooth
muscle actin (right row; scale bar, 50 mm)..Numbers in.quadrants indicate the score scale from'0 to 5 in each (A): Real-time RT-PCR was performed for
the indicated-molecules-expression.on RNA isolated from individual micelungs (B). Data are representative of at-least two independent experiments
(*P<0.05, **P<0.01 compared with rAg85B-+isotype control challenged group. error bars, s.d.; n=6 mice).

doi:10.1371/journal.pone.0106807.g008

substantial change in numbers of both NKT cells and Treg cells in Interestingly, our study also showed that IL-22-producing cells in
BAL fluid from rAg85B-administered mice. Moteover, microarray lungs of rAg85B-administered mice were NKp46* cells, LTi-like
analysis revealed that the gene expression pattern of splenocytes cells, 8T cells and CDllc* cells, This is the -first time
stimulated with rAg85B. and that of splenocytes stimulated with demonstration of an important link between the mycobacterium
BCG were very different (data not shown). This discrepancy in the antigen rAg85B and IL-22-producing cells. Although we could not
effects of vaccination with BCG and vaccination with rAg85B rule out the possibility of Th17 cytokine-producing cells other than
might be related to the factors affecting immune responses. BCG those described here, NKp46™ cells, LTi-like cells, y8T cells and
contains many essential components to induce early immune CD11c* cells were thought to be rapid innate sources of IL-22,
response such as glycolipid and DNA, wheréas rAg85B is a single which is required in the early stage to maintain epithelial cell
immunogenic protein. : ‘ integrity and to suppress eosinophilia. Moreover, IL-22 can act-

The present study indicated that Thl7-related immune synergistically or additively with other cytokines, including IL-17

responses induced by rAg85B administration had a suppressive or TNF, to promote gene expression for antimicrobial peptides,
effect on allergic airway inflammation, and we attributed- this chemokines, matrix metalloproteinases, cytokines, and acute-
suppressive - effect . to the . larger. proportion of Thl7-related phase proteins from epithelial cells in the lung [33].. These
cytokine-producing innate immune cells in BAL fluid. It has been findings also support our results showing that simultaneous

reported that Mycobacterium antigens increased the number of  induction of these cytokines and expression of many genes may
¥8T cells that express IFN-y [30] or IL-17 [31], and these be beneficial functions of rAg85B treatment in local allergic
"responses induce healing to epithelial surfaces [32]. Given the pathology. )

“integral role of 8T cells in innate immunity, 8T cells are one of Pulmonary infection of mycobacteria induced not only a
the crucial factors in the rAg85B immune regulatory functions. neutrophil-mediated response but also T cell-mediated IFN-y
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Effects of rAg85B on allergic lung inflammation

Figure 9. Schematic illustration of the proposed effects of rAg85B in a mouse model of allergic inflammation. IFN-y and IL-17-
producing Th cells are mduced in regional lymph nodes by rAgSSB challenge, however, Th17 cells do not enter the lung unlike Th1 cells. Th17-related
cytokine-secreting cells in fungs from rAg85B-administered mice are innate immune cells including y3T cells, IL-7R" Lin™ cells, CD3™ NKp46* cells and
CD11¢* cells. IL-17 and 1L-22 induced by rAg85B in an allergic environment have crucial roles in not only anti-allergic effects but also regulation of

tissue homeostatic reactions.
doi:10.137 1/journal.pone.0106807.g009

production and granuloma formation depending on IL-17 from
especially y8T cells [34]. The hallmark of mycobacterial infection
in the lung is granuloma formation with infiltrating neutrophils,
which creates an  immune -microenvironment in which the
infection can be controlled:" On the other hand, it also provides
the mycobacterium with a niche in which it can survive,
modulating the immune response to ensure its survival without
damage over a long period: of time [35,36]. Mature granulomas
include fibroblasts and extracellular matrix, which surround and
separate the granulomas from the normal environment. Admin-
istration of anti-IL-17 Abs during the inhalatory challenge phase
abolished the bronchial neutrophilia and the upregulatlon of genes
related to tissue repair and homeostasis observed in rAg85B-
administered mice in the present study. Neutrophils' may also
promote epithelial healing [37] and are now known to be rich
sources of prestored and expressible proteins [38] that may directly
promote wound healing [39;40]. In the present study, induction of
neutrophilia and upregulation of described genes related to wound
healing with suppression of tissue injury might be the mechanisms
of granuloma formulation induced by mycobacteria infection.

In the present study, IFN-y and Thl7-related cytokines were
key factors to regulate allergic severity in our experimental setting.
Although infiltration of Thl and Thl7 cells elicited by rAg85B
was induced in pulmonary lymph nodes, such effector cells were
not increased in BAL fluid of mice showing anti-allergic effects of
Ag85B administration. Moreover, our results suggested that the
accumulation of neutrophils and IL-17 and/or IL-22-producing
innate immune cells contributed to the homeostatic functions in

PLOS ONE | www.plosone.org
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the Thl-balanced environment induced by rAg85B administra-
tion. These findings provide a new insight into the regulatory
effects -of various innate immune factors induced by the
mycobacteria major secretion protein rAg85B in allergic inflam-
mation. ‘

Supporting Information

Figure S1 SDS-PAGE separation and silver staining of
rAg85B. The recombinant purified Ag85B was. solubilized in
sample buffer to the desired concentration, and boiled for 5 min.
15 pl/well from each samples were separated on 10% SDS gel
using mini-PROTEAN electrophoresis instrument (Bio-Rad
Laboratories). Silver staining of the gel was performed according
to the “standard protocol of EzStain Silver (ATTO). Various
concentration of rAg85B on the gel (12.5, 25, 50, 100, 200, and
400 ng).

(TIF) .

Figure S2  CD4" Foxp3™ T cells were almost expressing
CD25. OVA-immunized (ip., day0 and 14) and sensitized (5%
aerosolized-OVA, day?21 to 25) BALB/c mice were challenged
with PBS or rAg85B protein (i.p. (100 ug; days 0 and 14) and i.n.
(20 pg; days 21, 23, and 25)). At 24 h after the last OVA
sensitization, mediastinal lymph nodes (MLNs) from naive or
OVA sensitized BALB/c mice treated with PBS or rAg85B, were
harvested. MLNs cells from naive (upper), PBS-treated (middle)
and rAg85B protein-treated (lower) OVA-sensitized mice were
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stained with anti-CD4 and anti-Foxp3. Cells in° R1-R4 were
analyzed for the expression of CD25.

(TTF)

Figure 83 The composition of BAL cells in rAg85B
administered mice. OVA-immunized (i.p., day0 and 14) and
sensitized (5% acrosolized-OVA, day21 to 25) BALB/c mice were
challenged with PBS (control) or rAg85B (i.p. (100 pg; days 0 and
14) and in. (20 ug; days 21, 23, and 25)). One day after the last
challenge, BAL cells from OVA sensitized BALB/¢ mice treated
with PBS or rAg85B were counted. Different. BAL. cells
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ABSTRACT

Motivation: Kotai Antlbody Builderis a Web service for tertiary struc-
tural modeling of antibody variable regions. It consists of three main
steps: hybrid template selection by sequence alignment and canonical
rules, 3D rendering of alignments and CDR-H3 loop modeling. For the
last step, in addition to rule-based heuristics used to build the initial
model, a refinement option is available: that uses fragment assembly
followed by knowledge-based scoring. Usmg targets from the Second
Antibody Modeling Assessment, we demonstrate that Kotal Antibody
Builder generates models with an overall accuracy equal to that of the
best-performing semi-automated predictors using expert knowledge.
Availability:and implementation: ‘Kotai Antibody Builder is available
at http://kotaiab.org
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1 INTRODUCTION

Antibody variable regions constitute a unique protein module
that has evolved to recognize virtually any biomolecular struc-
ture with high. specificity -and affinity. These. propertles have
enabled the design. of antibodies for use in the diagnosis and
treatment of cancers and autoimmune and infectious ‘diseases
(Kuroda et al., 2012). In addition to their clinical value; antibo-
dies are extremely important for routine assays used in basic
research. Computational modeling of antibody structure is a cru-
cial step in engineering new antibody molecules, but there are few
tools available to the general public, and accurately modeling
loops in complementary determining regions (CDRs) remains
an open problem. The PIGS server (Marcatili e al., 2008) was
validated in the first blind Antibody Modeling Assessment

(Almagro et al., 2011). However, prediction of the third heavy -

‘chain CDR (CDR-H3) remains difficult because of its structural
diversity.

Recently, the Second Antibody Modeling Assessment (AMA-

1) was held. AMA-II was divided into two stages: in stage I,

sequences were provided, and teams were assessed on the overall

accuracy of their models. In stage 2, the crystal structures of the

_variable region lacking only CDR-H3 were provided, and groups

*To whom correspondence should be addressed.

were assessed on the accuracy of CDR-H3 loop prediction.
In stage 1, the joint' Osaka University Astellas. (JOA) team
achieved ' the ‘lowest average root-mean ‘square deviation
(RMSD) for CDR- H3 . 3A) and generated the most accurate
models for 4 of 11 targets. In stage 2, the JOA team generated the
most accurate models (with RMSDs of 1A or less) for 4 of 10
targets (Almagro ef al., 2014). However, the method used by the
JOA team required much manual intervention and expert know-
ledge. Kotai Antibody ‘Builder represents a fully automated but
simplified implementation of the pipeline used by the JOA team
(Shirai et al., 2014)

2 METHODS

Kotai Antibody Builder is composed of two main modules: MANGO
and Spanner (Lis et al., 2011). The MANGO module sélects template
structures for the framework (ie. non-CDR) and each CDR by a se-
quence-based database search and rule-based heuristics, while Spanner
builds loops by fragmeni assembly. Because CDR-H3 loops are well
known to be more difficult to model than those of other CDRs, Kotai
Antibody Builder provides a refinement option that includes sampling by.
fragment assembly followed by side-chain modeling and scoring by ‘an
empirical scoring function.

2.1 Framework selection

The local structure of résidues 7-10 in the heévy (H) chain (here denoted
‘framework motif’) is diverse and can be classified into five types. In the
first step of Kotai Antibody Builder, the framework motif'is predicted by

- a statistics-based classification. Next, sequence: alignment is used to find

framework templates for H and light (L) chains separately. Only tem-
plates that have the same framework motif'with that predicted for: the
query are used. Here, the CDR regions are masked so that only" the
framework: region is aligned and scored. The H and L results_are

merged and sorted by sequence identity (seqID). The Molprobxty soft-

ware. (Chen et al., 2010) is used to assess if the percentage of backbone
Ramachandran conformations inside the favored region is above a
threshol (>85%) If there is no such. model found, the selecnon criteria
are relaxed and template models are. selected by squD regardless of the
predicted framework motif.

2.2 Non-H3 CDR selection
It is well known that each non-H3 CDR can be classified into one of

several canonical clusters. We use the most recent deﬁnmon of CDR
clusters (North et al., 2011), along with position-specific scoring matrix
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(PSSM)-based scoring, to predict the best non-H3 CDR cluster for the
query (Shirai ef al., 2014). For a given CDR, if the framework template
and query are predicted to belong to the same cluster, the loop in the

framework:template.is used; otherwise, the: template ‘with the highest

seqID in the predicted cluster is used.

2.3 CDR-H3 selection

Because CDR-H3 is diverse in terms of length, sequence and structure,
canonical rules have not been identified. Earlier, we developed H3
rules that partly classify CDR-H3 structures based on amino acid
sequence (Kuroda er al.,. 2008; Shirai er al., 1996). Kotai. Antibody
Builder uses the most important of these rules (rule i), which predicts
the structural class of the ‘base’ proximal to CDR-H3. For construction
of the initial model, we use rule i if the length of loop is longer than five
residues. In the optional refinement step, Spanner is used to generate 20
loop-models followed by successive energy minimizations by the cosgene
module in the myPresto package (Fukunishi et al., 2003) and OSCAR-
leap (Liang et al., 2014). Here, we used a customized Spanner fragment
database including only antibody structures for fast and specific CDR
Joop modeling: Finally, the single loop model was selected based.on the
OSCAR-leap score.

2.4 - Model building

Selected  loop models are grafted onto the framework template. If there
are insertions/deletions in the template, Spanner is used to fix them. Side-
chain modeling by OSCAR-star (Liang et al., 2011) followed by short
energy minimization with positional restraints on backbone atoms is also
carried out (Fukunishi er al., 2003). The initial calculation takes 5-10
min, whereas refinement requires an additional ~90 min.

2.5 Web server

Kotai Antibody. Builder accepts amino acid sequences for H and L Fv
regions The resulting 3D model can be downloaded in PDB format and
visualized by the JSmol viewer. The PDB.IDs of templates as well as the
canonical classifications of each.loop are shown.

3 RESULTS

To assess the accuracy of Kotai Antibody Builder, we used
targets 2-11 from AMA-IL In Figure 1, we show the resulting
Co RMSDs of rank-1 models submitted by:the JOA team along-
side rank-1 initial and refined models from the Web server. The

40

Einitial
30 17 HErefined
EAMA-
5 PIGS

nonH3CDR  H3
Fig. 1. Average Ce RMSDs of AMA-IT targets 2-11. ‘AMA-IT indicates
rank-1 models submitted by the JOA team; ‘initial” and ‘refined’ indicate

the correspondmg Web server options; ‘All’ and ‘FR’ indicate the entire
Fv and framework regions for H and L chains combined

Al R

overall RMSD was ~1 A. The refinement option was much more
successful in modeling CDR-H3 loops than the protocol used to
generate initial models or by.the PIGS server (Marcatili. et ‘al.,

2008) ‘Surprisingly, the CDR-H3 accuracy for the refined loops
(2.3A) was equal to, that of the stage-1 JOA submitted models,
the generation of which requxred careful manual inspection.
There was.a slight increase (~0:1 A) in.the RMSD of the non-
H3 CDR loops when the refinement option was used because of
the fact that the other loops were not held rigid during the mini-
mizations; however, we found that this slight flexibility in- the
non-H3 CDRs was necessary-for proper modeling of the H3
loops.

4 CONCLUSIONS

There are few fully automated antibody modeling pipelines avail-
able to the general public, and none that we are aware of that can
reach this level of ‘accuracy for CDR-H3 loops. Thus, Kotai
Antibody Builder is expected to.contribute uniquely to the
field of antibody structural-modeling-and design.
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- ABSTRACT

increasing awareness of the |mportance of protein—
RNA interactions has motwated many approaches to
predict residue-level RNA bmdmg ‘'sites in proteins
based on sequence or structural characterlstlcs

Sequence-based predlctors are usually h|gh in sen-
sitivity but low in speci H \ ersely structure-
based predlctors tend to have high specrflclty, but
lower sensmvrty Here we quantlfled the contribu-
tion of both 'sequence- and structure-based fea-
tures as mdlcators of RNA- bmdmg propensrty us-
ing a machine-learning approach. In order to cap-.
ture structural information for protems without a

" known structure, we used homology modeling to ex-

tract the relevant structural features. Several novel
and modified features enhanced the accuracy of
residue-level RNA-binding propensity beyond what
has been reported previously, including by meta-
predlctron servers. These features include: hrdden
Markov model-based evolutlonary conservaﬂon ‘sur-
face deformations based on the Laplac|an norm for-
malism, and relative solvent accessrbmty partrtroned
into backbone and side chain contributions. We con-
structed a web server called aaRNA that implements
the proposed method and demonstrate its use in
identifying putatrve RNA blndmg srtes

'INTRODUCTION

Many biological processes require specific interactions be-
tween protein:and RNA ‘molecules: Protein-RNA “inter-
actions coordinate the flow of genetic information from
transcription to translation at-various levels (1-3). Protein
and RNA molecules can fold together:to form stable sub-
units. of molecular machines such as the ribosome (4) or
spliceosome-(5) and also form transient complexes, such
as target-specific ribonucleases (6) and helicases (7). Like
proteins, RNA molecules can:adopt myriad structural con-
formations, a consequence of : whichis a great ;variety of

protem—RNA interaction motlfs Understandmg the under-
lymg principles of these interactions is a non-trivial task
since there are far fewer solved structures of protein—RNA
complexes than there are known interactions and RNA
structure determxnatron poses.a unique set-of challenges
(8). Nevertheless, the growth rate of structurally determined
proteln-nucleotlde complexes has continued to rise over the
last decade. Therefore, there is a need to. estabhsh methods

that can reliably translate such structural data into predic-

tive models..

Computational methods for the predlctlon of RNA bind-
ing sites on proteins make use of various features. A num-
ber of methods are based on sequence. information, includ-
ing: 'PiRaNhA (9), which uses position- specn‘ic scoring ma-
trices (PSSMS) inherent bmdmg propensities of interface
residues, solvent acces51b1hty and hydrophobicity; BindN+
(10), which uses side chain pKa, hydrophobrmty, the molec-
ular masses of residues and evolutionary mformatlon cap-
tured by PSSMs; PRBR (11), which uses predicted sec-
ondary structure, conservation of re31due physicochemical

~ properties and residue-dependent . charge-polarity and hy-

drophobxclty, SRCPred (12), which uses PSSMs and global
amino acid composmon (GAC) to predlct dr-nucleotlde
bmdmg propensities. Methods that make use of structural
information include: KYG (13), which combines residue-
based. binding propensities, spatially close residue doublets,
and sequence profiles; DRNA (14), which performs align-
ment with known complex structures and scores. targets
with a statistical energy function and OPRA (15), which
uses accessible-surface-weighed residue binding propensi-
ties calculated from known binding interfaces..
Sequence-based predictors are-usually shortsighted; due
to their fragmented view of a binding site; a sliding win-
dow can only capture a continuous segment of sequen-
tial residues, thereafter neglecting correlation between -s¢-
quentially distant but spatially close residues. In contrast,
structure-based predictors can reach higher specificity but
usually at a.cost of sensitivity- (16). Structure-based methods
generally attempt to recall geometric features from known
protein-RNA complexes and fit these to geometric features
of query proteins. Due to the large degree of freedom. in-
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troduced by protein folding from 1D sequence to 3D.strue-

ture and the limited number of training structures, geomet-
ric features of RNA-binding proteins have not been exhaus-
tively explored, resulting in lower sensitivity as compared
with sequence-based methods. As a consequence of these
tradeofls, we aimed to develop a method that ecould opti-
mally utilize both sequence and structural features of RNA-
binding proteins in order to accurately quantify. their con-
tributions to protein-RNA molecular recognition.

To this end, we have made use of several established
and novel features. In addition to the sequence features
- used previously in the SRCPred method (12), we included
hidden Markov model (HMM)-based evolutionary con-
servation (EC) scores to better evaluate conservation. We
adopted an algorithm that collects positional amino acid
occurrence from reweighed alignments acquired through
HMM-based comparisons (17). We found that the HMM-
based EC feature provided a more straightforward mea-
sure of EC than the previously described PSSM-based fea-
ture (12). For structural features, we made use of local
relative accessible surface area, which we developed in a
novel way and mapped onto patches of spatially neighbor-
ing residues.in-order to capture information from spatially
close residues. Finally, we represented molecular structure
by:using the Laplacian norm (LN) (18). LN is a struc-
tural-descriptor that measures surface convexity/concavity
over different length scales. By tuning the granularity, the
LN could be made tolerant to structural deviations among
RNA binding surfaces; while still being sensitive enough to
distinguish binding surfaces from non-binding ones. Con-
sequently, both sensitivity and specificity of the predictor
could beachieved.

*In summary, we present an’ RNA binding site pre-
dictor using various features that outperforms sequence-
or ‘structure-only: predictors. Importantly, the proposed
method makes use of structural features even for sequence-
only input through in-line homology modeling and is ro-
bust with respect to typical input noise levels that occur
in-the homology modeling phase. The proposed method
has been implemented as a web service called aaRNA at
hitp://sysimnifrec.osaka-u.ac.jp/aarna/, and is expected to
enhance functional ‘annotation of putative RNA-binding
proteins at the reSIdue level.

MATERIALS AND METHODS
Dataset and contact profile

Protein-RNA complexes with a resolution better than 3.0

A and solved by X-ray crystallography were downloaded

from the Protein Data Bank (PDB) (19) in May 2013. Only
protein chains with at'least 30 resolved residues and no <3
residues in RNA contact were considered. We also required
the RNA partrer chain or chains to be at least 3 nucleotides
long. Protein chains that include only carbon alpha (Coa)
atoms were discarded. Redundancy among protein chains
was reduced by clustering them using BLASTCLUST at a

25% sequence identity threshold. From each protein chain.

cluster, we selected a representative with the largest num-
ber of RNA contacts. A protein—~RNA contact was defined
“structurally, and only contacts between protein and RNA

Nucleic Acids Research, 2014, Vol. 42, No. 15 10087

chains within the same biological unit (BU) were consid-

‘ered. For a structure with a single BU, an amino acid and

ribonucleotide residue: pair was considered to be in con-
tact when their minimum distance was <3.5 A. For struc-
tures with multiple BUs, individual units were separated
following ‘REMARK 350’ records in their respective PDB
files. Contacts taking place at the interface of two nearby

‘BUs were ignored, because these interactions might not -be

functionally relevant. A di-nucleotide contact is defined as
a nucleotide in contact together with one of its flanking
nucleotides on either direction. We neglected structurally
unresolved protein residues because neither contact nor
structure could be defined. Protein chains were partitioned
into a ‘non-ribosomal’ and a ‘full’ (ribosome-including)
dataset; the former included no protein chains interacling
with bulky ribosomal:RNAs: (longer than 200 bps), result-
ing in 141 and 205 protein chains, respectively. Two supple-

_mentary files listing.all PDB protein and RNA chains for

contact included in the dataset can be found at Supplemen-

tary Materials. In the non-ribosomal dataset, 2899 out of 43
863 residues were RNA binding, while in the full dataset,
5493 out of 51 781 residues were RNA binding. With the
full dataset, we further checked hydrogen bonds in the struc-
tures using HBPLUS (20); and analyzed contact preferences
between proteinresidues and RNAnucleotides: Note that in
order to identify hydrogen bonds correctly, a profile indicat-
ing atoms of hydrogen donator and aceeptor in nucleotides
must be prepared. In particular, the:O3” atom of ribose can
only serve as an acceptor after. forming a phosphodiester
bond.

Artificial neural network training and testing -

Binary and di-nucleotide ‘classifiers were built by using
an-artificial neural network algorithm implemented inthe
Stuttgart Neural-Network Simulator suite (http://wolf.bms.
umist.ac.uk/naccess). A three-layered fully connected net-
work was constructed-and trained via a standard back prop-
agation protocol: The number of nodes in the first network
layer. equaled the number-of training features (to:be de-
scribed below), and the.last output layer contained either
1 or 16 output nodes (ranglng from 0 to 1 in value) for bi-
nary and di-nucleotide classifiers, respectively. In the later
case, the 16 output nodes are due to the 16 possible di~
nucleotide combinations: [AICIGIU] x [AICIGIU]. The num-
ber of nodes in the middle hidden layer was tuned to. op-
timize the performance; resulting in-a five-node layer. The
performance of the model was assessed by a five-fold cross-
validation scheme. Instead of randomly sampling an equal
number of ‘positive’ (i.e.. RNA binding) and negative (i.e.
non-binding) inputs, a more stringent method was used. A
nearly equal number of:protein chains (28 or 29 for the
RB141 dataset and-41 for the RB205 dataset) were ran-
domly allocated into-five. subsets, with each subset con-
taining only residues from the assigned chains. Then, three
out of five subsets were iteratively selected to train the net-
work. To avoid over-fitting, training was.halted when an
early stopping criterion was satisfied based on evaluation
by one of the subsets left out. Finally, the last remaining
subset was tested by the network to estimate the perfor-
mance. All protein chains were tested after shuffling train-
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ing and testing datasets in this way. This approach to train-
ing and testing resulted in a far larger proportion of nega-
tive residues than if the datasets were artificially partitioned
into an equal nuniber of positive and negative sites. Tests re-
turned numerical values of bmdmg propensities from 0 to 1.

Receiver operating characteristic (ROC) analysrs was then
carried out on these propensrtles by varying cutoff values,
above which a prediction was considered as binding. For the
di-nucleotide classifier, because the best performance was
achieved under different cutoffs for different di-nucleotide
types, output binding propensities were not directly com-
parable among different classes. Therefore binding propen-
sity raw scores (prediction scores returned by the neural
network) for different di-nucleotide types were transformed
into precision values calculated by using corresponding pre-
diction scores as the cutoff during ROC analysis. In order to
test the stability of model, we repeated each training cycle
five times by reinitializing the network with different ran-
dom number seeds before training.

Training features based on pretein sequence

Three sequence features (21 -bit coding, GAC and PSSM)

were taken from our prev1ous work (12) asa starting point.

A sliding window of size 2N+1, which corresponded toa
center residue and its N nearest sequence nerghbors on ei-
ther side, was used to scan protein sequences. Since the win-
dow was moved by 1 in each step, neighboring windows
shared 2V residues. A 21-bit sparse coding method was used
to encode window fragments into their amino acid compo-
sition in sequence order, Each resrdue was represented bya
~ 21-bit long string. The first 20 bits were used to label specific
amino acids types. For each of the 20 common amino acid
types, only one bit position was set to 1, and the rest were
set to 0. The last bit was set to 1 for vacant sequence posi-
tions or non-standard amino acids. Next, a 20-column GAC
vector was used, which represented the abundance of each
amino acid type in a protem sequetice. Last, evolutionary
profiles based on PSSMs were computed by the PSI-BLAST
program with an E-value threshold of 1E-3 and three iter-
ations against NCBI’s NR database. Raw PSSM values Vv
were normalized by a logrstlc operator:

1
1=V’

In addition, we evaluated protein EC with a method
combining HMM-HMM comparison and position-specific
amino acid frequency calculated with welghts from multi-
ple sequence alignments, as described in (17). Homologs
were identified by sear chmg a pre-clustered HMM database
of UniProt protein sequences at a 20% similarity level

- (HHsuite UmprotZO Database) by using the HHblits pro-
gram (21) with two iterations, an E-value cutoff of 1E-3
and the -reahgn option turned on. The filtering options
in HHblits pairwise sequence identities were turned off
in order to include all possible homologous sequences in
the database. After database searching, ‘multiple-sequence-
alignment (MSA) files in a3m format were transformed into

a2m format using the HHblits reformat. pl. utlhty with the

M first” option, which turned all re51dues in the first se-

quence (the query sequence) into a match status, For a mul-

tiple sequence alignment matrix { 475!M} of size M x L,
where M (rows) is the number of collected protein sequences
and L (columns) is the index of residue positions in the
query sequence, each matrix element could be ‘one of the
20 amino acid types or a gap type, marked as ‘-, To al-
leviate biased sampling due to different numbers of simi-
lar HMMs ‘deposited in the database, a normalized Ham-
ming distance was used to-assess similarities among homol-
ogous sequences. The weight of each collected homologous
sequence in the amino acid frequency calculation was cali-
brated according to its sequence similarity to the rest of the
homologs. Only amino acids in upper case (HMM match
status) at alignment columns were taken into consideration.
For any two aligned protein sequences Sy, and S, (where m
#n,dnd 1 < =m, n < = M), the Hamming distance (22)
was defined as the number of positions for which the cor-
responding amino acids were different. The Hamming dis-
tance was normalized by dividing by the alignment 1ength
If the normalized Hamming distance was smaller than a
pre-defined distance threshold (0.3), which means the simi-
larlty was greater than 0.7, then their pairwise werght Winn
is set to 1; otherwise it was set to 0. When m and n were
equal, W,,,,, was set to 1. For each sequence in the MSA
profile, the correspondmg welght W,, was given by the in-
verse of the sum of all pairwise weights (including with self),
as follows:

1.0 : o
Wy = ————————, wherel <m < M. 6}

1.0+ 3> Waa

n=l,n#m

The larger the number of close neighbors (above a sim-

ilarity threshold of 0.7 by default) one could find for a se-

quence, the lower the weight of the amino-acid occurrence
in the-aligned column. The contribution of an-aligned se-
quence to ‘the occurrence of a given type of amino acid in
a given column ofthe multiple sequence alignment could
then be calibrated by its weight as:

) = e [ +2Wn,xa(A'-",A>],~ @

ni=1

which represents the frequency of an amino acxd type 4
in column i of the alignment with reweighed sequences. In
Equation (2), i indicates a sequence position from 1 to L, A

indicates the residue type at position i and Meﬂv = Z W,
=1
is the effective number of sequences in the ahgnment af-

ter reweighting. The term §( 4", 4) is the Kronecker delta
function, which equals 1 when A = 4 otherwise it re-
turns 0. A pseudo-count term (A) is used to regularize the
data for the finite number of sequences, and was set to 0.5
by default. After reweighing, statistics on the occurrences
of different amino acids at each alignment column of the
query sequence were collected. Residue conservation values
(weighed occurrence frequencies scaled from 0 to 1) in the
query sequence were then normalrzed by the largest value
of that sequence.
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Training features based on protein structure

Protcm residues that form a continuous interface with RNA
“are.not necessauly close.in terms of the primary sequence.
Therefore, we investigated features that encode spatial con-
straints among residues. For simplicity, we used carbon al-
pha.(Ca) atoms as reference pomtb to calculate Euclidean
_distances between residue pairs. Structural neighbors of a
target residue were represented as a list in order of increased
Ca/Co atom distance from the target.

To be able to discriminate RNA-binding residues from
non-binding residues, we used the LN on multiple scales to
represent deformation of the protein structure. This method
has previously been used to compare and classify proteins
from different families (18), and we found that it worked
well for. characterizing RNA binding sites as well. Simply
speaking, LN measures a weighed distance between the
Cartesian coordinates-of each residue and the coordinate
centers of its neighboring residues (except the two to which
the rc31duc is covalently bonded). Importantly, LN coordi-
nates are invariant to translation and rotation.

In order to compute the LN coordinates, we first setup an
.nx3 Cartesian coordinate matrix P for a protein of n residues
as:

P =[x, v, z], where i = l...n.

To compute the LN, a discrete Laplace operator was de-
fined as'in (18).

_ Hl)i-2p}'llz
Qf(o) = ¢ Lifli— gl > 1, @)
0 , otherwise

where pk. is the Cartesian coordinate of a residue in pro-
tein P, and the parameter o in the Gaussian kernel con-
- trols the scale. Therefore; the weight between a residue pair
is distance and scale dependent. Under-a given:scale o, the

weights between proximate residue pairs are higher and de-

crease rapidly as the distance increases. The scale factor
o determines the relative importance of near and distant
residue neighbors. Sequential neighbors, which contribute a
large, and roughly constant term, were omitted from Equa-
tion (3) in order to highlight the distribution pattern of se-

quentially distant residues. This equation corresponds to

“the weighed adjacency matrix of an undirected graph.
The Dlagonal matrix DP(c) is defined as follows:

(o)—ZQ ). @

And the discrete Laplace operator LP (¢) of the protein
P can be expressed as:

, , LP(a) =71- DP(G)—IQP(O') ’ (5)
In the L (o) matrix (5),

diagonal elements Lf,(0) = 1,
subdiagonal elements L7, +1(a)or LF, (0)=0,

_and LF;(0) = 2;(0)

~ , where|i — j| > 1.
,k(U) .

Nucleic Acids Research, 2014, Vol. 42, No. 15 10089

By multiplying the discrete Laplace operator L (¢) with
the protein coordinate matrix P; the coordinates of each
target residue were subtracted by the weighed center (to-
tal weights being 1) of the coordinates of all other non-
covalently bonded residues in Lhe structure, which yielded
the Laplacian coordinates Lc”(o) of each residue as in
Equation (6). This explains the translation invariance of the
Laplacian coordinates.

L (o) = Li(0)x P= P -

li—jl>1

Y [ x ko]
j},_”/ ,where i =1...n. (6)
Z Qo)

After taking the Euclidean norm of the Laplacian co-

" ordinates for each residue, the distance between the target

residue and its weighed center of neighboring residues was
measured. This step makes the LN invariant to rotation.
LN values can reflect geometrical features of a target
residue under different scales. By defining a scale factor
o, a pseudo-sphere centered at the target residue with a
o-related radius can be envisaged. The contribution of
residues outside the sphere will be almost negligible in cal-
culating the coordinate center of neighboring residues. For

.a buried residue surrounded by neighboring residues, it will

result in a coordinate center of neighbors close to the target
residue. The more symmetric the neighbors spatial distri-
bution, the lower the LN value. Therefore, such buried and
symmetrically organized residues will have LN values close
to zero. For more exposed residues, especially when local-
ized on the extreme periphery of the structure, the coordi-
nate center of neighbors will deviate from the target residue,
which results in a larger LN value. In contrast, when a tar-
get residue is on a concave surface, it will be partially sur-

rounded by neighbors and consequently have a smaller LN

value. An illustration of LN of residues on concave and con-
vex surfaces at a global scale is shown in Supplementary
Figure S1. Note that LN values of buried residues can fluc-
tuate above zero, and concave residues can have LN values
close to zero, depending on the spatial distribution of their
neighboring residues, which are visible to the target residue
at a given scale.

To compensate for residue position information lost after
taking Euclidean norms of Laplaman coordinates, a range
of o values was used. By Varym g o, the topology of a residue
could be described on various scales. A small ¢ measures de-
formation of each residue locally, with only spatially close
but not covalently bound neighbors being included; a large
o will describe residue deformations on a more g]obal level.
Finally, each residue was encoded into a multidimensional
vector indexed by the scale. Distance distributions between

all Cor atom pairs were determined first. Distances at 0.0,
0.25, 0.5, 0.75 and 1.0 quantile positions of the distribution
were used to compute LN scale indices. For each protein,
LN values were re-normalized by the largest value calcu-
lated under a given scale. A sliding window, incremented by
1, was used and the LN value of a given residue was encoded
in a feature vector of length 11."
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We next devised a novel way to calculate the normalized
accesmble surface area (ASA) of ‘residues. Absolute ASA

ere computed andwele noxm’élized by
n this

row vector of Iength Q ‘Each column of an ASA feature vec-
tor (all_atom_abs, total_side_abs and mam_cham_abs) was
then re-normalized by the largest value in that column. A
neighbor list of length 1 1 (including the target residue itself
and its 10 nearest neighbors) was used to encode the ASA
of each residue.

In addition, we checked the residue composition “of
RNA-binding surfaces in terms of their physwochemloal
properties. Here, again, target residue spatial neighbors

were included. The R package ‘seqinr’ (23) was used to’

translate residue neighbor sequences into 10 physicochem-
ical features; namely, ‘tiny’, ‘small’, ‘aliphatic’, ‘aromatic’,
‘polar’, ‘non-polar’, ‘charged’, ‘acidic’, ‘basic’, plus the iso-
electric point of the residue. A 2l-residue nelghbor list (in-
cluding the target residue itself) was used.

Lastly, DSSP (24) predicted secondary structure was used

as a feature, An eight-bit binary feature vector was used to

encode different types of secondary structures defined by
DSSP, namely -, B, E, G, H, 1, S, T. Again, a sliding wmdow
approach, mcrernented by 1, was used ‘

Validation by homology models and independent dataset

Performance was measured by means'of ROC curves, Area
Under the ROC Curve (AUC), Precision-Recall (PR) curve,

Specificity [+] (also known as Precision), Specificity [~],

Sensitivity, F=measurement and Matthews Correlation Co-
* efficient (MCC), based on the number of true positives (TP),
true negatives (TN), false positives (FP) and false negatives
(FN). Measures used were defined are as follows:

Sensxtxvmy(RecaH) = 1;; +FN’

-Specificity[— ]—TN TP

Spe01ﬁc1ty[+](Pr ecision) = gpress
MCC = o TPxTN—-FPxFN
J(TP—}-FP)x(TP+FN)x(TN+FP)x(TN+PN)

2xPrecision x Sensitivity
F — score = Precision-+Sensitivity *

To validate the robustness of our method, we tested the
performance of our model using homology models in place
of experimentally determined RNA-bound structures. The
program Spanner (25) was used to render HHpred (26)
alignments into structural models. Homologous templates
with different sequence similarities (the top, <100%, <90%,
<50% and <30% 1dentity) were selected to build structures.

In addition, three sequence-representative standard
benchmarks (RB106 adapted from (27), RB144 adapted

from (28) and RB198 adapted from (29)) constructed by
the authors of predictor RNABindR 2.0 (16) were used
for comparison. We did training and testing on these three
benchmarks by applying ‘our feature-coding scheme and
evaluated the residue-based ‘and protein-based performance
on structure data as described previously (16). Further-
more, the performance of aaRINA and BindN+ was com-
pared by predicting RNA binding sites on pooled ‘and
1edundancy-reduced RNABIndR 2.0 datasets undera3.5
A distance cutoff. Two runs of redundancy removal ‘were
applied by using BLASTCLUST at a 30% s sequence iden-
tity. Three benchmark sets (RB106, RB144 and RB198)

“were merged and then clustered. After that, representa-

tive sequences (from each cluster, one cham was ran-
domly selected) were clustered again with the sequences for
aaRNA/BindN+ training. The final test dataset was com-
posed of 46 representative chains, which did not cluster with
any of the trammg sequences.

In addition, ‘we tested our model on-an independem
dataset from study-(30) by prediction and compared our
performance with methods reviewed ‘in" studies (16) and
(30), ‘which ‘included a best-performing meta—predxctor
built from other sequence-based predictors (PiRaNhA (9),
PPRInt (31) and BindN+:(10)), and three structure-based
predictors (KYG (13), DRNA (14) and OPRA ( 5)) More-
over, we constriicted an up-to-date test benchmark by'col-
lecting protein—RNA complexes that were solved by X-ray
crystallography or nuclear magnetic resonance and released
between June 2013 and June 2014. RNA-contactmg protein
sequences were ‘defined as mentioned ‘in Section ”Materi-
als and Methods, Dataset and contact profile”, and clus-
tered using BLASTCLUST at a 30% sequence 1dent1ty level,
which resulted in 154 clusters. Redundancy between repre-
sentative sequences (with the largest number of RNA con-
tacts in individual clusters) and sequences used for train-

“ing ‘was further reduced by retaining only representative

chains sharing a maximum sequence identity below 30%
when compared with training sequences. Finally, 67 protein
sequences (RB67 benchmark) were selected and tested by
different methods in the same way as the RB44 benchmark.
A complete list of RB67 dataset is avallable at the’ Supple-
mentary Materlal

Web server

The aaRNA web server can be found at http: //sysnnm ifrec.
osaka-u.ac.jp/aarna/.

RESULTS

As described in Materials and Methods, we quantified the
performance of each feature using ROC and PR curves, us-
ing two datasets, In the ‘non-ribosomal’ dataset, ribosomal
proteins were excluded; in the ‘full set’ ribosomal proteins
were included. As a control, we use a network trained us-
ing the sequence features previously used by the SRCPred
method (12). In all cases, the parameter varied in the ROC
and PR curves is the cutoff value in the neural network out-
put above which RNA binding was predicted.
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- Statistics of protein—RNA interactions

. The contact preferences between amino acid and ribonu-
- cleotide residues, were analyzed for-the full dataset, and
~compared with the results of previous studies (32,33). Fol-
lowing the 2001 work by Jones et al. (32), for a given amino
.acid type, interface propensity was measured by compar-
ing the fraction of ASA in contact with RNA with the frac-
tion in.contact with protein. The number of non-redundant
complexes has increased dramatically since 2001, which
has resulted in a significant change in the propensities of
protein—RNA interactions.(Supplementary Figure S2C). In
particular, residues Arg, His, Lys, Trp and Tyr, when found
on protein surfaces, have a higher probability to mediate
RNA contacts than previously reported (32). A close look

* at these contacts in terms of their hydrogen bonds results
in a generally similar pattern to that described in a 2011
study by Gupta et al. (33), which serves as a validation
of our representative dataset. In brief, the largest num-
ber of hydrogen bonds mediating protein—-RNA contacts
takes place between protein side chains and RNA back-
bones (NS), as shown in Supplementary Figure S2A and
‘Table S1. Guanine and uracil are higher than background
levels for RNA side chain. contacts (SS+SN), while ¢yto-
_sine is lower. In contrast, cytosine is lower and guanine is
higher than background levels in RNA backbone contacts
with protein (Supplementary Figure S2B). Moreover, inter-
action between protein side chains and RNA side chains
(SS) favors charged (either positive or negative) or polar

~ amino-acids, whereas side chains of positively charged and
aromatic residues interact more frequently with RNA back-
bones. Notably, the backbone of glycine mediates more con-
tacts than that of other amino acids (Supplementary Fig-
ure S2D).

The results in. Supplementary Figure S2 are complemen-
tary to earlier studies by Kondo and Westhof, who car-
ried out a classification of base pairs and pseudo pairs ob-
served -in RNA-ligand complexes in terms of interaction
edges (Watson—Crick, Hoogsteen or sugar-edge) of RNA
bases and the glycosidic bond orientations relative to hy-
drogen bonds.(cis or trans)-(34)..In their later work (35), the
authors found that five kinds of amino acid residues (Asn,
Gln, Asp, Glu and Arg) were able to form pseudo pairs
with bases in a coplanar manner. When the interaction took
place between a peptide backbone and nucleotide bases, the
base adenine (A) was the most favorable. In addition, they
found that the Watson—Crick side of bases formed the ma-
jority of pseudo pairs. The Hoogsteen edge of purine bases
can bind to amino acid side chains both specifically (prefer-
ring G) or non-specifically (preferring A). The sugar edge of
bases, however, interacts rarely with side-chain or backbone

. atoms (34,35).

Contributions from EC

The EC feature is illustrated in Figure 1A, using the class-

T Archaeoglobus fulgidus CCA-adding enzyme bound to a
tRNA fragment as an example. We found that for non-
ribosomal and full datasets, the EC feature could improve
the AUC by ~1.3% and 0.8%, respectively, and also re-
sulted in a better PR curve (Supplementary Figure S3) than
the control method (sequence features used in the SRCPred
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Evolutionary conservation {EC)

Distancs from RNA

Figure 1. Novel features used in this work. (A) EC. A surface representa-
tion of the class-1 A. fulgidus CCA-adding enzyme bound to a tRNA frag-
ment (PDB ID: 30VB). A distance map between protein and bound RNA
with near (far) residues colored red (blue) is shown on the left. The EC
“value with high (low) colored red (blue) isshown on the right. (B) LN under
a series of scales. LN values:increase from blue to red. At each granularity
level, warmer colors indicate convex residues, while cooler color represents
concave residues. (C) Solvent ASA. A surface representation of RNase
Cas6 (PDB/1D: 4ILL) is shown. The protein makes both side-chain and
backbone contacts with substrate RNAL Target residues (meshed) and nu-
cleotides are represented by opaque sticks, connected by hydrogen bonds
(dashed lines). The side chain of R268 protrudes and binds G15 (top). The
backbone of Y168, which is mostly buried and forms part of a cleft, inter-
acts with A5 (bottom)." All figures of 3D structure representation in this
work were generated by PyYMOL Molecular Graphlcs System, Version 1.5,
Schrodinger, LLC.

method (12)). In order to quantify the information con-
tained in ecach feature, we used EC and PSSM separately.
We took the substitution frequency of each residue to itself
in the PSSM profile, and normalized the frequencies via a
logistic operator. We also included the 21-bit sparse cod-
ing feature and the GAC feature. The resulting AUCs were
0.7277 and 0.7075; respectively, for the EC- and PSSM-
based model on the non-ribosomal dataset, and 0.8046
and 0.7942 on the complete dataset. These values verify

-that the EC feature contains- additional information not

found in the conservation values-of the PSSM. We tested
different E-value thresholds (1E-3, 1E-5 and -1E-10) for
building MSA profiles, from which EC values were calcu-
lated. Using different E-values, a combination of E-values,
or building a PSSM=like substitution matrix with occur-
rence frequencies for each of the 20 amino acid types did
not result in an increase. in performance. Therefore, the
default E-value threshold was set to 1E-3. It should be
noted that, depending on the number of homologous se-
quences in the database, the weight calculation step could
be time-consuming. We were able to greatly speed this pro-
cess up, however, by parallelization. After manually in-
specting many known protein-RNA complexes, we could
discern a rough correlation between residue conservation
and distance to the bound RNA. As shown in Supplemen-
tary Figure S4A, the mean distance between protein sur-
face residues and their bound RNAs was inversely related
to the EC values. Moreover, RNA-binding residues were
more enriched in large EC values than non-binding or back-
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