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monkeys. CT, normal adult monkeys; DM, DM-affected adult monkeys. (G) Age-related and DM-related changes in APP, Rab5, Rab7, and Rab11 in
cynomolgus monkey brains. Data obtained from young monkey brains were set as standards; *P<0.05 **P<0.01. Y-axes show the mean values of the
quantified data. Y, young monkeys; CT, normal adult monkeys; DM, DM-affected adult monkeys; AG, normal aged monkeys.

doi:10.1371/journal.pone.0117362.g005

studies are needed, these findings suggest that DM can induce not only parenchymal A pa-
thology but also vascular AB pathology in an age-dependent manner.

To clarify the mechanism of how DM enhances AB pathology in the brain, we also assessed
the amount of AR and GAB, a seed molecule for AP aggregation [32]. Intriguingly, AB level was
not so much increased in DM-affected adult monkey brains, in contrast to aged monkey brains
(Fig. 4A). In DM-affected adult monkey brains, SP depositions were quite small quantities
(Fig. 21), and a couple of more years can induce age-dependent SP depositions in normal adult
monkey brains [26, 36]. That may be why we could not find the significant increase of Af level
between DM-affected adult monkey and normal adult monkey brains. On the other hand, both
immunohistochemical and dot blot analyses demonstrated that the amount of GAB was clearly
increased in the brains of DM-affected adult monkeys compared to control adult monkey
brains (Fig. 4B-E). These findings strongly suggest that the acceleration of GAP generation
might be responsible for the early deposition of SPs in the brains of DM-affected adult
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Fig 6. Western blot analyses of axonal motor proteins, cathepsin D heavy chain, autophagosome
marker LC3, and neprilysin in the brains of normal and DM-affected adult monkeys. Western blots
showing the amounts of axonal motor proteins, cathepsin D heavy chain (CatD HC), autophagosome marker
LC3, and neprilysin (NEP) in the brains of normal and DM-affected adult monkeys. Western blot analyses
showed that the level of axonal motor proteins such as dynein heavy chain (DHC), dynein intermediate chain
(DIC), kinesin heavy chain (KHC), and kinesin light chain (KLC) unchanged. The level of CatD HC increased
in DM-affected monkey brains, and LC3-1 showed significant increase in DM-affected adult monkeys. We did
not observed DM-related changes in LC3-1 and neprilysin (NEP) level. CT, normal adult monkeys; DM, DM-
affected adult monkeys.

doi:10.1371/journal.pone.0117362.9g006
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Fig 7. Hypothetical schema of DM-induced AB pathology leading to AD onset. From the results of this
study, we propose that DM induces GAR generation by exacerbating age-dependent endocytic disturbance,
resulting in enhanced A pathology in the brain. Although additional studies are needed to clarify the whole

mechanisms underlying DM-associated pathology, we hypothesize that, at the very least, enhanced AB
pathology accompanied by endocytic disturbance might be involved in the development of AD.

doi:10.1371fjournal.pone.0117362.g007
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monkeys. Moreover, the result of this study also suggests that enhanced AP aggregation could
induce SP deposition without significant changes in total A level. Relevant to proposed AD
pathophysiogical mechanisms, we also observed apparent endocytic pathology, including en-
larged early endosomes and APP accumulation in neurons of DM-affected adult monkeys
(Fig. 5A-1). Western blot analyses confirmed a significant increase of Rab G'T'Pases in these
brains at nearly the same level as in aged monkey brains (Fig. 5, (G). Our previous studies
showed that an increase in Rab GTPases is a good indicator for alterations in intracellular en-
dosome trafficking associated with a particular Rab GTPase [45, 46]. Indeed, increased Rab
GTPase levels are strongly associated with endocytic disturbance [45, 46]. The observation that
experimentally induced disorders of the endocytic pathway cause GAB-dependent Af patholo-
gy [34, 52] supports the premise that endocytic disturbance is likely responsible for enhanced
GAB generation. Along these lines, we surmise that intracellular endosome trafficking would
be altered in the brains of DM-affected adult monkeys, resulting in severe endocytic distur-
bance, as observed in aged monkey brains. This might be why GAB generation was enhanced,
thereby inducing SP deposition (Fig. 2). Moreover, the results of this study strongly support
the idea that endocytic disturbance is essentially involved in the development of AD pathology
[33, 34, 42-45].

A recent study showed that the expression of axonal transport motor proteins was altered in
experimentally DM-induced rodent model, and axonal transport motor proteins are indeed re-
quired for endosome trafficking [48, 49]. However, in the present study, we did not find any
changes in axonal motor protein levels, suggesting that the mechanism underlying endocytic
disturbance in the brains of DM-affected adult monkeys would be independent of axonal
motor protein levels. Previous finding showed that the breakdown in lysosomal degradation
also induces endocytic disturbance [50]. In DM-affected adult monkey brains, the level of
CatD heavy chain increased in DM-affected adult monkey brains, indicating that the endoso-
mal-lysosomal system is activated as such in AD patient brains (Fig. 6) [53]. This finding sug-
gests that DM really enhances AD pathology. On the other hand, we observed the significant
increase in autophagosome marker LC3-II level in DM-affected adult monkey brains (Fig. 6).
Since LC3-I level was unchanged, the induction of autophagy was not altered, but lysosomal-
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autophagosome clearance was likely disturbed in DM-affected adult monkey brains (Fig. 6).
The defective lysosomal-autophagosome clearance is associated with AD pathology [50, 54~
56], and the result of this study is also consistent with a previous finding that the aberrant lyso-
somal-autophagic turnover is associated with the accumulation of GAB in rodent brain [57].

Given that CatD heavy chain level was increased, i.e. lysosomal degradation was induced
(Fig. 6), the disturbance in the fusion of autophagosome and lysosome might be responsible for
impaired lysosomal-autophagosome clearance in DM-affected adult monkey brains. The fu-
sion step is indispensable for lysosomal-autophagosome clearance [58, 59] and mediated by
Rab7 [60]. In DM-affected adult monkey brains, Rab7 level was obviously increased as com-
pared to normal adult monkey brains, indicating that Rab7-mediated transport was really dis-
turbed. Growing evidences suggest that membrane-bound phosphoinositides regulate Rab-
mediated endosome trafficking [61, 62], and the metabolism of phosphoinositides was affected
by the disruption of insulin signaling [63-65]. Recent studies also showed that Rab activity is
affected by insulin signaling and that PI3K inhibition causes upregulation of Rab5 [66, 67]. In
the present study, we observed amyloid deposition in the pancreatic islets of all adult monkeys
with DM. The remaining islet cells were severely degenerated and few in number, all character-
istics of DM pathology in humans. These pancreatic pathologies suggest that insulin signaling
also would be greatly impaired in the brains of DM-affected adult monkeys (Fig. 1A-D). Thus,
although additional investigations are needed, impaired insulin signaling would exacerbate
age-related endocytic disturbances via such alteration in the metabolism of phosphoinositides
and/or Rab GTPases, inducing GAP generation and ultimately resulting in enhanced Ap pa-
thology. It is reasonable idea because of the fact that insulin resistance is the core defect in DM
[68]. In the brains of DM-affected adult monkeys, NEP levels were not affected (Fig. 6), sug-
gesting that the enhanced SP deposition we observed is not due to disturbances in Ap degrada-
tion by NEP.

In conclusion, we provide evidence that DM induces GAp generation and accelerates Af pa-
thology in vivo in cynomolgus monkey brains. Since the amino acid sequence of cynomolgus
monkey A corresponds completely with that of human AR, it is reasonable that the enhanced
AP pathology we observed in monkeys with DM should also occur in humans with DM. More-
over, our present study showed that DM could also exacerbate endocytic disturbance. Al-
though additional studies are needed to determine more precisely the mechanisms responsible
for enhanced AP pathology in the brains of DM-affected monkeys, our findings suggest that
DM may exacerbate age-dependent endocytic disturbance, leading to enhanced GAP genera-
tion and A fibril formation (Fig. 7). Importantly, several studies showed that AB impairs insu-
lin signaling itself [69-71], and then it may lead to aggravate the insulin resistance-related AD
pathology [11-13]. Thus enhanced Ap pathology would contribute to DM-induced AD patho-
genesis with such other mechanism (Fig. 7). Moreover, DM may also alter neuronal activity by
exacerbating endocytic disturbance as we previously reported [46]. Hence, a reasonable thera-
peutic strategy to prevent the development of AD pathology is to treat or prevent DM.
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ABSTRACT

Viral vectors are promising vaccine candidates for eliciting suitable Ag-specific immune response. Since
Mycobacterium tuberculosis (Mtb) normally enters hosts via the mucosal surface of the lung, the best
defense against Mtb is mucosal vaccines that are capable of inducing both systemic and mucosal immu-
nity. Although Mycobacterium bovis bacille Calmette-Guérin is the only licensed tuberculosis (TB) vaccine,
its efficacy against adult pulmonary forms of TB is variable. In this study, we assessed the effective-
ness of a novel mucosal TB vaccine using recombinant human parainfluenza type 2 virus (rhPIV2)
as a vaccine vector in BALB/c mice. Replication-incompetent rhPIV2 (M gene-eliminated) expressing
Ag85B (rhPIV2-Ag85B) was constructed by reverse genetics technology. Intranasal administration of
rhPIV2-Ag85B induced Mtb-specific immune responses, and the vaccinated mice showed a substantial
reduction in the number of CFU of Mtb in lungs and spleens. Unlike other viral vaccine vectors, the
immune responses against Ag85B induced by rhPIV2-Ag85B immunization had an advantage over that
against the viral vector. In addition, it was revealed that rhPIV2-Ag85B in itself has an adjuvant activ-
ity through the retinoic acid-inducible gene I receptor. These findings provide further evidence for the
possibility of rhPIV2-Ag85B as a novel TB vaccine.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Recombinant viral vector vaccines have several advantages for
preventing infection with pathogens [1]. The vaccines induce a
full spectrum of immune responses including humoral and cellu-

Abbreviations: BAL, bronchoalveolar lavage; BCG, Mycobacterium bovis bacille
Calmette-Guérin; BEAS cells, bronchial epithelial cells; hPIV2, human parainfluenza
type 2 virus; pLN, pulmonary lymph node; Mtb, Mycobacterium tuberculosis; NHBE,
normal human bronchial epithelial; rhPIV2-Ag85B, recombinant hPIV2 expressing
Ag85B; TB, tuberculosis.

* Corresponding author at: Laboratory of Immunoregulation and Vaccine
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lar immune responses. These immune responses can be initially
induced at the viral vector infection site such as mucosal immune
responses [2]. Moreover, the viral vector itself has adjuvant activ-
ities through the innate immune systems [3]. Pre-existing or
post-priming immune responses against the vaccine vector itself,
however, could be an obstacle to effective immune responses
to recombinant Ag [4]. Negligible immune responses against
vector viruses compared with recombinant vaccine Ags after
immunization is considered most desirable for recombinant viral
vaccines.
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Mycobacterium bovis bacille Calmette-Guérin (BCG) has sub-
stantially contributed to the control of tuberculosis (TB) for more
than 80 years and affords about 80% protection against tuberculosis
meningitis and miliary tuberculosis in infant and young children.
However, it is well known that the protective efficacy of BCG against
pulmonary TB in adults is variable and partial [5.6]. Therefore,
development of new vaccines is urgently needed for the elimina-
tion of TB as a public health threat and should be a major global
public health priority.

Many infectious diseases, including TB, initially establish infec-
tion on mucosal surfaces. Therefore, the best defense against these
predominantly mucosal pathogens is mucosal vaccines that are
capable of inducing both systemic and mucosal immunity. How-
ever, the mucosal immune system is quite unique and is different
from systemic immune responses [7.8]. Mucosal immunization
provides mucosal immune responses in all mucosal effector tissues
in the concept of a common mucosal immune system [9].

Human parainfluenza type 2 virus (hPIV2) is a member of
the genus Rubulavirus of the family Paramyxoviridae and pos-
sesses a single-stranded, nonsegmented and negative-stranded
RNA genome. This virus does not have a DNA phase during its life
cycle and can avoid genetic modifications. Additionally, this virus
becomes replication-incompetent by elimination of some viral
genes | 10]. Moreover, it is likely to lead to elicit stronger inserted
antigen-specific immune responses than vector-specific responses
unlike other viral vaccine vectors using inserted antigen expres-
sion mechanisms of hPIV2. In the present study, we evaluated
the effectiveness of intranasal administration of Ag85B-expressed
non-replicating human parainfluenza type 2 virus (rhPIV2-Ag85B),
which induces weak immune responses against a viral vector, as a
novel mucosal TB vaccine.

2. Materials and methods
2.1. Immunization

Six-week-old BALB/c female mice were immunized with
rhPIV2-Ag85B or rhPIV2 control vector 3 or4 times at 2-week inter-
vals by intranasal inoculation of 1 x 108 TCID50 virus in 20 .l PBS.
Another group of mice was intramuscularly immunized twice with
Ag85B DNA vaccine [11}] and intranasally immunized twice with
rhPIV2-Ag85B. As a control group, a group of mice was vaccinated
using 1 x 107 CFU of BCG Tokyo by subcutaneous injection.

2.2. Infection assay

Two weeks (rhPIV2-Ag85B-immunized mice) or 6 weeks
(BCG-immunized mice) after the final immunization, mice were
challenged with M. tuberculosis (Mtbh) Kurono strain by inhala-
tion. This bacterial preparation and infection assay were performed
as previously described [12]. In brief, the mice were infected via
the airborne route by placing them into the exposure chamber
of a Glas-Col aerosol generator. The nebulizer compartment was
filled with 5ml of a suspension containing 10° CFU of Kurono
strain so that approximately 50 bacteria would be deposited in
the lungs of each animal. Eight weeks after Mtb infection, mice
were sacrificed and the preventive effects of the vaccine were
assessed.

2.3, Cell culture

Human bronchial epithelial cells (BEAS cells) and primary
cultured normal human bronchial epithelial (NHBE) cells were
obtained from the American Type Culture Collection (Manas-
sas, VA) and Lonza (Walkersville, MD). These cells were grown
in bronchial epithelial growth medium containing supplements
(Lonza). These cells were infected with rhPIV2 or rhPIV2-Ag85B
(MOI of 10) or treated with recombinant Ag85B (10 ug/ml) for
6-48 h in a 37 °C incubator with a 5% CO; atmosphere.

2.4. FACS analysis

Spleen, pulmonary lymph node (pLN), and bronchoalveolar
lavage (BAL) cells were obtained from immunized mice, and single-
cell suspensions were prepared. The cells were incubated with
recombinant Ag85B protein (10 pg/ml final concentration) for 4 h
in the presence of Brefeldin A at 37 °C with 5% CO,. The cells were
stained for surface markers with anti-CD3 and anti-CD4 (BD Bio-
sciences, San Joes, CA) for 30 min at 4°C, followed by fixation for
30min at 4°C in 2% paraformaldehyde. IFN-y was detected by
staining with anti-IFN-y (BD Biosciences) for 30 min at 4°C. Flow
cytometry data collection was performed on a FACS Canto 11 (BD
Biosciences). Files were analyzed using FACSDiva Software (BD Bio-
sciences). BEAS cells infected with rhPIV2-Ag85B were stained with
anti-ICAM-1 (BioLegend, San Diego, CA) and analyzed as described
above.

2.5. Evaluation of Ag85B-specific immune responses by ELISPOT
assay

The number of Ag85B-specific, IFN-y-secreting cells was deter-
mined by the ELISPOT assay according to the method reported
previously {11]. Triplicate samples of whole, CD4*, and CD8* T
cells (separated by a MACS system) (Miltenyi Biotec, Bergisch Glad-
bach, Germany) collected from the spleen, pLN, and BAL were
plated at 1 x 106 cells/well. These cells were stimulated by addition
of 2 x 10° mitomycin C (Sigma-Aldrich, Saint Louis, MO)-treated
syngeneic spleen cells infected with recombinant vaccinia virus
expressing Ag85B or rhPIV2-Ag85B.

2.6. Statistical analysis

Data are presented as means == SD. Statistical analyses were per-
formed using the Mann-Whitney U test. Statistically significant
differences compared with the control are indicated by asterisks.

3. Results
3.1. Characteristics of rhPIV2~-Ag85B

A construction of rhPIV2-Ag85B is shown in Fig. 1A. To exam-
ine gene expression levels of the inserted Ag85B, BEAS cells
were infected with rhPIV2-Ag85B. Abundant and rapid expres-
sion of mRNA of Ag85B was observed in BEAS cells infected with
rhPIV2-Ag85B compared with the expression of NP mRNA (Fig. 1B).
These results were also confirmed by analysis of protein expression
(Fig. 1C). The production of Ag85B was earlier than that of NP, which
is usually the earliest synthesized protein in hPIV2 infection.

inoculation (n=>5 per group). Spleen, pLN, and BAL cells were collected from immunized mice (n=5 per group) 2 weeks after the final immunization for examination by an
ELISPOT assay. These isolated cells were stimulated in vitro with syngeneic spleen cells infected with control rhPIV2, rhPIV2-Ag85B, or recombinant Ag85B protein (rAg85B)
(10 pg/ml final concentration) for 24 h. Error bars represent standard deviations. Statistically significant differences are indicated by asterisks (*, P<0.05 compared to the

group stimulated with rhPIV2).
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These responses were considered to be advantageous effects
in cellular immune response to inserted Ag85B versus rhPIV2
vector. To confirm this advantageous response, cells from immu-
nized mice were re-stimulated in vitro with syngeneic spleen
cells infected with rhPIV2 or rhPIV2-Ag85B. Although responses
to both Ag85B and rhPIV2 vector were observed, Ag85B-specific
responses were clearly seen, especially in pLN and BAL cells after
single immunization (Fig. 1D). After performing immunization
twice, Ag85B-specific responses were also seen in spleen cells as
booster effects more than responses to the vector virus (Fig. 1E).
These results indicated that rhPIV2-Ag85B immunization elicited
inserted Ag85B-specific immune responses without being hidden
by vector responses.

3.2. Intranasal administration of thPIV2-Ag85B prevents
infection with Mtb in mice

To investigate the ability of intranasal administration of
rhPIV2-Ag85B to elicit a protective effect against pulmonary TB,
rhPIV2-Ag85B-immunized mice were aerosol-infected with highly
pathogenic Mtb kurono strain {13]. One group of mice were
intranasally immunized with rhPIV2-Ag85B 4 times at 2-week
intervals, and another group of mice were intranasally immunized
with rhPIV2-Ag85B twice following intramuscular immunization
with Ag85B DNA twice (Fig. ZA). Intranasal administration of
rhPIV2-Ag85Bresulted in a decreases in granulomatous lesions and
inflammatory area. However, there were no apparent histopatho-
logical differences, such as infiltrating cell types, between the each
group of mice, and these results are similar to the results of another
study focusing on TB vaccine | 1 4. On the other hand, these vaccine
effects were clearly seen by staining for acid-fast bacillus. Mice
immunized with rhPIV2-Ag85B showed a substantial reduction
in the infiltration of bacteria, and this inhibitory effect on bacte-
rial expansion was correlated with the number of rhPIV2-Ag85B
intranasal administrations (Fig. 2B). CFU of Mtb in spleens from
both groups of immunized mice was also significantly lower than
those in mice immunized with the control vector (¥ig. 2C). As for a
preventive effect on Mtb infection in the lung, the mice immunized
with rhPIV2-Ag85B clearly showed a substantial reduction in CFU.

3.3. Ag85B-specific immune response is elicited by rhPIV2-Ag85B
administration

The capacity of rhPIV2-Ag85B intranasal immunization to elicit
effector cells that recognize endogenously expressed Ag85B was
assessed. Spleen, pLN, and BAL cells obtained from immunized
mice were re-stimulated in vitro with syngeneic spleen cells
infected with the recombinant vaccinia virus expressing Ag85B, and
endogenously expressed Ag85B-specific cellular immune response
was examined by ELISPOT assays. Both CD4* and CD8* spleno-
cytes exhibited Ag85B-specific responses, and CD8* T cells showed
much stronger responses than those of CD4" T cells in splenocytes
from mice immunized with rhPIV2-Ag85B (Fig. 3A). Ag85B-specific
responses were also seen in both CD4" and CD8* T cells at almost
the same levels in pLN and BAL cells (Fig. 3B and C).

3.4. Analysis of Ag-specific effector cells and immune responses in
PLN cells and the lung

Delayed initial activation of effector cells in lungs has been
reported in the case of Mtb infection [15]. To control bacterial
expansion in the early phase of infection, rapid Mtb Ag-specific
CD4* T cell responses are required. Thus, we next analyzed recruit-
ment of Ag85B-specific IFN-y* CD4* T cells in pLN and BAL cells
in mice immunized with rhPIV2-Ag85B. Mice were intranasally
immunized with rhPIV2-Ag85B or the control vector virus 3 times
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Fig. 2. Repeated immunization with rhPIV2-Ag85B results in protection from TB.
(A) Groups of mice were vaccinated in this schedule. (B) Histological images of the
lungs of Mtb-infected mice. Groups of mice (n=10) immunized 4 times with rhPIV2
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with rhPIV2-Ag85B in the lung and spleen. Groups of mice immunized 2 times with
Ag85B DNA vaccine and 2 times with rhPIV2-Ag85B or immunized 4 times with
rhPIV2-Ag85B or BCG were challenged by Mtb infection. The numbers of Mtb CFU
in the lung and spleen were determined by a colony enumeration assay. The bacte-
rial load is represented as mean logio CFU per organ. Error bars represent standard
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the group stimulated with Vac).

at 2-week intervals. Another group of mice were immunized
with BCG by subcutaneous injection. Two weeks (rhPIV2-Ag85B-
immunized mice) or 6 weeks (BCG-immunized mice) after the final
immunization, all mice were challenged with Mtb Kurono strain by
inhalation (Fig. 4A). At each time point after immunization or Mtb
challenge, the percentage and absolute number of Ag85B-specific
IFN-y* CD4" cells were determined by flow cytometry. Before Mtb
challenge, the percentage of IFN-y* CD4" cells in pLN cells was
increased by immunization with rhPIV2-Ag85B but not by BCG
immunization (Fig. 4B and C, top). However, a significant increase
inIFN-y* CD4* cells was not detected in BAL cells (Fig. 4B and C, bot-
tom). Interestingly, expansion of IFN-y* CD4" cells occurred after
Mtb challenge in BAL cells more dramatically than that in pLN cells
in terms of absolute number (Fig. 4C). These responses induced
by rhPIV2-Ag85B immunization were much stronger than those
induced by BCG immunization.

Similarly, an increase in Ag85B-specific responses was observed
by the ELISPOT assay (Fig. 4D). The number of Ag85B-specific IFN-y
secreting cells increased in pLN cells from mice immunized with
rhPIV2-Ag85B in a number of immunizations-dependent manner.
Furthermore, strong Ag85B-specific responses were detected after
Mtb challenge in pLN and BAL cells, and the responses were much
stronger than those in BCG immunized mice.

3.5. rhPIV2-Ag85B induces innate immune responses

We explored innate immune responses induced by
rhPIV2-Ag85B infection. We confirmed that Ag85B did not
affect the viability of rhPIV2-Ag85B infected cells (Supplemental
Fig. 1) [44-46]. Type 1 IFNs were assessed after infection with
rhPIV2-Ag85B in NHBE and BEAS cells as an indication of innate
immune responses. Both types of cells showed mRNA expression
of type I IFNs after infection with rhPIV2-Ag85B but not after
addition of recombinant Ag85B protein (Fig. 5A). Production of
IFN-B was also detected in the culture supernatant by ELISA

(Fiz. 5B). The mRNA expression of intracellular receptors, RIG-I,
MDAS, and TLR3, and the induction of cytokines, [L-6 and IL-15
were also enhanced by infection with rhPIV2-Ag85B, whereas
these effects were not observed with the addition of recombinant
Ag85B protein (Fig. 5C and D). Furthermore, the expression of
ICAM-1 was induced by infection with rhPIV2-Ag85B (¥ig. 5E).
Similar results were obtained after infection with rhPIV2 vector
alone or rhPIV2-GFP (Supplemental Fig. 2). Other co-stimulation
molecules, CD80, CD86, ICAM-2 and selectin, were not detected
(data not shown).

To further investigate the participation of these receptors in
innate immune activation induced by rhPIV2-Ag85B infection,
expression of these receptors was knocked down by transfecting
siRNA. At 48 h after transfection with siRNA, expression levels of
these receptors were reduced by approximately 90% or expression
was no longer detectable (Fig. 5F). [FN- production induced by
rhPIV2-Ag85B infection was inhibited when the cells were treated
with RIG-I siRNA. For other receptors, MDAS and TLR3, siRNA treat-
ment did not result in inhibition of IFN-B production induced
by rhPIV2-Ag85B infection (Fig. 5G). This result was confirmed
by phosphorylation of IRF3, which is a downstream molecule of
RIG-I in epithelial cells. The phosphorylation of IRF3 induced by
rhPIV2-Ag85B infection was inhibited when epithelial cells were
treated with siRNA of RIG-I (Fig. 5H).

4. Discussion

In the present study, we demonstrated the effectiveness of
hPIV2 vectors for TB vaccines to induce systemic and mucosal
immune responses. The rhPIV2 vector is a weak immunogenic;
however, intranasal immunization with rhPIV2-Ag85B showed
more potent protection against pulmonary TB in BALB/c mice than
did conventional BCG vaccination. The rhPIV2-Ag85B shows a vac-
cine effect by itself alone, and this effect is more useful than the
effects of other vectors for TB vaccines.
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Fig. 5. Evaluation of adjuvant activity of rhPIV2-Ag85B in vitro. NHBE and BEAS
cells were treated with rAg85B protein (10 pg/ml) or infected with rhPIV2-Ag85B
(MOI of 10) for 24 h, and the increases in mRNA levels of IFN-a, IFN-§ (A), RIG-],
MDAS5, TLR3 (C), IL-6, IL-15 (D), and ICAM-1 (E, left panel) were determined by
real-time PCR. Fold increase of each target gene was normalized to B-actin, and the

Viral vectors are promising vaccine candidates for eliciting
Ag-specific immune responses [16,17]. Pre-existing anti-vector
antibodies, however, constitute an obstacle for use in humans
[18-20]. Although antibodies against hPIV are known to cross-react
with Sendai virus, Sendai virus vector is considered to be effec-
tive for human use by intranasal administration [21]. Additionally,
Sendai virus vector is not affected by antibodies against Sendai virus
for induction of T cell responses, especially when it is administered
intranasally {4]. From these findings, intranasal administration of
the hPIV2 vector is also considered to be effective for human use.
In fact, multiple administrations with rhPIV2-Ag85B also showed
preventive effects more clearly than did immunization 2 times with
rhPIV2~Ag85B (Fig. 2).

Many viral vectors have been tested as recombinant viral vac-
cines eliciting suitable recombinant Ag-specificimmune responses,
and many of these vaccine vectors are not vaccine viruses such
as vaccinia virus Ankara (MVA), adenovirus, Sendai virus, and
CMV. These viral vectors have also been used in several vac-
cine trials in TB or HIV vaccine {22-24]. Experience in the HIV
vaccine field has emphasized the importance of avoiding anti-
vector immune responses when developing a vectored vaccine
[25]. Immune responses to vaccine vectors prevent the induction
of aimed immune responses against recombinant Ag. From these
findings, elimination of the immunogenicity of a vaccine vector is
critical for a recombinant viral vaccine. The immunogenicity of viral
vectors depends on the amount of vector viral proteins. Approxi-
mately 80 poxvirus proteins are encoded by its over 130-300 kbp
and the adenovirus genome sizes are 26-45 kbp. The genome sizes
of these two viral vectors are much larger than that of hPIV2
(15.65kbp), and induction of immune responses to hPIV2 vector
might be lower than other viral vectors. In TB vaccines, recombinant
vaccinia virus and adenovirus, which are immunogenic viruses, did
not show clear vaccine effects against TB infection by immuniza-
tion with themselves alone. These two recombinant TB vaccines,
adenovirus and MVA, were utilized as boost immunization after
BCG priming {26.27]. These heterologous prime-boost strategies
diminish immune responses to the vector virus and indicate the
possibility of a practical and efficient strategy for prevention of TB
[28,29]. On the other hand, the most common method for obtain-
ing an attenuated virus is gene elimination of the viral construct
protein to make a replication-deficient virus in vivo. The rhPIV2
vector is a weak immunogenicity by elimination of structural pro-
tein (M) gene; however, the rhPIV2-Ag85B shows a vaccine effect
by immunization with itself alone, and this effect is more useful
than the effects of other vectors for a recombinant TB vaccine.

The hPIV2 vector has an additional advantage over other viral
vectors. The inserted Ag85B gene, which is only 978 bp, is a minor
component of rhPIV2-Ag85B. Despite that, the cellular immune
response against Ag85B had an advantage over that against the
virus vector in mice. This advantageous effect is thought to depend

expression levels are represented as relative values to the control. Culture super-
natants were also collected, and amounts of secreted IFN-a and [FN-B were
measured by ELISA (B). Expression of ICAM-1 was also confirmed by FACS analy-
sis in BEAS cells (E, right panel). Data are averages of triplicate samples from three
identical experiments, and error bars represent standard deviations. Statistically
significant differences between control cells and rhPIV2-Ag85B-infected cells are
indicated by asterisks (*, P<0.01). BEAS cells were treated with siRNA targeting RIG-
I, MDA5, TLR3, or the negative control siRNA (NC) for 48 h. Depletion of them was
examined by immunoblotting (F). Those cells were stimulated by rAg85B protein
(10 pg/ml) or infected with rhPIV2-Ag85B (MOI of 10) and then production of IFN-
B was measured by ELISA (G). Data are averages of triplicate samples from three
identical experiments, and error bars represent standard deviations. Statistically
significant differences are indicated by asterisks (*, P<0.01 compared to NC). The
effects of depletion of RIG-1 on IRF3 phosphorylation were tested. BEAS cells treated
with NC or siRNA targeting RIG-1 (AR) for 48 h were infected with rthPIV2-Ag85B or
not infected (control). Whole IRF3 and phosphorylated IRF3 (pIRF3) were detected
by immunoblotting 6 h after infection (H).



1734 K. Watanabe et al. / Vaccine 32 (2014) 1727-1735

on Ag85B expression mechanisms. The frequency with which viral
RNA polymerase reinitiates the next mRNA at gene junctions is
imperfect, and this leads to a gradient of mRNA abundance that
decreases according to distance from the genome 3’ end [30]. Inser-~
tion of the Ag85B gene into the 3’ proximal first locus between
the leader sequence and the NP gene results in the highest level
of gene expression. Ag85B is transcribed earlier and more abun-
dantly than other viral products (Fig. 1B and C). This property
of rhPIV2-Ag85B leads to elicit stronger Ag85B-specific immune
responses than vector-specific responses in our system (Fig. 1D
and E), although recombinant virus vaccine immunization usually
induces overwhelming viral-specific immune responses compared
with an inserted gene product {31,32]. We also demonstrated that
intranasal administration of the rhPIV2 vector had no adverse
effects and provided sufficient immunogenicity and a sufficient
vaccine effect against Mtb in mice. These results suggest that
intranasal administration of rhPIV2-Ag85B does not cause func-
tional failure as a vaccine by multiple administrations, and these
features of the rhPIV2 vector are definitely advantages for clinical
use.

Another major feature of rhPIV2-Ag85B is effective prevention
of TB by intranasal administration. Vaccination in the respiratory
tract may enhance protection against Mtb infection, since Mtb
initially establishes infection on mucosal surfaces of the respi-
ratory tract. Indeed, a number of recombinant TB vaccines have
been developed and evaluated for respiratory mucosal immu-
nization {33-35]. 1t is important to note that lack of Ag-specific
effector cells persists even up to about 21 days after pulmonary
Mtb infection caused by a bacterial component [15,3G]. In the
present study, the arrival of Ag-specific T cells was detected in
lung and pLN by rhPIV2-Ag85B immunization, and this arrival of
effector cells was recognized faster than BCG immunization after
Mtb challenge (Fiz. 4B and C). We were able to establish a novel
intranasal vaccine, rhPIV2-Ag85B, against TB by utilizing various
advantages of intranasal administration. Nasal administration of
a vaccine to induce mucosal and systemic immune responses has
several advantages other than the induction of effective immune
responses. It is even possible that intranasal administration of
replication-incompetent rhPIV2-Ag85B limits the areas of infec-
tion in respiratory organs and induces a respiratory tract mucosal
immune response in addition to a systemic immune response
against TB. Our study suggested that intranasal administration
of rhPIV2-Ag85B, which can induce both mucosal and systemic
immune responses against Mtb, has a great advantage as a TB vac-
cine.

Attempts have been made to use various types of adjuvants
for enhancing an immune responses to vaccines, including vac-
cines against TB {37]. In fact, a protein-based TB vaccine required
the addition of an adjuvant to induce effective immune responses
[38-41]. For the generation of adaptive immune responses, induc-
tion of innate immunity is crucial for vaccines to elicit potent
Ag-specific immune responses. Pattern recognition receptors have
been studied as potential targets for an adjuvant. dsRNA is a
dominant activator of innate immunity because viral dsRNA is
recognized by TLR3, RIG-I, and MDAS5 [42,43]. As a result, it was
demonstrated that the rhPIV2 vector had a potent adjuvant activ-
ity as dsRNA recognized by the RIG-I receptor and enhanced not
only local innate immunity but also systemic adaptive immunity.
It is possible that no extra addition of an adjuvant is required to
prevent TB by vaccination with rhPIV2-Ag85B. Furthermore, the
inhibitory effects on the growth of rhPIV2-Ag85B in vivo by IFN
through the innate receptor are not required to consider since the
rhPIV2 vector is replication-incompetent in vivo by elimination of
the M gene (Fig. 1A).

In summary, our results provide evidence for the possibil-
ity of rhPIV2-Ag85B as a novel intranasal vaccine for eliciting

Mtb-specific ~ mucosal  immunity. Immunization  with
rhPIV2-Ag85B showed significant protection against TB with-
out any prime vaccine or addition of an adjuvant in mice. Further
studies will contribute to the ultimate goal of establishing a new
vaccine strategy that can definitely prevent Mtb infection.
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CpG DNA, a ligand for Toll-like receptor 9 (TLR9), has been one of
the most promising immunotherapeutic agents. Although there
are several types of potent humanized CpG oligodeoxynucleotide
(ODN), developing “all-in-one” CpG ODNSs activating both B cells
and plasmacytoid dendritic cells forming a stable nanoparticle
without aggregation has not been successful. In this study, we
generated a novel nanoparticulate K CpG ODN (K3) wrapped by
the nonagonistic Dectin-1 ligand schizophyllan (SPG), K3-SPG. In
sharp contrast to K3 alone, K3-SPG stimulates human peripheral
blood mononuclear cells to produce a large amount of both type |
and type Il IFN, targeting the same endosome where IFN-inducing
D CpG ODN resides without losing its K-type activity. K3-SPG thus
became a potent adjuvant for induction of both humoral and
cellular immune responses, particularly CTL induction, to coadmi-
nistered protein antigens without conjugation. Such potent adju-
vant activity of K3-5PG is attributed to its nature of being a nano-
particle rather than targeting Dectin-1 by SPG, accumulating and
activating antigen-bearing macrophages and dendritic cells in the
draining lymph node. K3-SPG acting as an influenza vaccine adju-
vant was demonstrated in vivo in both murine and nonhuman
primate models. Taken together, K3-SPG may be useful for immu-
notherapeutic applications that require type | and type Il IFN as
well as CTL induction.

innate immunity | two-photon microscopy | MARCO | Siglec-1 | p-glucan

CpG oligodeoxynucleotide (CpG ODN) is a short (~20 bases),
single-stranded synthetic DNA fragment containing the
immunostimulatory CpG motif, a potent agonist for Toll-like
receptor 9 (TLR9), which activates dendritic cells (DCs) and B
cells to produce type I interferons (IFNs) and inflammatory
cytokines (1, 2) and acts as an adjuvant toward both Thl-type
humoral and cellular immune responses, including cytotoxic
T-lymphocyte (CTL) responses (3, 4). Therefore, CpG ODN has
been postulated as a possible immunotherapeutic agent against
infectious diseases, cancer, asthma, and pollinosis (2, 5).

There are at least four types of CpG ODN, each of which has
a different backbone, sequence, and immunostimulatory prop-
erties (6). D-type (also called A) CpG ODNs typically com-
prise one palindromic CpG motif with a phosphodiester (PO)
backbone and phosphorothioate (PS) poly(G) tail, and activates
plasmacytoid DCs (pDCs) to produce a large amount of IFN-a
but fails to induce pDC maturation and B-cell activation (7, 8).
The three other types of ODN consist of a PS backbone. K-type
(also called B) CpG ODN contains nonpalindromic multiple
CpG motifs, and strongly activates B cells to produce IL-6 and
pDCs to maturation but barely produces IFN-x (8, 9). Recently,
C and P CpG ODNs have been developed; these contain one and
two palindromic CpG sequences, respectively, both of which can
activate B cells like K-type and pDC like D-type, although C

www.pnas.org/cgi/doi/10.1073/pnas. 1319268111

CpG ODN induces weaker IFN-« production compared with P
CpG ODN (10-12).

D and P CpG ODNs have been shown to form higher-order
structures, Hoogsteen base pairing to form parallel quadruplex
structures called G tetrads, and Watson—Crick base pairing be-
tween cis- and frans-palindromic portions, respectively, that are
required for robust IFN-a production by pDCs (12-14). Al-
though such higher-order structures appear necessary for local-
ization to early endosomes and signaling via TLRY, they suffer
from product polymorphisms, aggregation, and precipitation,
thereby hampering their clinical application (15). Therefore,
only K and C CpG ODNs are generally available as immuno-
therapeutic agents and vaccine adjuvants for human use (16, 17).
Although K CpG ODN enhances the immunogenicity of vac-
cines targeting infectious diseases and cancers in human clinical
trials (6, 17), chemical or physical conjugation between antigen
and K CpG ODN is necessary for optimal adjuvant effects.
These results indicate that these four (K, D, P, and C) types of
CpG ODN have advantages and disadvantages; however, the
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development of an “all-in-one” CpG ODN activating both B
cells and pDCs that forms a stable nanoparticle without aggre-
gation has yet to be accomplished. A better strategy, targeting
CpG ODN toward antigen-presenting cells (APCs), is desired to
improve immunostimulatory specificity and immunotherapeutic
efficacy of CpG ODN:s.

Schizophyllan (SPG), a soluble p-glucan derived from Schiz-
ophyllum commune, is a drug that has been approved in Japan as
an enhancer of radiotherapy in cervical carcinoma patients for
the last three decades (18). It has been shown to form a complex
with polydeoxyadenylic acid (dA) as a triple-helical structure
(19). Although we previously demonstrated that mouse and
humanized CpG ODN with PO poly(dA) at the 5’ end com-
plexed with SPG enhanced cytokine production and acted as an
influenza vaccine adjuvant (20, 21), it has been difficult to achieve
high yields of the CpG-SPG complex toward its more efficient and
cost-effective preclinical as well as clinical development. Recently,
when the PS backbone of the dA sequence was linked to CpG
ODN, the efficacy of complex formation was elevated by nearly
100% (22). However, a thorough investigation has yet to be con-
ducted to identify the best humanized CpG sequence and opti-
mization of factors to gain all-in-one activities of the four types of
CpG ODN.

To do this, we sought to optimize a humanized CpG-SPG
complex as a vaccine adjuvant and immunostimulatory agent in
humans (in vitro), mice (in vitro and in vivo), and nonhuman
primates (in vivo). In this study, we identified a novel K CpG
ODN (K3) and SPG complex, namely K3-SPG. It forms a higher-
order nanoparticle that can be completely solubilized. We found
that this all-in-one K3-SPG displayed a more potent activity than,
and different characteristics from, any other type of CpG ODN
and previous CpG-SPG complexes.

Results

A Rod-Shaped Nano-Sized Particle of K3-SPG Gains Dual Character-
istics of K- and D-Type CpG ODNs. To make a complex between CpG
ODNs and schizophyllan (SPG), CpG ODNs need additional se-
quences of phosphorothioate backbone of 40-mer polydeoxy-
adenylic acid (dAyp) at the 5" or 3" end (20, 22). Fig. 14 shows
methods of CpG ODN and SPG complexation through denaturing—
renaturing procedures. In this study, we selected K3 as a K-type
CpG ODN. At first, we examined the immunostimulatory impacts
of the 5" and 3’ ends of CpG ODN. 5’-K3-dA,-3’, but not 5'-dA -
K3-3’, complexed with SPG-activated human peripheral blood
mononuclear cells (PBMCs) to produce a robust amount of [FN-o
(Fig. 1B and Fig. S1). K3, K3-dA4, or dA4-K3, which are able to
activate human PBMCs to produce other cytokines such as IL-6,
failed to produce IFN-« (Fig. 1B and Fig. S1). These results indicate
that the 5'-CpG sequence (K3-SPG) is more desirable than the 3'-
CpG sequence as a novel TLRY agonist. Although some CpG
ODN-induced cytokine production is known to have a dose-
dependent correlation, K3-SPG-induced IFN-a production is
not. Given that previous reports showed that IFN-« pro-duction
by K CpG ODN stimulation has a bell-shaped dose-response
correlation (7), altogether these results suggest that K3-SPG
still has the character of K CpG ODN.

Qualification and quantitation of K3-SPG were conducted by
scanning electron microscopy (SEM) and dynamic light scatter-
ing (DLS). K3-SPG had a rod-like structure, consistent with that
seen in a previous report (23) (Fig. 1C). It appeared to be
a soluble monomeric nanoparticle with an average diameter of
30 nm, comparable to SPG itself and smaller than D CpG ODN
(D35) (14, 24) (Fig. 1D). Given that K3-SPG forms a nano-
particle, we compared the immunostimulatory activities of K3-
SPG with D, C, and P CpG ODNs. PBMCs stimulated with K3-
SPG produced larger amounts of IFN-a and IFN-y but at far
lower concentrations than those induced by D35 (Fig. 1E) and P
and C CpG ODNs (Fig. S2). These results suggest that K3-SPG
gains the characteristic of D CpG ODN without losing that of the
K type, because these IFNs are known to be D type-specific
cytokines (7, 8, 25). To understand the dual functions of K and D
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Fig. 1. K (B) CpG ODN and SPG complex forms nanoparticles and gains D (A)
CpG ODN characteristics. (A) Methods of CpG ODN and SPG complexation.
tSPG, triple-stranded SPG; sSPG, single-stranded SPG. (B) Production of IFN-«
by human PBMCs stimulated with K3, K3-dA4, K3-SPG, dA,e-K3, or SPG-K3
(adjusted for K3 ODN concentration at 0.1, 0.3, or 1 uM) for 24 h was
measured by ELISA. (C) K3-SPG processed for SEM. (Scale bar, 50 um.) (D) Size
of K3-SPG, SPG, and D35 was analyzed by DLS. (£) Production of type I and Il
IFNs by PBMCs stimulated with K3, K3-5PG, or D35 for 24 h was measured by
ELISA. (F and G) Mouse BMDMs were stimulated with Alexa 488-K3 (F) or
Alexa 488-D35 (G) and Alexa 647-K3-SPG at 1 uM for 3 h. The cells were
incubated with Hoechst 33258, fixed, and analyzed by fluorescence micros-
copy. DIC, differential interference contrast. (Scale bars, 10 ym.) Data rep-
resent one of three independent experiments with similar results.

CpG ODNSs, we analyzed the intracellular localization of K3-SPG in
bone marrow-derived macrophages (BMDMs). K3-SPG was colo-
calized with not only the endosomes containing K CpG ODN but
also those containing D CpG ODN (Fig. 1 F and G) such as C CpG
ODN (26), suggesting that K3-SPG may transduce endosome-
mediated innate immune signaling pathways by K and D CpG
ODN:s. These results strongly suggest that K3-SPG forms a nano-
sized higher-order and completely solubilized particle and found
that this all-in-one K3-SPG displayed a more potent activity than,
and different characteristic from, any other CpG ODNs and pre-
viously known CpG-SPG complex.

K3-SPG Is a Prominent Vaccine Adjuvant That Induces Potent CTL
Responses to Protein Antigen Without Conjugation. We compared
the adjuvant effects of K3, K3-dA4g, and K3-SPG in a murine im-
munization model. When wild-type mice were immunized with
LPS-free chicken ovalbumin protein (OVA) alone or OVA with
each K3-derived adjuvant, K3-SPG induced significantly higher
humoral immune responses (Fig. 24) and stronger T-cell responses
than that induced by K3 (Fig. 2B). Of note, tetramer assays revealed
a significantly greater number of OVA-specific CD8 T cells (Fig.
2C). We also observed very strong in vivo CTL activity against
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Fig. 2. K3-SPG acts as a potent vaccine adjuvant by simple mixture with
antigen. Adjuvant activities of K3-SPG were analyzed. C57BL/6J mice (n = 4
or 5) were immunized s.c. with OVA protein antigen and various adjuvants.
OVA-specific serum IgG (4), IFN-y (B), and OVA;sy.y64-specific tetramer (C)
were monitored (d17) after immunization (d0 and d10) with OVA (100 ug)
with or without K3 (10 pg) or K3-SPG (10 pg). (D) In vivo CTL assay 7 d after
priming with OVA and various adjuvants as indicated. (E) Immunization with
OVA,s7-264 peptide (10 pg) with or without adjuvant as indicated. (F and G)
Dose-sparing study; OVA-specific serum IgG and IFN-y were monitored after
immunization as in A and B. *P < 0.05 (Mann-Whitney U test). Data repre-
sent one of two or three independent experiments with similar results.

coadministered protein antigens lacking any covalent conjuga-
tion (Fig. 2D). This strong CTL induction by K3-SPG was
reproduced by peptide vaccination (Fig. 2F) and was dose-de-
pendent (Fig. 53). The antigen-sparing ability of K3-SPG was so
potent that comparable antibody and CD4 T-cell responses were
achieved using one-hundredth the amount of OVA antigen (Fig. 2
F and G). These results clearly indicate that K3-SPG is a more
prominent adjuvant than K3 alone.

SPG Is a Soluble Dectin-1 Ligand but Is Not a Dectin-1 Agonist. We
examined the role of Dectin-1 in cellular uptake of, and fol-
lowing activation by, SPG and K3-SPG, as Dectin-1 has been
shown to be a receptor for P-glucans such as Zymosan (27).
Using flow cytometry, we found that HEK293 cells expressing
Dectin-1 but not Dectin-2 or a control (vector) increased the uptake
of SPG or K3-SPG in vitro regardless of ODN presence (Fig. 3 4
and B). It has recently been reported that the soluble form of
B-glucan does not activate Dectin-1 signaling (28). Additionally,
Dectin-1 signaling inhibits TLR9-mediated cytokine production
through suppressor of cytokine signaling 1 induction (29). There-
fore, we examined the agonistic activity of SPG. When splenocytes
were stimulated with Zymosan-Depleted but not SPG, dose- and
Dectin-1-dependent TNF-o and other cytokine production was
observed, whereas cytokine production by Zymosan and Curdlan
was Dectin-1-independent (Fig. 3C and Fig. S4). Zymosan-De-
pleted inhibited CpG ODN-induced IFN-o, with this inhibition
relieved by Dectin-1 deficiency (Fig. 3D). In contrast, SPG did not
inhibit CpG ODN-induced IFN-a production (Fig. 3E). These
results indicate that SPG is a ligand but not an agonist of Dectin-1;
therefore, SPG does not interfere with TLR9-mediated IFN-a
production.

Adjuvant Effects of K3-SPG Are Dependent on TLR9 and Partially
Dependent on Dectin-1. Because K3-SPG is a complex of CpG
ODN and B-glucan, we examined the role of TLR9 (1) and
Dectin-1 (30) using receptor knockout mice. When splenocytes
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and FIt3 ligand-induced bone marrow-derived DCs (FL-DCs)
from TIr9- and Dectin-1-deficient mice were stimulated with K3-
SPG, cytokine production was completely dependent on TLR9
but not Dectin-1, excluding I1L-12 p40 production (Fig. 4 A-D).
K3-SPG-induced IL-12 p40 production showed two peaks,
where the first peak of its production, but not the second peak at
a higher dose, was dependent on Dectin-1 (Fig. 4D). This result
may imply that Dectin-1 expression is involved in IL-12 p40 pro-
duction at a lower dose of K3-SPG in vitro. Consistent with in vitro
results, immunization of Th9-deficient mice with K3-SPG plus
OVA resulted in diminished humoral and T-cell responses (Fig. 4
E-G). Dectin-1-deficient mice showed comparable immune
responses with wild-type mice when the mice were immunized with
OVA plus 10 pg of K3-SPG (Fig. 55). When Dectin-1-deficient
mice were immunized with OVA plus | pg of K3-SPG, mice
exhibited a reduced CD8 T-cell response according to the tetramer
assays (Fig. 4/), with no significant changes in antibody and cytokine
production from T cells (Fig. 4 H and I). These results suggest that
the adjuvant effect of K3-SPG is dependent on TLRY signaling.
Although SPG and K3-SPG do not stimulate Dectin-1 signaling, the
effect of K3-SPG is still partially dependent on Dectin-1 in vivo.

MARCO™, but Not Siglec-1", Macrophages in Draining Lymph Nodes
Dominantly Capture K3-SPG with Antigen. Given that K3-SPG
provides potent adjuvant effects in vivo through immunization
with a simple antigen mixture, we hypothesized that cells that
capture both antigen and K3-SPG should play a critical role in
mediating adjuvant effects. To examine in vivo distribution of
fluorescence-labeled OVA and K3-SPG, we used fluorescence
microscopy and two-photon microscopy. After an injection at the
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Fig. 3. SPG is a nonagonistic Dectin-1 ligand, but does not interfere with
TLR9-mediated IFN-a production. (A and B) HEK293 cells transiently expressing
Dectin-1 or Dectin-2 were treated with SPG-FITC (A), Alexa 488-K3, or Alexa
488-K3-SPG (B) for 60 min, and then their cellular uptake was monitored by
flow cytometry [Left, histogram; Right, mean fluorescent intensity (MF})].
Splenocytes from C57BL/6J and Dectin-1""" mice (n = 3) were stimulated with
Zymosan, Curdlan, Zymosan-Depleted (zZD), or SPG (3.7-100 pg/mL) (C), with
D35 (1 pM), or with or without ZD (11.1-100 pg/mL) (D) or SPG (E) for 24 h
and supernatant cytokines were monitored by ELISA. *P < 0.05 (t test). Data
represent one of three independent experiments with similar results.

PNAS Early Edition | 3 0of 6




