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Figure 6. Downregulation of CD9 enhances CD26-mediated invasive potential. (A). MESOT and MSTO-CD26 (+) celis transfected with
control siRNA and CD26-siRNA were subjected to immunoblotting using anti-a5 (2H6), anti-B1 (4B4) mAbs, anti-CD26 polyclonal antibody, anti-3-
actin polyclonal antibody. (B). The same cells transfected with control-siRNA and CD9-siRNA. Anti-CD9 mAb (5H9) was used for immunoblotting. (C).
MESO1 and MSTO-CD26 (+) cells were subjected to immunoprecipitation to anti-B1 mAb (4B4), anti-FAK mAb (10G2), and anti-Cas-L Ab (TA248).
Immunoblotting was performed with anti-FAK (10G2), and anti-Cas-L Ab (TA248). (D). MESO1 and MSTO-CD26 (+) cells were transfected with control
siRNA, CD26 siRNA or CD9 siRNA, then subjected to immunoprecipitation with anti-FAK mAb (10G2), or anti-Cas-L Ab (TA248). Immunoblotting was
performed with anti-FAK mAb (10G2) or anti-Cas-L Ab (TA248). (E). MESO1 and MSTO-CD26 (+) transfectants with control siRNA or CD9 siRNA were
immunoprecipitated with anti-FAK mAb (10G2) or anti-Cas-L Ab (TA248). Immunoblotting was performed with anti-phosphotyrosine mAb (4G10).

Similar results were observed by 3 separate experiments.
doi:10.1371/journal.pone.0086671.g006

of CD9P-1 positively correlates with the metastatic status of lung
tumor cells [38]. In the present study, we demonstrated that
inverse correlation between CD9 and CD26 play a role on CD9-
mediated suppression of invasiveness of CD26-positive tumor cells.

We previously reported the localization of CD26 in lipid raft
and the association between CD26 and caveolin-1, a molecule
residing in the lipid raft [5] and caveolac [6]. An association
between a5fB1 integrin and caveolin-1 has been reported to be
necessary for integrin-mediated Shc-Ras-ERK signaling [39], and
that interaction between phospho-caveolin-1 and integrins revers-
ibly regulates the internalization of lipid raft [40]. Despite
proposed differences in the biochemical properties and molecular
contents of TEM and lipid raft [24,41], it should be noted that
CD26 has been preferentially detected in TEM of metastatic colon
cancer cells [30], data which partially support our present findings.
Although the precise distribution of CD26, CD9, and integrins in
these membrane microdomains remains unclear, but warrant
examination.

Metastasis is the critical feature of malignancy which influences
overall survival of patients [42]. In human colon cancer, CD26
was identified as a novel marker for cancer stem cells, and
injection of CD26* cells into SCID mice resulted in the
development of distant metastasis, indicating the metastatic
capacity of the CD26" cells [43]. Reduced expression of CD9
correlates with enhanced metastasis in many types of malignancies
[17], suggesting that CD9 predominantly functions as a suppressor
of mectastasis. Consistent with these finding was our recent
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multivariate analysis showing that CD9 expression is an indepen-
dent favorable prognostic marker of malignant mesothelioma [44].

Antibodies against a5B1 integrins inhibited cell invasion and
migration, and depletion of CD26 concomitantly reduced the
expression of a5B1 integrin. We therefore conclude that CD26
promotes invasiveness through the formation of CD26-a5f1
integrin molecular complex. On the other hand, depletion of CD9
augmented both 0581 integrin and CD26 expression, resulting in
enhanced level of the CD26-a5B1 integrin complex. Our results
differ from previous work indicating that downregulation of CD9
correlates with decreased levels of a5 and B1 integrins, contrib-
uting to dissemination of ovarian carcinomas [45]. This discrep-
ancy may be partly attributable to differences in cellular origin and
molecular contents of tetraspanins or CD26.

Several molecular mechanisms involved in CD9-mediated
suppression of metastasis have been reported, including modifica-
tion of Bl integrin [46] and inhibition of WAVEZ2 [47]. In the
present study, we show that CD9 suppresses cell invasion and
migration by inhibiting the formation of CD26-a5f1 integrin
complex through its negative regulation of CD26. Our results
therefore suggest a new mechanism involved in CD9-mediated
suppression of invasiveness and metastasis.

Based on the above findings, blocking of both CD26 and CD9
resulted in marked inhibition of invasiveness and proliferation of
tumors. Therefore, combined application of anti-CD26 and anti-
CD9 mAb is likely a promising therapeutic strategy for malignant
mesothelioma.
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Figure 7. Combined treatment with anti-CD26 mAb and anti-CD9 mAb on tumorigenesis. (A). MSTO-CD26(+) and MESO1 cells were
treated with anti-CD26 mAb (10 pg/ml), anti-CD9 mAb (10 pg/ml), or with anti-CD26 mAb (5 pg/mi) + anti-CD9 mAb (5 pg/ml). Cell invasion assay
was performed at 24 h. Number of invaded cells was represented as means = SE (n=5). *p<<0.05, **p<<0.01, ***p<<0.005. (B). MESO1 cells transfected
with shRNAs for control, CD26, CD9, or CD26-CD9 were grown in 96 well culture plates and subjected to MTT assay at indicated times. Each data
point represents the mean = SE of six wells. ¥p<<0.05, **p<<0.01. (C). MSTO-CD26(+) and MESO1 cells were treated with anti-CD26 mAb (10 ug/ml),
anti-CD9 mAD (10 pg/ml), or with anti-CD26 mAb (5 pg/ml) + anti-CD9 mAb (5 pg/ml). MTT assay was performed at day 2. Each data point represents
mean * SE of six wells. *p<<0.05, **p<0.005. (D). SCID mice were inoculated with MESO1 cells transfected with shRNAs for control, CD26, CD9 or
CD26-CD9. Tumors were sampled at day 14. Tumor weight was represented as means * SE (mg) among 5 tumors from each category. The
representative tumor images were shown on the top. *p<0.05, **p<<0.01. (E).MESO1 cells were implanted into SCID mice and intraperitoneally
treated with anti-CD26 mAb (8 mg/kg), anti-CD9 mAb (8 mg/kg), or with anti-CD26 mAb (4 mg/kg) + anti-CD9 mAb (4 mg/kg) 2 times in a week
from the day following tumor implantation. Tumors were sampled at day 14. Tumor weight was represented as means = SE (mg) among 5 tumors
from each category. The representative tumor images were shown in the top. *p<0.05, ¥*p<0.01.

doi:10.1371/journal.pone.0086671.g007

In conclusion, our present study demonstrates that the promising biomarkers as well as molecular targets for the future
interaction between CD26 and CD9 mediates mesothelioma treatment of malignant mesothelioma.
behavior, while suggesting that CD26 and CD9 would be
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Supporting Information

Figure S1 Negative correlation of CD26 and CD9
expression. (A). MESO!1 cells transfected with control shRNA,
CD26 shRNA-1, and CD9 shRNA-1 were stained with anti-
CD26-FITC or with anti-CD9-IFITC, and subjected to flow
cytometry. (B). NCI-H2452 cells transfected with control-siRINA,
CD26-siRNA, and CD9-siRNA were also analyzed by CD26 and
CDO9-FITC.

(TIF)

Figure §2 CD26 potentiates migration, and negative
regulation by CD9. (A and B). Migration of MESOI, MSTO-
Wild, and MSTO-CD26 (+) cells, or MESO1 or MSTO-CD26 (+)
cells transfected with control siRNA or CD26 siRNA were
analyzed by the Boyden chamber-based cell migration assay, for
24 h. Number of migrated cells/well was represented as means
SE (n=15).#p<<0.005, *¥p<<0.001. (C).Migration of MSTO-Wild,
MSTO-CD26 (+), and MESOI1 cells transfected with control
siRNA or CD9 siRNA were analyzed. Number of migrated cells/
well was represented as means £ SE.(n=5)*p<0.005. D)
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with increased expression of Versican and
MT1-MMP and enhanced adhesion
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Abstract

CD26-knockdown or versican-knockdown clones.

to these processes.

Background: CD26/dipeptidyl peptidase IV (DPPIV) is a multifunctional membrane protein with a key role in T-cell
biology and also serves as a marker of aggressive cancers, including T-cell malignancies.

Methods: Versican expression was measured by real-time RT-PCR and Western blots. Gene silencing of versican in
parental Karpas 299 cells was performed using transduction-ready viral particles. The effect of versican depletion on
surface expression of MT1-MMP was monitored by flow cytometry and surface biotinylation. CD44 secretion/
cleavage and ERK (1/2) activation was followed by Western blotting. Collagenase | activity was measured by a live
cell assay and in vesicles using a liquid-phase assay. Adhesion to collagen | was quantified by an MTS assay.

Results: Versican expression was down-regulated in CD26-depleted Karpas 299 cells compared to the parental
T-ALCL Karpas 299 cells. Knock down of versican in-the parental Karpas 299 cells led to decreased MT1-MMP surface
expression as well as decreased CD44 expression and secretion of the cleaved form of CD44. Parental Karpas 299
cells also exhibited higher collagenase | activity and greater adhesion to collagenase | than CD26-knockdown

or versican-knockdown cells. ERK activation was also highest in parental Karpas 299 cells compared to

Conclusions: Our data indicate that CD26 has a key role in cell adhesion and invasion, and potentially in
tumorigenesis of T-cell lines, through its association with molecules and signal transduction pathways integral

Keywords: CD26, T-cell malignancies, Adhesion, MT1-MMP, Cell signaling

Background

CD26/dipeptidyl peptidase IV (DPPIV) is a 110-115 kD
glycosylated protein that exists as a homodimer. It is a
multifunctional membrane protein with three domains:
extracellular, transmembrane, and cytoplasmic. It is widely
expressed on a number of tissues and can regulate tumor
growth and development [1-7]. The interaction of CD26/
DPPIV with other proteins, including collagen, fibronectin,
and caveolin-1, likely influences its involvement in cell
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motility and invasion [8,9]. CD26 and its associated DPPIV
enzyme activity play a key role in T-cell biology, serving as
a marker of T-cell activation and participating in several
signaling pathways [10-13]. CD26 is also a marker of ag-
gressive cancers, including T-cell malignancies [14-20].
Interestingly, the cleaved form of CD26, which is present
in plasma, is inversely correlated with several aggressive
cancers [21].

Our previous work showed that CD26-depleted hu-
man T-anaplastic large cell lymphoma (T-ALCL) Karpas
299 cells were unable to form tumors in SCID mice [8],
and that CD26 expression on two T-cell lines increased
SDEF-1-a-mediated invasion [22]. We were interested in
looking at CD26-associated gene products involved in

© 2013 Havre et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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cell motility and therefore conducted microarray analysis
of genes involved in this pathway in parental Karpas 299
and CD26-depleted clones, and found that versican ex-
pression was associated with changes in CD26 level
Microarray analysis revealed that mRNA level for versi-
can was considerably lower in CD26-depleted Karpas
299 cells than parental Karpas 299 cells (1:88). Although
mRNA levels for several other genes, including IGFBP3,
tenascin C, and SPOCKL, were also lower in CD26-
depleted cells than parental Karpas 299, Western blots
confirmed a difference in protein expression for versican
only, but not for the other three proteins. Versican is a
large chondroitin sulfate proteoglycan involved in the
regulation of adhesion, migration, invasion, and angio-
genesis [23]. Versican binds to ECM constituents includ-
ing type I collagen, fibronectin, and hyaluronan (HA)
[24] and a number of cell-surface proteins, including
CD44, integrin f1, and toll receptor 2 [25,26]. Versican
levels are elevated in most malignancies, and correlated
with poor patient outcome. Versican is secreted by peri-
tumoral stromal cells and also by the individual cancer
cells [27,28]. Four major isoforms exist that differ with
respect to the number and position of GAG molecules
attached, which are important for association with other
proteins. Of note is that the VO and V1 isoforms are re-
ported to be the isoforms most closely associated with
cancers.

In the present paper, we examined in detail CD26 in-
volvement with cell migration and adhesion in T-cell
lines. Expression array analyses of genes involved in
extracellular matrix and adhesion pathways indicated
that versican expression was significantly higher in par-
ental T-ALCL Karpas 299 cells compared to CD26-
depleted Karpas 299 cells. To further investigate the
relationship between CD26 and versican, we conducted
knock down studies of versican in Karpas 299 cells and
evaluated for a potential effect on expression of signaling
proteins and adhesion. We found that the use of ShRNA
to knock down versican expression in the parental
Karpas 299 cells resulted in both lower MT1-MMP tran-
scription and surface expression. To confirm that cell
behavior was consistent with the observed change in
MT1-MMP activity, several assays were performed; se-
cretion and cleavage of CD44, collagenase I activity, and
adhesion. In all three assays, parental Karpas 299 cells
exhibited higher activity compared to cells in which
CD26 or versican was knocked down. Finally, ERK acti-
vation, which is required for migration and invasion, was
also highest in the parental Karpas 299 cell line.

Methods
Reagents
Bovine serum albumin (BSA), polybrene (hexadimethr-
ine bromide), sodium dodecyl sulfate, glycine, sodium
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deoxycholate, trypsin, phosphate buffered saline, and di-
methyl sulfoxide were from Sigma Life Science, St.
Louis, MO. TX-100, NP-40, and Tween-20 were from
Fisher Scientific, USA. Puromycin was from Life Tech-
nologies, USA. Rat tail collagen and bovine skin colla-
gen were purchased from BD and Advanced Matrix,
respectively. GM6001, a general MMP inhibitor was
purchased from Calbiochem.

Cell culture

Karpas 299 cells were originally obtained from the
American Type Culture Collection (ATCC, Manassas,
VA) and maintained in RPMI-1640 (Hyclone, Logan,
UT). Karpas 299 cells depleted of CD26 have been de-
scribed previously [8]. All cell media contained 10%
fetal bovine serum (Hyclone), penicillin (100 u/ml) and
streptomycin (100 pg/ml).

Expression arrays

GEArray express human extracellular matrix and adhe-
sion molecule microarrays were carried out by SuperAr-
ray Bioscience Corporation on 10 pg total RNA isolated
from parental Karpas 299 cells and Dep1, a cell line defi-
cient in CD26 expression.

Real-time RT-PCR

Real-time RT-PCR was carried out on 10 ng total RNA
(RNeasy kit, Qiagen). SYBR Green-based real-time RT-PCR
was carried out using QuantiTect Primer Assays (Qiagen)
for CD26 (Hs_DPP4_1_SG), Versican (Hs VCAN_1_SG),
and GAPDH (Hs_GAPDH_1_SG).

RT-PCR

RT-PCR was carried out on 10 ng of RNA isolated from
parental Karpas 299 cells, Depl, and Dep2 using the
Titan One Tube RT-PCR system (Roche Applied Sci-
ence). The primers were described previously [29]. The
sizes of the amplification products were 405 bp for VO
(forward: 5'- TCAACATCTCATGTTCCTCCC-3" and
reverse: 5-TTC TTCACTGTGGGTATAGGTCTA-3")
and 336 bp for V1 (forward: 5'-GGCTTTGACCAGTGC
GATTAC-3" and reverse: 5 -TTCTTCACTGTGGGTA
TAGGTCTA-3"). The reverse transcription step was car-
ried out at 50° for 30 min, followed by denaturation for
2 min at 94°, amplified by 35 cycles (94° for 30 s, 55° for
45 s, 68° for 45 s) and elongated for 7 min at 68°.

Flow cytometry

Cells were washed once with staining buffer (PBS con-
taining 1% BSA) and incubated on ice for 30 minutes
with antibodies specific for the activity domain of MT1-
MMP (ab51074, Abcam, Cambridge, MA), then with
FITC goat anti-rabbit Ig at 0.125 pg/10° cells (BD Phar-
mingen). After washing with staining buffer twice, the
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cells were resuspended in PBS. The optimum amount of
MT1-MMP antibody was determined by titration.

Gene silencing

Transduction ready viral particles for gene silencing of
versican (versican shRNA, Santa Cruz Biotechnology,
Inc., Santa Cruz, CA) were used to infect Karpas cells at
a ratio of 0.5 virus particles per cell. Cells were pelleted
the following day, resuspended in fresh media, and
48 hrs following transduction, puromycin was added at a
concentration of 2.5 ug/ml. Following selection, stable
clones were isolated by limiting dilution. Knockdown
was monitored by running whole cell lysates and/or
spent media on gels and probing with versican anti-
bodies as described in the Western Blot section.

Cell lysis

Cells were lysed using RIPA (1% NP40, 0.5% DOC, 0.1%
SDS, 150 mM NaCl, 50 mM TrisCl, pH 8.0) or TX100
buffer (50 mM TrisCl, pH 8, 0.15 M NaCl, 1% TX-100)
containing a protease/phosphatase inhibitor cocktail
(Pierce, Rockford, IL). Protein concentration was deter-
mined using the bicinchoninic acid protein assay reagent
(Pierce).

Isolation of vesicles from serum free media

Cells (8 x 10°) were grown in serum free media for
48 hours, followed by centrifugation at 600 xg for
15 min, then 1500 x g for 15 min, and the resulting
supernatant was subsequently centrifuged at 100,000 x g
for 1 hr at 4°C. Pelleted vesicles were suspended in PBS
and assayed for protein [30].

Western blots

Equal amounts of protein were run on 5.0, 7.5% or 10%
polyacrylamide gels. For detection of versican, samples
were combined with sample buffer without reducing
agent. Following transfer, blots were blocked, then
probed with one of the following antibodies: anti-CD26
(AF1180) and anti-CD44H (clone 2C5) were from R &
D Systems, Inc., Minneapolis, MN; anti-versican (clone
2B1, Seikagaku, Tokyo, Japan); and anti-MT1-MMP
(ab38971, Abcam). Anti-phospho-p44/42 MAPK (Erk %)
and anti-p44/42 MAPK (Erk %) were from Cell Signaling
Technology, Inc; anti-integrin alpha 5 chain (BD, cat#
610633). Precision Plus Protein Standards (Bio-Rad La-
boratories, Hercules, CA) were run to estimate sizes of
proteins of interest. Horseradish peroxidase-conjugated
secondary antibodies and the detection reagent, Super-
Signal West Dura Extended Duration Substrate, were
from Pierce. Films were scanned using an Image Quant
400 (GE Healthcare, Piscataway, NJ).
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Biotinylation and immunoprecipitation

Cells were suspended in PBS (2.5 x 107/ml) and incu-
bated with 200 pl of 10 mM EZ-Link® Sulfo-NHS-LC-
Biotin/ml cells for 30 min on ice. The cells were then
washed 3x with PBS containing 100 mM glycine. Fol-
lowing lysis in TX100 buffer, 1 mg lysate was applied to
a Streptavidin- Agarose spin column (Pierce), and fol-
lowing extensive washing, bound proteins were eluted
with 2x sample buffer and heating at 100°C for 5 min.
Eluates were run on 7.5% acrylamide gels and probed
with anti-MT1-MMP antibody.

Collagen degradation in cultured cells

Collagen I degradation was monitored in live cells mi-
grating through a native 3D collagen substrate. DQ™ col-
lagen, type I from bovine skin, fluorescein conjugate
(Molecular Probes) was copolymerized with rat-tail col-
lagen type I, in RPMI media without phenol red (Life
Technologies). After incubation for 48 hrs at 37°C, solid
phase collagen and cells were pelleted and the super-
natant analyzed for FITC using a Perkin-Elmer Victor®
V multilabel counter [31].

Collagen degradation in vesicles

The EnzChek collagenase assay (Life Technologies) was
used to evaluate activity in vesicles isolated from condi-
tioned media. In this assay, DQ™ collagen, type I from
bovine skin, fluorescein conjugate (Molecular Probes)
was used as substrate and the incubation was carried out
at room temperature as described by the manufacturer.
Each well of a 96 well plate contained 4.5 pg vesicle pro-
tein. Fluorescence was detected using the Perkin-Elmer
instrument.

Adhesion assays

Adhesion assays were carried out essentially as described
[8]. Cells (5 x 10°/well) were seeded into 12 well colla-
gen I coated plates and incubated overnight. Unattached
cells were removed, plates were washed three times with
PBS and the adhesive cells remaining were quantified
using the MTS assay. The total cell number was deter-
mined using uncoated wells and serial dilutions were
used to construct a standard curve to convert absorb-
ance at 490 nm to cell number.

Results

Model showing idealized scheme for interaction of
signaling molecules in parental Karpas 299 cells

Figure 1 depicts a simplified scheme for molecules be-
lieved to be involved in CD26 enhanced invasion. In this
proposed model for parental Karpas 299 cells, CD26 is
shown bound to the cell membrane. Results from our
microarray analysis indicated that in CD26-depleted cells,
versican was underexpressed, at a ratio of 1:80 compared
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Karpas 299 parental cell

Extracellular space |

Plasma membrane
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YIosOl bErk(i/2)
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Figure 1 Model for CD26 regulation of adhesion and downstream signaling. In this simplified scheme, CD26 is shown bound to the cell
membrane. Versican is also depicted in the membrane, but is also secreted and is a constituent of the extracellular matrix. CD44 and HA are
bound to versican, but CD44 is also bound to MT1-MMP, which can itself cleave CD44, resulting in CD44 secretion. Secretion of the cleaved CD44
is necessary for localization of MT1-MMP at the invadopodia where it digests collagen |, a constituent of the extracellular matrix. In addition, Erk

(1/2) activation occurs in the parental Karpas cells and has been reported to be required for migration, invasion, and CD44 upregulation. This
model is intended to be a working hypothesis of the relationship between the proteins shown here.

to the parental cell. Versican is an extracellular matrix
component and is involved in diverse activities, including
adhesion, proliferation, migration, and angiogenesis. MT1-
MMP is a membrane MMP and is also involved in these
activities. It is one of the few MMPs that can degrade dir-
ectly collagen I, a component of the extracellular matrix.
CD44 binds to both versican and MT1-MMP, which is
able to cleave CD44. It is thought that cleavage and release
of CD44 from the membrane is required for the relocaliza-
tion of MT1-MMP to the invadopodia, where it binds to
collagen I, leading to invasion of the extracellular matrix.
Relocation to the invadosome may occur in vesicles (or
exosomes). Activation of Erk (1/2) is also shown here,
since it is reported to form a positive feedback loop with
MT1-MMP and has been shown to regulate invasive
activity.

Decreased expression of versican is associated with CD26
depletion in human T-anaplastic large cell lymphoma Kar-
pas 299

Our previous work showed that depletion of CD26 in
Karpas 299 cells resulted in loss of cell adhesion to the
extracellular matrix and decreased tumorigenicity in a
SCID mouse xenograft model [8]. To identify CD26-
associated gene products potentially involved in cell ad-
hesion processes, we performed expression microarray
analysis of human extracellular matrix and adhesion
molecules with RNA isolated from parental Karpas 299
and the CD26-depleted Karpas 299 cell line Depl [8].
Our data indicated that expression of versican was ap-
proximately 90-fold higher in the parental Karpas 299
cells compared to CD26-depleted Karpas 299 cells
(Table 1).

Real-time RT-PCR and Western blots were subse-
quently carried out to confirm differential expression of
versican in parental Karpas 299 cells and the two CD26-
depleted Karpas 299 cell lines Depl and Dep2 [8]. RNA
was isolated from Karpas 299, Depl, and Dep2 cells, and
SYBR Green based real-time RT-PCR was performed
using QuantiTect Primer Assays. Down-regulation of
versican was confirmed in CD26 depleted cells, with an
80-fold and 103-fold enrichment for parental Karpas
299 compared to Depl and Dep2, respectively (Table 2).
Western blot analyses also confirmed that versican ex-
pression was higher in parental Karpas 299 as compared
to Depl and Dep2 (Figure 2A). RT-PCR using VO and
V1 specific primers were used to confirm this as shown
in Figure 2B.

Enhanced expression of MT1-MMP is associated with
CD26 and versican in Karpas 299

MT1-MMP (MMP14) plays a critical role in the process
of cell motility and invasion, with its deletion in tumor
cells resulting in the loss of both in vitro and in vivo in-
vasive activity [32]. We therefore examined its status in
parental Karpas 299 and the CD26-depleted Karpas 299

Table 1 Oligo GE Array microarrays indicate that versican
mRNA expression is higher in CD26-expressing cells than
in CD26-depleted cells (Dep1)

Unigene RefSeqNo  Symbol Dep1 Karpas Karpas/Depi
Hs.544577 NM_002046 GAPDH 2537 1415 0.56
Hs443681 NM_004385 VCAN 068 60.12 884

GEArray express human extracellular matrix and adhesion molecule
microarrays were carried out by SuperArray Bioscience Corporation on 10 ug
total RNA isolated from parental Karpas 299 cells and Dep1, a cell line
deficient in CD26 expression.
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Table 2 Real-time RT-PCR was used to confirm Versican

expression

GAPDH Avg Ct Karpas/Dep1 Karpas/Dep2
Karpas 17.74 - -
Dep1 16.70 049 -
Dep2 16.72 - 049
CD26

Karpas 2093 - -
Dep? 2395 811 -
Dep2 24.05 - 869
Versican

Karpas 2551 - -
Depl 3183 80 -
Dep2 3220 - 103

RNA was isolated from Karpas 299 cells and two clones, Dep1 and Dep2, in
which CD26 is depleted. SYBR Green-based real-time RT-PCR was carried out
on 10 ng total RNA using QuantiTect Primer Assays for CD26, Versican,

and GAPDH.

Depl and Dep2 cell lines. In addition, to further evaluate
the effect of versican depletion in the T-ALCL Karpas
299 cell line independent of CD26 status, we established
a number of versican knock down Karpas 299 lines, as
described in Materials and Methods and shown in
Figure 2.

Since only MT1-MMP expressed on the cell surface
mediates degradation of the extracellular matrix [32], we
next evaluated its surface expression by both cell surface
biotinylation and flow cytometry analysis, as described
in Materials and Methods. Cells were cultured overnight
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in collagen I coated wells to stimulate MT1-MMP
expression [33]. Our data indicated that a higher per-
centage of parental Karpas 299 cells exhibited surface
expression of MT1-MMP than CD26-depleted Depl or
versican-knock down clone 6RD3 (Figure 3A).

Meanwhile, flow cytometry studies also demonstrated
that the presence of collagen induced greater surface ex-
pression of MT1-MMP in all cells tested (Figure 3B). Im-
portantly, a higher percentage of parental Karpas 299 cells
expressed surface MT1-MMP than Depl or 6RD3 clones
in the presence or absence of collagen. Of note is the fact
that our experiments consistently found MT1-MMP to be
expressed at relatively low levels on the cell surface, find-
ings which were consistent with previous work demon-
strating that only small amount of MT1-MMP is expressed
on the cell surface at any one time [34].

Enhanced CD44 expression is associated with CD26 and
versican in Karpas 299

MT1-MMP has been reported to associate with several
membrane-associated and cytosolic proteins, including
CD44 [35]. Interaction of MT1-MMP with CD44 leads
to the cleavage of CD44 and facilitates migration by in-
directly linking MT1-MMP to the cytoskeleton [35,36].
Our present work demonstrated that expression of
CD44 in total cell lysates (Figure 4A) and secretion of its
cleaved form in conditioned media (Figure 4B) were
higher in parental Karpas 299 as compared to the CD26-
depleted Depl and versican-depleted 1A12 and 6RD3
clones. Since PMA has been shown to increase CD44
expression [37] and to stimulate trafficking of MT1-
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and RT-PCR were obtained from two independent experiments.

Figure 2 Confirmation of Versican expression in Karpas 299 cells and in CD26-depleted and Versican-depleted Karpas cells. A. Western
blots confirmed versican expression in Karpas cell lines and clones resulting from knockdown of versican in parental Karpas 299 cells using
shRNA. Whole cell lysates (30 pg) of Karpas, Dep1, Dep2, and two clones derived from knock down of versican in parental Karpas cells, 1A12 and
6RD3 were run on 7.5% gels. The top of the gel and 250 kD marker are indicated. Blots were probed with anti-versican antibody at 1:100 dilution,
followed by anti-mouse HRP at 1:10,000 dilution. B. RT-PCR using VO and V1 specific primers show product was present when RNA from the
parental Karpas 299 cells was used but barely detectable when RNA from Dep1 or Dep2 was used as the template. Results from Western blots
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MMP to the plasma membrane [38-40], we conducted

A S é - B8 our studies in the presence or absence of PMA. In our
s ] & o experimental system, PMA had only a slight enhancing
© x e © effect on the expression and secretion of CD44.

Enhanced collagenase | activity is associated with CD26

and versican in Karpas 299 cells

Previous work has demonstrated an association between
Streptavidin eluates MT1-MMP and enhanced collagen I degradation [32,41].

We next conducted two separate assays for collagenase I

activity as described in Materials and Methods, one using

B a solid phase assay in which collagen I degradation was

monitored in live cells (Figure 5A), and the other using a

6 - liquid-phase assay with vesicles isolated from conditioned
5 media (Figure 5B). In both types of assays, parental Karpas

#no col 299 cells exhibited a higher level of collagenase I activity
4 - mplus col than Dep1 or 6RD3 clones.

Adhesion to collagen 1 is highest in the parental Karpas
299 cell line

Adhesion to collagen I was compared for the parental
Karpas 299 cells, the CD26-depleted cells (Depl) and
versican-depleted cells (6RD3) in precoated 12 well plates.
,,,,,,,,,, . __ . Our findings indicated that the versican-expressing paren-
Karpas Dep1 6R-D3 tal Karpas 299 cells exhibited much greater adhesion to
collagen than the versican-depleted Depl and 6RD3 cell

Percent of cells expressing
surface MT1-MMP
w

Figure 3 Surface expression of MT1-MMP is higher in Karpas

parental cells than in Dep1 (CD26 depleted) or 6RD3 (versican lines (Figure 6).

depleted). A. Cells were grown overnight on collagen | plates, then

biotinylated using an impermeable reagent. Lysates (1 mg protein) Erk(1/2) activation is highest in the parental Karpas 299
were applied to streptavidin-agarose spin columns, washed, and cell line

eluted with sample buffer. Eluates were run on 7.5% SDS gels, s . .

transferred to nigocellulose, and probed with MT1-MMP antibodies. E‘rk 172) actlvaFlon .1s requnjec? for CD44 [42,43] expr.es-
B. Flow cytometry of cells grown with and without collagen 1. Data sion and cell migration and is induced by overexpression
are representative of two independent experiments for panel A and of MT1-MMP [44]. In addition, MT1-MMP expression
for panel B. activates Erk (1/2), which then leads to upregulation of

MT1-MMP, creating a positive feedback loop [33]. To
further explore the mechanism involved in MT1-MMP
upregulation associated with CD26 and versican, cells
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Figure 4 CD44 expression/secretion of cleaved form is higher in parental Karpas 299 cells than in Dep1 or 6RD3 cells. A. Whole cell
lysates (30 ug) from cells grown on collagen | plates in the presence or absence of 10 ng/ml PMA for 24 hr, B. Concentrated conditioned media
(75 yg) isolated from cells grown on collagen | plates for 24 hr. Samples were run on 7.5% SDS gels, transferred, and probed with anti-CD44H,
followed by anti-mouse HRP. Of note is that intact CD44 migrates as a 100 kD protein, whereas the cleaved form migrates as a 70-75 kD species
[36,67). Data are representative of three independent experiments.




Havre et al. BMC Cancer 2013, 13:517
http://www.biomedcentral.com/1471-2407/13/517

Page 7 of 11

8 )
A B
Cells 1.2 Vesicles

=

2> 12 s 1

= ©

B 1. m Karpas ©

(4} - .

5 # DepH 2 0.8

% 0.8 . g

s ®6RD3 T 06-

D (@)}

S 06 £

3 8 04-

Q 0.4 - o

c S

o ks 4

s 02 g 02

& w

18 0 - 0

Karpas Dept 6RD3

Assay number

Figure 5 Karpas 299 cells and vesicles exhibit greater collagenase | activity than either Dep1 or 6RD3 cells. A. Collagen | degradation
was monitored in live cells migrating through a native 3D collagen substrate. FITC-collagen type | from bovine skin was copolymerized with
rat-tail collagen |. After 48 hr, cells and solid phase collagen were pelleted and the supernatant analyzed for FITC release. B. Collagen | degrad-
ation was also measured in vesicles isolated from conditioned media of cells grown for 48 hrs on collagen I. Two independent assays are shown

for the intact cells:(A) and three independent assays for the vesicles (B). Error bars are standard error of the mean.

were cultured overnight in serum free medium, and the
expression of MT1-MMP, phosphorylated Erk (1/2), and
integrin a5 in vesicles isolated from the conditioned
medium was determined by Western blot (Figure 7). We
had previously observed that activated Erk (1/2) and
MT1-MMP were present in the conditioned media (data
not shown) and others have shown that MT1-MMP is
present in vesicles isolated from the spent media of
endothelial [45], fibrosarcoma, and melanoma cells [46].
We found that the expression of MT1-MMP was higher
in parental Karpas 299 cells than in the CD26-depleted
Depl cells or versican-depleted 6RD3 cells. Activation of

Erk (1/2) followed the same pattern, which is consistent
with observations for actively migrating cells [38]. In
contrast the level of the o5 integrin appeared to be simi-
lar in all cells.

Discussion

In this paper, we have focused on the differential expres-
sion of versican in CD26-expressing Karpas 299 cells as
compared to a CD26-depleted clone and the associated
changes in various cellular activities as related to tumori-
genesis. As a point of reference, we presented a working
model at the beginning of the paper. The emphasis is
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Figure 6 Adhesion assays show that Karpas 299 cells adhere to collagen | to a greater extent than CD26-depleted, Dep1, or CD26-
expressing, versican-depleted, 6RD3 cells. Cells (5 x 10°/well) were seeded into 12 well collagen | coated plates and incubated overnight.
Following removal of non-adhesive cells, the cells remaining were quantified using the MTS assay. The total cell number was determined using
uncoated wells and serial dilutions were used to construct a standard curve to convert absorbance at 490 nm to cell number. Error bars are
standard error of the mean. Data are representative of three independent experiments.
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Figure 7 Erk(1/2) activation is highest in the parental Karpas
299 cell line. Cells (8 x 10% were grown in serum free media for

48 hrs, centrifuged at low speed to remove cells and debris, then at
100,000 x g for 1 hr. Vesicles were suspended in PBS and assayed for
protein. Equal amounts of protein (5 pg) were loaded in each well
of a 7.5% SDS gel. Following transfer to nitrocellulose, blots were
probed with anti-MT1-MMP antibody (top) or anti-phospho-p44/42
MAPK antibody (middle), stripped, and reprobed with anti-p44/42
MAPK antibody (next to bottom). The blot was also probed with
anti-a5 integrin antibody (bottom). Data are representative of two

L independent experiments. J

placed on MT1-MMP (MMP-14), since it is known to
have several important activities which could account for
the ability of CD26-expressing Karpas 299 cells to form
tumors in SCID mice as opposed to the inability of CD26-
deficient Karpas 299 cells to develop tumors in the same
animal model [8]. We do note that this simplified model
does not take into account the complex roles that MT1-
MMP and other MMPs play in cancer progression. For ex-
ample, in addition to degrading the extracellular matrix,
MT1-MMP plays an important role in tumor angiogenesis
[47] through upregulation of VEGF [48] and immunoreg-
ulation through its effect on the release and activation
of cytokines such as TGF-B, a well-known suppressor of
T-lymphocyte reaction against cancer [49].

In addition to the difference in versican expression,
there were differences in adhesion, MT1-MMP surface
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expression, CD44 cleavage and secretion, and collage-
nase [ activity. Although CD26 is known to bind both
collagen [50,51] and fibronectin [52], versican also binds
these proteins, and can further strengthen the binding of
CD26-expressing cells to the extracellular matrix. This
conclusion is consistent with our observation that MT1-
MMP surface expression was increased in cells bound to
collagen 1. Since localization of MT1-MMP to the cell
membrane is required for its ability to degrade the extra-
cellular matrix [32], the decreased surface expression of
MT1-MMP associated with loss of versican would be
predicted to have an effect on cell motility, and possibly,
tumorigenesis by interfering with the ability of tumor
cells to interact with the microenvironment.

Our present work also established a relationship be-
tween CD44, CD26 and versican, with CD44 cleavage/
secretion being higher in parental Karpas 299 cells than in
cells depleted of versican (both CD26-depleted cells as
well as CD26-expressing/versican depleted cells). Inter-
action with and cleavage of CD44 by MT1-MMP has been
shown to facilitate migration by indirectly linking MT1-
MMP to the actin cytoskeleton [35,36]. The function of
MT1-MMP is regulated in large part by its localization;
MT1-MMP activity has been observed at invadopodia
[53-55], lamellipodia [35], and focal adhesions [56], with
CD44 cleavage and secretion appearing to play a role in
the localization of MT1-MMP to the invadopodia [35].

Our data also indicated a higher level of ERK activation
in parental Karpas 299 cells compared to CD26-depleted
or CD26-expressiong/versican-depleted clones. ERK acti-
vation is required for migration, invasion [44,57,58], and
CD44. upregulation. The requirement for matrix proteins
along with ERK activation suggests that integrins may be
involved in MT1-MMP regulation [59], a conclusion that
is further supported by colocalization of integrins with
MT1-MMP in vesicles [46,60] and the existence of
common recycling pathways [61]. In a recent study,
intracellular trafficking of MT1-MMP was found to be
coupled with trafficking of integrin a5, ERK activation,
and phosphorylation of MT1-MMP at Thr*®’ [38]. We
also detected these three proteins in vesicles isolated from
conditioned media; MT1-MMP and phosphorylated ERK
were highest in the parental Karpas 299 cells, whereas the
amount of o5 integrin was approximately the same in all
three cell lines.

Although regulation of versican expression is not well
understood, it has been shown to be a target of Wnt sig-
naling, regulated by the phosphatidylinositol 3-kinase
(PI3K) pathway in human embryonic carcinoma cells
[62]. It is possible that it is also regulated by this path-
way in Karpas 299 cells, since activated Akt/PKB is
higher in the parental Karpas 299 cells than in CD26-
depleted or versican-depleted cells (unpublished obser-
vations, author).
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In addition to its ability to form homodimers, CD26
can also form heterodimers with fibroblast activation
protein alpha (FAP or Seprase) [63], which shares 48%
homology with CD26 [64], but unlike CD26, can digest
collagen. Although this protein complex has been de-
tected at the invadopodia of migrating fibroblasts [65],
we did not explore the role of Seprase activity in the
collagenase I activity of Karpas 299 cells. However, our
Western blot assays for Seprase did not detect a differ-
ence among parental Karpas 299 cells, Depl, and 6RD3
(data not shown). While it has been suggested that
CD26 and related proteins, such as FAP, may serve as
valuable biomarkers for selected malignancies, better in-
depth understanding of the functional roles of these
molecules in particular tumor types and their associated
microenvironment will improve our knowledge of the
implications of their expression in tumor behavior [66].

Conclusions

In summary, our data suggest that CD26 has a key role
in cellular adhesion and invasion through versican and
MT1-MMP expression as well as downstream signaling
molecules involved in these processes. The expression of
versican in Karpas 299 parental cells is likely responsible
for their increased adhesion to the extracellular matrix,
which is necessary for cellular interaction with ECM com-
ponents and is also required for migration. The difference
in the adhesiveness of the parental Karpas 299 cells and
their CD26-deficient (and therefore versican deficient)
counterpart, Depl, may account for the difference in
tumorigenicity previously observed in SCID mice [8].
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Inhibition of Middle East Respiratory Syndrome Coronavirus
Infection by Anti-CD26 Monoclonal Antibody
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We identified the domains of CD26 invelved in the binding of Middle East respiratory syndrome coronavirus (MERS-CoV) us- ing
distinct clones of anti-CD26 monoclonal antibodies (MAbs). One cione, named 2F9, aimost completely inhibited viral entry. The
humanized anti-CD26 MADb YS110 also significantly inhibited infection. These findings indicate that both 2¥9 and YS110 are
potential therapeutic agents for MERS-CoV infection. YS110, in particalar, is a good candidate for immediate testing as a thera-

peutic modality for MERS.

‘%% novel coronavirus, Middle East respiratory syndrome coro-
ﬁ”‘%& navirus (MERS-CoV), was identified in patients with severe
lower respiratory tract infections with almost 50% of cases result-
ing in lethal lower respiratory tract infections (1-5). Initially,
MERS-CoV infection occurred sporadically; however, horizontal
infection among human patients has been demonstrated and has
potential pandemic ramifications. While MERS-CoV was re-
ported to be sensitive to alpha interferon or cyclosporine treat-
ment (6, 7), there are no vaccines or effective therapies currently
available for clinical cases of MERS-CoV infection.

A recent report showed that the spike (S) protein of MERS-
CoV mediates infection (8) using dipeptidyl peptidase IV
(DPPIV; EC 3.4.14.5) as a functional receptor (9). This receptor is
conserved among different species, such as bats and humans,
which partially explains the large host range of MERS-CoV.
DPPIV is also known as CD26, which is a 110-kDa cell surface
glycoprotein with dipeptidase activity in its extracellular domain
(10). CD26/DPPIV is a multifunctional cell surface protein that is
widely expressed in most cell types, including T lymphocytes,
bronchial mucosa, and the brush border of proximal tubules. This
distribution of CD26 may play a role in the systemic dissemina-
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tion of MERS-CoV infection in humans (11-13). Therefore, an
effective therapy for MERS-CoV infection is needed not only to
block the entry of MERS-CoV into such CD26-expressing organs
as the respiratory system, kidney, liver, or intestine but also to
eliminate circulating MERS-CoV. More recently, crystal structure
analysis revealed the CD26 -MERS-CoV binding regions (14, 15),
and manipulation of CD26/DPPIV levels or the development of
inhibitors that target the interaction between the MERS-CoV S
domain and its receptor may provide therapeutic opportunities to
combat MERS-CoV infection. In the present study, we mapped
MERS-CoV 8 protein binding regions in human CD26 molecules
and demonstrated that anti-CD26 monoclonal antibodies (MAbs)
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FIG 1 CD26 expression and binding of MERS-CoV S1-Fc in parental Jurkat cells and CD26 Jurkat transfectants. (A) Representative histograms showing results
of staining of Jurkat cells stably transfected with the full-length human CD26 (JKT-hCD26WT) or vector control (JKT-Mock) with Alexa Fluor 488-labeled
anti-CD26 MAb 2F9 (5 gg/ml; black).Gray histograms show results of staining with an isotype control (Alexa Fluor 488-labeled mouse IgG [msIgG-4881; 5
yg/ml). Results representative of three different experiments are shown. (B) Representative histograms showing results of staining with Alexa Fluor-labeled
MERS-CoV S1-Fc (5 pg/ml; black) using JKT-Mock or JKT-hCD26WT. Gray histograms show staining with Alexa Fluor 488-labeled recombinant human Fe
(Fc-488) as an isotype control. Results representative of three different experiments are shown.
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FIG 2 Aati-CD26 MAD 2F9 inhibits binding of MERS-CoV S1-Fc. (A) Representative histograms showing results of staining with MERS-CoV S1-Fc in the presence of
various clones of anti-CD26 MAbs or control mouse IgG (left). JKT-hCD26WT cells were incubated with the indicated anti-CD26 MADb (mouse MAb 4G8, 1F7, 14D10,
2F9, 16D4B, or 9C11 or humanized MAb YS110) (red) or control IgG (black) (each 10 pg/ml) for 30 min at 4°C. After being washed, cells were stained with Alexa Fluor
488-labeled MERS-CoV S1-Fc (5 ug/ml). Gray histograms show results of staining with Fc-488 as an isotype control. Mean fluorescence intensities (MFT) of Alexa Fluor
4388-labeled MERS-CoV S1-Fc are indicated in the bar graph (right). Results representative of three different experiments are shown as mean MFI. Error bars indicate
standard errors of the means (SEMs) (two-tailed Student’s ¢ test; * or **, P < 0.05 versus control IgG). (B to D) MFI of staining with Alexa Fluor 488-labeled MERS-CoV
S1-Fc in the presence of various concentrations of the anti-CD26 MAb 2F9 (B), 1F7 (C), or YS110 (D) (red) or control msIgG (black). JKT-hCD26WT cells were
incubated with the indicated concentrations of the anti-CD26 MADbs or control IgG for 30 min at 4°C. After being washed, cells were stained with Alexa Fluor 488-labeled
MERS-CoV S1-Fc (5 ug/ml). Results of three different experiments are shown as mean MFI 21 SEMs (two-tailed Student’s £test; *, P < 0.05 versus corresponding control
1gG). The black and red bars at 0 ug/m! of preincubated control IgG or anti-CD26 MAbs were plotted using the same data.
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FIG 3 Preincubation with MERS-CoV S1-Fc partially inhibits binding of MERS-CoV S1-Fc. (A) Representative histograms showing results of staining with
MERS-CoV S1-Fc in the presence of various concentrations of unlabeled MERS-CoV S1-Fc or control Fc (left). JKT-hCD26WT cells were incubated with the
indicated concentrations of unlabeled MERS-CoV S1-F¢ (dashed) or control Fe (black) for 30 min at 4°C. After being washed, cells were stained with Alexa Fluor
488-labeled MERS-CoV S1-Fc (5 pg/ml). Gray histograms show staining with the isotype control (Fc-488). MFI of Alexa Fluor 488-labeled MERS-CoV S1-Fc are
indicated in the bar graph (right). Results representative of three different experiments are shown as mean MFI. Error bars indicate SEMs (two-tailed Student’s ¢
test; *, P < 0.05 versus corresponding control Fc). The black and dark-gray bars at 0 pg/ml of preincubated MERS-CoV S1-Fc or control Fc were plotted using
the same data. (B) Representative histograms showing staining with the anti-CD26 MAb 14D10 in the presence of various concentrations of MERS-CoV S1-Fc
or control Fc. The experiments were conducted as for panel A. Gray histograms show staining with the isotype control (msIgG-438).
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FIG 4 Binding regions of ADA (adenosine deaminase 1) in CD26 are involved in the binding of MERS-CoV S1-Fc to human CD26. (A) Representative
histograms showing results of the binding of ADA to JKT-Mock (left) or JKT-hCD26WT (right). JKT-Mock or JKT-hCD26WT was incubated with 10 pg/ml of
Alexa Fluor 488-labeled ADA or ADA2 {CECR1) as a fluorescence control. Data are rcpresentative of three independent experiments, with similar results being
obtained. (B) MFI for staining with Alexa Fluor 488-labeled ADA in the presence of various concentrations of the anti-CD26 MADb 2F9 (dark gray), 1¥7 (light
gray), YS110 (gray), or control msIgG (black). JKT-hCD26WT cells were incubated with the indicated concentrations of anti-CDD26 MAbs or control IgG for 30
min at 4°C. After being washed, cells were stained with Alexa Fluor 488-labeled ADA (10 pg/ml). Alexa Fluor 488-labeled ADA2 was used as a fluorescence
control, with MF] being < 10. Results representative of three different experiments are shown as mean MFI. Error bars indicate SEMs {two-tailed Student’s ¢ test;

* P < 0.05 versus corresponding control IgG). (C, panel a) Representative histograms showing results for binding of ADA (left) or the anti-CD26-MAb 14D10
(right) to Jurkat cells stably transfected with human CD26 with a deletion of the ADA binding region (JKT-hCD26-ADA™). Gray histograms show Alexa Fluor

488-labeled ADA2 or msIgG-488 as a fluorescence control. (b) Representative histograms showing results for staining with MERS-CoV Si-Fc of JKT-hCD26-
ADA™. JKT-hCD26-ADA ™ cells were stained with Alexa Fluor 488-labeled MERS-CoV S1-Fc (black) at the indicated concentrations. Gray histograms show

results for staining with Fc-488 as an isofype control. Data are representative of three independent experiments, with similar results being obtained.

that were developed in our laboratory effectively blocked the in-
teraction between the spike protein and CD26, thereby neutraliz-
ing MERS-CoV infectivity.

In a recent study by Raj et al., anti-CD26 polyclonal antibody
(pAb), but not DPPIV inhibitors, was used to inhibit in vitro
MERS-CoV infection (9). Moreover, Mou et al. demonstrated
that pAbs to the MERS-CoV S1 domain efficiently neutralize
MERS-CoV infection (8). To determine the specific CD26 do-
main involved in MERS-CoV infection, we chose six different
clones of anti-CD26 MAbs (4G8, 1F7, 2F9, 16D4B, 9C11, and
14D10) and the humanized anti-CD26 MAb YS110, which recog-
nize six distinct epitopes of the CD26 molecule (16, 17), to con-
duct MERS-CoV S1-F¢ (where S1-Fc is the S1 domain of MERS-
CoV fused to the Fc region of human IgG) binding-inhibition
assays. For this purpose, we used a CD26-negative Jurkat cell line
stably transfected with full-length human CD26 (JKT-
hCD26WT) or a pcDL-SR0296 vector control (JKT-Mock) (10).
As shown in Fig. 1A, expression of CD26 was confirmed in JKT-
hCD26WT cells but not in JKT-Mock cells, and binding of MERS-
CoV S1-Fc to CD26 in JKT-hCD26WT cells was also confirmed
(Fig. 1B). As shown in Fig. 2A, 2F9 inhibited full binding of
MERS-CoV S1-Fc¢ to JKT-hCD26WT, while other anti-CD26
MADbs demonstrated some inhibition (1F7 and YS110) or no sig-
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nificant inhibition (4G8, 16D4B, 9C11, and 14D10). The blocking
effect of 2F9 was dose dependent (Fig. 2B). Since downmodula-
tion of CD26 expression by anti-CD26 MAbs has been observed
under certain experimental conditions (18), we evaluated surface
expression of CD26, but expression levels of CD26 were not af-
fected by changes in 2F9 concentration (data not shown). More-
over, MERS-CoV S1-Fc binding to JKT-hCD26WT was consider-
ably inhibited by 1F7 or YS110 at concentrations of 5 to 10 pg/ml
or greater, but complete blocking of MERS-CoV S1-Fc binding
was not achieved even at a concentration of 50 yg/ml (Fig. 2C and
D, respectively). These results suggest that 2F9 as well as 1F7 and
YS110 inhibited binding of MERS-CoV S1-Fc to CD26 and that
the binding regions of MERS-CoV S1-Fc are fully covered by 2F9
and partially overlap with the epitopes recognized by 1F7 or
YS110. On the other hand, in the presence of unlabeled MERS-
CoV S1-Fc at concentrations of 10 pg/ml or greater, MERS-CoV
S1-Fc binding to JKT-hCD26WT was significantly inhibited (Fig.

3A), with no change in CD26 expression levels (Fig. 3B). However,
complete blocking of MERS-CoV S1-Fc binding was not achieved
even at a concentration of 50 gg/ml of preincubated MERS-CoV
S1-Fc (Fig. 3A). These results strongly suggest that the anti-CD26

MAD 2F9 has greater therapeutic potential than recombinant
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FIG 5 2F9 fully inhibits binding to MERS-CoV S1-Fc¢ of CD26 in the presence of exogenous ADA. (A and B) Representative histograms showing results for
staining with MERS-CoV S1-Fc (A) or 2F9 (B) in the presence of various concentrations of exogenous ADA (dashed) or PBS (black) as a solvent control (vehicle)
(left), TKRT-hCD26WT cells were incubated with the indicated concentrations of exogenous ADA or corresponding concentrations of diluted PBS for 30 min at
37°C. After being washed, cells were stained with Alexa Fluor 488-labeled MERS-CoV S1-Fc or 2F9 (each 5 pg/ml). Gray histograms show results for staining with
Fc-488 or msIgG-488 as an isotype control. MFI for Alexa Fluor 488-labeled MERS-CoV S1-Fc or 2F9 are indicated in the bar graphs (right). Results represen-
tative of three different experiments are shown as mean MFI. Error bars indicate SEMs (two-tailed Student’s # test; *, P < 0.05 versus corresponding vehicle). The
black and gray bars at 0 pg/ml of preincubated ADA or vehicle were plotted using the same data. (C) Representative histograms showing results for staining with
MERS-CoV S1-Fc in the presence of various concentrations of exogenous ADA with the addition of 2F9 (dashed). JKT-hCD26WT cells were incubated with the
indicated concentrations of exogenous ADA or corresponding concentrations of diluted PBS for 30 min at 37°C, followed by additional incubation with 2F9 (10
pg/ml) or control mslgG (10 pg/mi) for 30 min at 4°C. After being washed, cells were stained with Alexa Fluor 488-labeled MERS-CoV S1-Fc (S pg/ml). The
dashed histogram in the left panel shows results for staining with MERS-CoV $1-Fc in the presence of PBS with the addition of control msIgG. Gray histograms
show staining with Fc-488 as an isotype control. Results representative of three different experiments are shown.

MERS-CoV S1-Fc to prevent viral entry into susceptible cells and
that 1F7 or YS110 also blocks MERS-CoV infection.

Human CD26 is known as the adenosine deaminsae 1 (ADA)
binding protein (19-22). The epitope of the anti-human CD26
MAD 2F9 was estimated to be located near the ADA binding re-
gion of CD26, whereas the epitopes of the other anti-CD26 MAbs
tested, including 1F7 and YS110, did not involve the ADA binding
region (16). Moreover, the epitopes defined by 1F7 and YS110
were almost identical and binding of either antibody cross-
blocked the other. Consistent with our previous work demon-
strating CD26 binding to ADA (19), binding of exogenous ADA
was detected on JKT-hCD26WT but not on CD26-negative pa-
rental Jurkat cells (Fig. 4A). Although 2F9 almost completely
blocked binding of ADA to CD26, 1F7 or YS110 did not block
binding of ADA to CD26 (Fig. 4B). However, as shown in Fig. 2C
and D, 1F7 or YS110 considerably inhibited MERS-CoV binding

December2013 Volume 87 Number 24

to CD26. These observations suggest that MERS-CoV S1-Fc bind-
ing to CD26 involves ADA recognition sites of CD26 along with
other potential CD26 domains. To further define the role of ADA
recognition sites in MERS-CoV S1-Fc binding, we conducted
binding assays using JKT-hCD26-ADA-negative (JKT-hCD26-
ADA™) cells, which are Jurkat cells with the ADA binding regions
of human CD26 mutated to prevent ADA binding (amino acid
[aa] residues 340 to 344 of human CD26 replaced with those of
mouse CD26) (20). While JKT-hCD26-ADA™ cells expressed
CD26, as determined by the anti-CD26 MADb 14D190, they did not
bind to ADA (Fig. 4C, panels a). Importantly, binding of MERS-
CoV S1-Fc to JKT-hCD26-ADA™ was clearly observed at concen-
trations of 5 pg/ml or greater (Fig. 4C, panels b), but the binding
intensity appeared to be lower than that observed with JKT-
hCD26WT (Fig. 1B), suggesting that the region where CD26 binds
to MERS-CoV S1-Fc partially overlaps with its ADA binding re-
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FIG 6 Characterization of regions of CD26 that bind to MERS-CoV S1-Fc through the use of CD26 deletion or human/rat swap mutants. Representative
histograms show results for staining for MERS-CoV S1-Fc, 2F9, or YS110. CD26 ¢DNAs with full-length human CD26 (a), the indicated deletion (b through f),
human/rat (H/R) swap mutants (h through j), or vector control (g) were cotransfected with GFP-expressing plasmids to COS-1 cells. After 24 h of transfection,

13896 jviasm.org Journal of Virology



