fFhbhTuiz, BERLERESRH, ATRLIKERSEE D
BT DT YABE SR e s, ATRMmERIZ
EALRMEROFRSEBBE L ABOBRZULZ EPEZD
nz-.

12) %S 5 v JEEGER

B : Wistar 25 v b ()

BERE  ANESUE VNEFEE SR I VEF Y FT T I
W2, [Hb]=86g/dL

BE5E : BRMEED50% OB (28mL/kg), 15 5 #IZH
BEOANLRIERARS, RERIRLEO%KS (GEi)

BRBe: HILE > = v 7R EB IR, B X URBRERKEO A
Sevoflurane W& A iR

BHRR © RBEEIR

BB AT THRER 4 HE

HEEE AR, FE, B - FEEEOKREIN T 5L
HFE, DA%, mEF AME, FVva—X, A< 7Y v b,
MmERE, =V AeRTF Y, MEAERERE (AST, ALT,
LDH, 73 5—¥, UYnx—¥, CRE, UA, BUN, #£aV R
Fu—, BYREH, YVIRE YUrEy, FY), M
Momd (i, PR, B8 Y298, XY v T —gem),
migdhs4 vH 4 VigE (IL-1a, -1B, -2, -4, -6, -10,
GM-CSF, IFN-y, TNF-a), ##&#%# (H/E, Berlin blue,
HU PEG bifksesEet ; PN, MR

EIEHET : BERBRFEESS

O ¢ Sakai H, Seishi Y, Obata Y, Takeoka S, Horinouichi
H, Tsuchida E, Kobayashi K. Fluid resuscitation with
artificial oxygen carriers in hemorrhaged rats: profiles of

hemoglobin-vesicle degradation and hematopoiesis for 14
days. Shock. 2009 Feb; 31(2): 192-200.

FEER: BROBEEDO 0% ZRIMNT 52 212X D EFELRK
ME, BEEFIR o728, ALRMEKOFEGIZE>TIhD
FeEsSh, RMpoEICECRY, Bigoks L% T
Hol. EFRIPMBEOHESG LRAFETH- 7. MEER
SABRICY =2 ERLAED, ZOBRKTLE A b2 Uy
MEALRMIROBEE T X » THEHRO BB L 0 RS
5%, 1BBETHICE 72, IMIEBFHRICL VKT TS
25, SHBIIZEFEMICHE L. AST, ALT, LDH 2384
LHBCEAT S, RLEEkSHEASETHY, Mt
VavsDORBEEZ LN RIVATUO—, BUKRE
HA 1 HBRICHMAR LB TOBREREICELZ. 4 b oA
YURNVEREERER L. MERFEL D, ATRMERZHE
LizwZzury—Yi 14 HBICIEHEEL W, PEG % 14
HEIZIETHEEL TV,

13) W& = v 7EBE—REEEHE

Bk . ¥ —2 0k ()

BERE AT VMK ESR VI VEF VT ATR
Y4k, [Hb]=86g/dL
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kE5&E 1) 285 HROEE B6mL/ke) D 50% D,
60 SBIC BN ATRILIRZ 5, REFIRLECHES
(GEI), FIICMATERELZEHE, 2) RUABE : BHROEED
0% OB, FMEDNTRILEKZ &S

BB MY a vy VHRAEBARH, BLUOBEEROA
Sevoflurane W A JFREE

R« RBEFRIR

BIZEREM - BRAESE T #2365 HIE

WEEE © (WL 5 v 7 —BRER) T, MEIRE, .08
TRE, RHEDIREBIAIE, 0%, OMHE, MnERxE 2%
MR, BEWER, BIKERE (REEEM) #E,
A< M7 Yy b, MERE, MmEAE/EKRE (AST, ALT,
LDH, 735 —%¥, Y,X—<¥¥ CPK, LAP, CRE, UA,
BUN, #&alVx57u—i, pUREH, Y VI8E, kiR
B, YUYy, Fe Cu K, IP, Mg, Ca), M (&
B, ERE, R, DR, GOBED

EWHIT - BERBREEZEL

LS Ikeda T, Horinouchi H, Izumi Y, Sakai H, Tsuchida
E, Kobayashi K. Cellular-type Hemoglobin-based oxygen
carrier as a resuscitative fluid for hemorrhagic shock: Acute
and long-term safety evaluation using beagle dogs. In:
Hemoglobin-based oxygen carriers -principles, approaches
and current status(Xim HW, Greenburg AG eds)Springer-
Verlag, Germany, in press.

FEER AT E VPREIC K BEETERPES. KE
OEMABRE SN, MEAEFETREERS DB RIE5-%
1EBETRONGD, ZORKT T2, LMEROBIMELS
LRFEOEBAER L. ZOMFELL. JIARERL 2R
FRH LA - VRTENEZ Y VN RARSBICHE)
WRED—#t ERADBE SN, BEZHHL TRV
AEBREF VTR, WEHRO EAZED 72,

14) HIRETFIVREHRSEE

BiipiE - Wistar 25 v b (%) HIR12HE

BERB  ~"®ru ypRE, [(Hb]l=10g/dL (HeEeE, 4
AR K)

HER 2ml/kg x 7TH (BHR5E 14mL/kgid, 5 O
BRI E 56 mL/kg D 25%)

R © isoflurane W A FEBEE

B HRE SRR (AT T VHEE)

BISRE  R5HM 7 MOb L EIC1H

HEEE : BAE, KRAE BREBEEE, BERESER (PR,
P, B, ~~ b2 U v b, MER¥, HbBE, mMEs
E e (APTT, PT, 747U /5 V), REE mh
HbV B, MmEElZHE (BRER, 7MV7 3y, AST,
ALT, LDH, y-GPT, LAP, ChE, #8Y Y LV ¥ ¥, Fe,
V75 =", BUN, UA, 7I5—¥, Y,—+¥ C(CPK,
K*, Ca®*, inorganic phosphate, UIBC, I L XA Fu—J,
HEHEaLVA5Fa—, aVAFYNVITATIV, HDL 2 L X
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FTo—, BYREH, TG, V VIR, WGk, &I,
FUBBME, v a— A, MU AHUE, M, O, MERE
W ANETYFY ) Hik b Hb PoikseiEdeta o R, I,
Nl & RO, MR ARREE R, IR IR, I-5 XV Hb /b
Ntk ApyEiE Qe WU, R B O, GO, B
BB, BEAioYy—7 72 5 MEE (SP-A) S8

ERHFT © BACKR PR, FE Rt R s > o —,
REA R FIR AR

U - Kaga M, Li H, Ohta H, Taguchi K, Ogaki S, Izumi
H, Inagaki M, Tsuchiya S, Okamura K, Otagiri M, Sakai H,
Yaegashi N. Liposome-encapsulated hemoglobin (hemoglobin-
vesicle)is not transferred from mother to fetus at the late
stage of pregnancy in the rat model. Life Sci. 2012 Oct 5; 91
(11-12): 420-8

FEFER CHERT v MOHT 5 7 HEOMEIC X o THEIME
BOD 1/4 O NTRIMEROPE G % %725, T v MIAREY
my, &fiasdr Ue, @i, JRRER, Mg by,
MERE, Wi, MATEERZE, COEH b RO AR
RIRGRE & L CHEREE LD o 7o BRI,
g Hb MR Lz~ a7 7y — VD@D 5
728, ARREEERE T, ATRIMEKIZIEE E CIEBITIT 5
2, BRICEBITL TRV L 2R L7 BRI —
772 % v MVER (SP-A) FBEICS BEEm, BE~
DEBEIR O oz,

15) BiAEMmET IV

ByFE - Wistar 25 » b (3)

BERE  AEFOUE VNIEE 5%V A YEF L T IVT I
V4R, [Hbl=86g/dL (Hbigeht, TE¥IRILER%E A%
Bsegibo)

W58 200l

KR © sevoflurane Wi KRB

Bl - NEEIC 28G ¢ha ikl LTS

BIEEIER 28 HIH

WEEE - AE, TE%07 A (ERoOFE, SEOHE,
THoms, BERS, wikEn), BEsfmEE H/E,
v b Hb ¥ifkREguta, $l HO-1 MifhmEff, ¥ GFAP
PikspEdets, Berlin blue), BFBHMSIEHE

ERGIT ¢ BHE SRR E R

W Sakai  H,Okamoto  MJIkeda  E,Horinouchi
H,Kobayashi K,Tsuchida E. Histopathological changes of
rat brain after direct injection of Hb-vesicles (artificial

oxygen carriers) and neurological impact in an intracerebral
hemorrhage model. J] Biomed Mater Res A. 2009 Sep 15; 90
(4): 1107-19.

FEHER MBI 2 S Y MBI 258k L7 KRBT A TR
MERDH G- S N75E, BMEReEMT o822y, i
LAOMEBEGZ BHRENDS. £2T, BARIMETV
ELTHEDO NI HRMERZWMERICEATLERZEEL
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Foo W E LTiE T v MEERIERE v, fREZBERL
Belr, SANTEEEEWEEZ oh TEENEEICBY
T ERE & i U YIS e Ao 72, AW,
ZEREBAL R VIR BRI U 7o WS e Lz, WEH
IR A TARILERAS 28 H 12 b e H =A%, INdlg o5
MR (gliosis) WCIHFIEBE R SN h ol REET
A TRILERIC X 5 B ERED b ro 7,

16) FFEZEETILADHEEGS HE

T - Sprague-Dawley 25 v + (&) L, Fr57
w A%y (CC4) 400meg/ke RS GH3E) % 88
W0l LIRS & 7V & /R

Bk ey a ¥ v, [Hb]=10g/dL {2 rHSA 2
wWinLizbo.

Pesgk © 14mL/kg (—E *H-cholesterol % 5IN)

JiREE - T —F v

e 0 RBREIR

BRI - e 58 14 H

W E - e bz md &P, 7Vv7 3 ¥, AST, ALT,
y -GTP, ALP, BUN, CRE, lipase, TG, YV Y BE, # 2L
AFu—), HDL-a L AFu—Ji, By Lrey, EHEY
JNVE Y, BEYYVE Y, Fe), MBI (XVY ¥ T I—
Gett, JFBR, MR, MPUERALAE (Potential anti oxidant,
PAQ), FHNME Y — VBRI (Thiobarbituric Acid
Reactive Substances , TBARS), WEE & OCHEAO® T
B/ WAL 7V & F-F Vb, 24 RIS X Y 48 e 0 °H
LENpip

ERSAT © AR REIEFEEL

FRCHA  Taguchi K, Miyasato M, Ujihira H, Watanabe H,
Kadowaki D, Sakai H, Tsuchida E, Horinouchi H, Kobayashi
K, Maruyama T, Otagiri M. Hepatically-metabolized and

-excreted artificial oxygen carrier, hemoglobin vesicles, can
be safely used under conditions of hepatic impairment.
Toxicol Appl Pharmacol. 2010 Nov 1; 248(3): 234-41.
FERFBR HEEETFVT Y MIANESOE VPG ERS L
Fott, MIBA RSEHRA T, V28—, ¥y, aLx
FU—VO—E%EREPR SNz, 14 BEIIHET L.
ZOMDINS X —F TIdHELER L. MiwETix, i M
W, B0, B, GOBUCBRENREII L L. R E B
EVFY VREDVRO LN, BRILMR I LV ADIEERT
A—FZEEEL. BNBERM S, CHIZECTE, B
oL, 7HURICEPCHREE NG 2 &2 -7z B
XY, FEEEFVIZBVTH, NEFUYE V/NKES
BEE s N5 Z L AYE - 2.

17) MEHREER (HMICHd Si5), SBICAMREE
EDHAOEE

B - Wistar 27 v b ()

BHRAR N0 M, [Hb]=10g/dL, B XU
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REmMEH (e Fae$sd sV X% —F HES, 38, BEE
$5F Y MFG, Vav¥+ ¥ b7V T 3 rHSA)

HEE ImL omE, ImL ORFIFHOZEEZHEEL,
BERIMEED 60% % BT 2 (MWEHR). 20dbL, Hb
PEEE 20mL/kg 257 5.

M © Sevoflurane W% A JFRH:

H5REN  SER> bR E

BEEREH] - Hb AR 55 4 KM

WMEEH A~ bbZ7 Y v b, WE, DEE MESRERE
(Pa0,, PaCO,, BE, pH, Lactate, PvO,, PvCO, H#HiE)

ERHAT © BEZRBRERESET

SR © Sakai H, Miyagawa N, Horinouchi H, Takeoka S,
Takaori M, Tsuchida E, Kobayashi K. Intravenous infusion
of Hb-vesicles(artificial oxygen carriers)after repetitive
blood exchange with a series of plasma expanders(water-
soluble biopolymers)in a rat model. Polymer Adv Technol
2011 Nov; 22: 1216-22

FERFR B0 FEHES BHL MFGHBEH#ICAEZ O E ¥
MAahkzotise s e, HEBUEMAEEM (depletion
interaction : JEFE MO EXE A FH AR F M O EIBICHELE
TEIZLL Y (W), FoBEBEIRILEIETEN
() PREET D) ITEo THIREEFPED THV
flocculation (%) 2RI HIENBEL NI R 7-20T,
ENHPMITENRICG X A B2 5720, Hb /DlafkER
FAMEH L o ARABRE ER L7, CoRBILEAZMHEL
729ab 5y MIARBMAERE L. MATEIE, My A K
EHICRELEZHER L. #6o T, focculation DE
EREFVERBRTIRDON 2o 7.

18) BERNDEE

gfE c WKAH 5 v b

#HRE - EFERARIGBL AT T VMRS [Hb] =
10g/dL

BE58  ERMEED 20% (V/V)

Rl ¢ T — 7 OV BREE

E R - BRI

KRB HbV (HHVIERYVRY—L) 2851, BHICE
fBeEHmHE L, HMiREERE L-0b, THROERER
mitogen (Concanavalin A; Con A) TH¥L, BT HRE®
WIS ZHET 5.

MEEHHE : DNA ~® *H-Thymidine DEL Y A

FEHEEFT L ER TR v 7 —

Wi © Takahashi D, Azuma H, Sakai H, Sou K, Wakita D,
Abe H, Fujihara M, Horinouchi H, Nishimura T, Kobayashi
K, Ikeda H. Phagocytosis of liposome particles by rat splenic
immature monocytes makes them transiently and highly

immunosuppressive in ex vivo culture conditions. J Phar-
macol Exp Ther. 2011 Apr; 337(1): 42-9.
FEER AT ue ke RS LAEHOR THMED

BIIZa Y =V ERRTERICIH S hTniz, 2ol
Flixte 5% 3 BiCi3BEEgsnes, 7THHIRIESESICEHEL
Tw7e, ZHJE KLH (Keyhole Limpet Hemocyanine)
RN T MRS b FARICH S % 3 H F THifl
NTER7 BIZEREICEELTW, ZBYRY—L (N
EFOEVERALTVWRWVWYRY —L) OS5 THRED
BB I COBLE, ~E7ul VhEE (or
ZYRY—L) RERELI-r07 77— VHE—E%IC, 0mE
PR EZRET ALY ICRB I ENERTHHIE, 20
whlicd~zu7 77—V DOEATSHNO PEELTWB R
HodbsrizfE LA —F, BEHIETH S KLHICH
TAHPMELARGNE, NEFoC /MRS sEEL
FZF ol BEOZEHD, ~NEFTLV/NNIEORS
THEENO—ED~ 7 a7 7 — IV BRENFIERE L EET 2
MiEETH 205, HLETTHL—BUETHY, EHNREER
BIC LT, EELPELYS 2 2 WEEEED TRV &S
ahe.

19) MRS (1) b b ZWARIFHIRNOEE

WilafE © © P SRITFERER

REAEFZUE YNMAk (Fu by 47, DPPG 2 fEH),
[Hb] =10g/dL

EEBRFE b PERMELA,SEEL e FEEBITFRERIC, X
0.6% DT 30 - AEMH S &, gk, ¢ MESEBTFPHRO
1% ¥ {b# N-formyl-methionyl-leucyl-phenylalanine (fMLP)
FIH O IS~ ORI AE OB H5.

HEEE : Efbik, BERTORNA, EEREELE, RER

ERHET  ALEER TR v 5 —

L - Ito T, Fujihara M, Abe H, Yamaguchi M, Wakamoto
S, Takeoka S, Sakai H, Tsuchida E, Tkeda H, Tkebuchi K.
Effects of poly (ethylene glycol)-modified hemoglobin vesi-

cles on N-formyl-methionyl-leucyl-phenylalanine- induced
responses of polymorphonuclear neutrophils in vitro. Artif
Cells Blood Substitutes Immobilization Biotechnol. 2001; 29
(6): 427-437

FEMR  IMLP RIBUC X 2 PR O BRERF & LT, FhEk
DO FEALEE, B YT Z Y ¥ THAHCDIIb OJEFEH, BN
12 & % % 9 matrix metalloproteinase-9 OB, HHBZED
EAOWTHOEEIIBWTY, ~NEF Y /NIRRT
5088 EALNL D572,

20) M%=FRIEE (2) b bIEE I OEMEHHAT

MM - b T ILOE M / BRI

RE o ~'rOE VM, [Hb]=10g/dL

EBFE - ¢ MET LD 5508 L7z CD34 BEAiie % & o B
Rz, BIICEHEEY A VA4 Y ERMU SRR I
BEL, 2EMIZR4ERERCIIVBRLZa0=-0
BEWET 5. E5612CD34 BHMRE BAEETICTAE
yav y/pREZRML, RFHR T LI IR O~
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(03 7 ek ROV | i PSRN cb/ g = R N KN PN
BRI 3% (v/v) LT 5.

FREHAT ¢ AR vy —

PR Yamaguchi M, Fujihara M, Wakamoto S, Sakai H,
Takeoka S, Tsuchida E, Azuma H, Ikeda H. Influence of
hemoglobin vesicles, cellular-type artificial oxygen carriers,
on human umbilical cord blood hematopoietic progenitor
cells in vitro. J Biomed Mater Res A. 2009 Jan; 88(1): 34-42.

FIERER ¢ in vitro OBMRICBWT, Hb MMk z KT
b7z EMATIRAINL & e AE 3¢5 &, EIAT iR O o 1
——IEERRER, ARIBRFR R R R O ML~ O B RE & )
fil L7225, Hb/MMafks oILAEH 23 Bl CTHIIE,
B ETERAIL O 2 v = — IR R, RIFERR F 22 B0 R
DRBL~DIFANDFEENI L W T E AR ENR T2,

21) Mi&E=E04&ET (3) b MR MO&EMmer  FiERiHAD

et o N o (1 R R | L 21 )

B ANEs T VNI, [Hb]l=10g/dL

SERRFE - ¢ ME LR CD34 Bt & S REH sk A b o —
<HIE D 14 HE ORI X 0, Sy, 28 i wsER
I % BEE X 8 2 RICAEZ T U VR E R 34, skl
TeaB M E MR O 2 WE S 5. mInd 5 NES
oY NAORKIEER 3% (v/v) & T 5.

EREHA - GEER T v 8 —

R ¢ Yamaguchi M, Fujihara M, Wakamoto S, Sakai H,
Takeoka S, Tsuchida E, Hamada H, Azuma H, Ikeda H.
Biocompatibility study of hemoglobin vesicles, cellular-type

artificial oxygen carriers, with human umbilical cord
hematopoietic stem/progenitor cells using an in vitro
expansion system. ASAIO J. 2009 May-Jun; 55(3): 200-5.

FERFR v MERILEE CD34 B L BREEA Fo—
< HINE O ELEFRZAITAE S T VNSRRI 14 H
B BHEAEITE, ElEER, & IR ERA I o BE IR A &
7o, NEFUYVEETRVEONIEOEA T, PIHEIR
VBT DD, NEFUEVOEAPRBINS, —
F, ~NEZOY NI LORFEN3 HE Z COEMBETH
MU A, & AT A D BIR IR B2 hn
EEHLME L

22) IME=RIARES (4) & bm/MR

HIRLAE © e babK

b ANE'FOE AR, [Hb]l=10g/dL

EEFE In vitro [T MM EANEZ T Y /NI E O,
20, 40% (vol/vol) T1RHA ¥ F2~X—3 gL, H/MR
D7 T A MBS & A IUMRIEEALOFE L, M/ME o 8
#7H @ RANTES & p-thromboglobulin (B-TG), I ¥ ik
CHETHE b= VOFRBRISB LRI T4 77 14—
Fo3y 7202 & o TH/MRIEEIL 2 3183 %5 Thromboxane A,
(TXA,) DEXE, &51T o B HED CD62P DERE~D

ARTIFICIAL BLOOD Vol. 21, No.1, 2013

FEHL & MRS 7 37 (allbB3) OHiEEZE L% kT 2
Ptk PAC-1 (first procaspase activating compound) O
iR L7

R - ALiEER I v Y —

S - Wakamoto S, Fujihara M, Abe H, Yamaguchi M,
Azuma H, Ikeda H, Takeoka S, Tsuchida E. Effects of
hemoglobin vesicles on resting and agonist-stimulated
human platelets in vitro. Artif Cells Blood Substit Immobil
Biotechnol. 2005; 33(2): 101-11.

FIERIR 7T = A P OMEE, /MRS Lo
RANTES, tu b=, B-TG, TXB, B X Tl /MK
CDE2P DL ARV LA EA ST, ~NEZ Y YK
MG ER e EZE 2 o/, 7= MIBIC &
YO RIER 2 ERSE5 L, WThoOREND~Es 1
E /MBI B W» T RANTES, u b=, B-TG
DM, TXB, DEE, BLUCD62P EHMVB| &SR Eh,
ZDOLARVENEZ Y ZNBERRLILD S DL FEEZA
LRhdoiz, —7, PAC-1 OB~ ET 0¥ MK
R TIZHER R VDO, NEZ O Y VAR X
DRI EE D ADP JI BN/ B W CTHED R TLHED A S h 7
B, TOREOEDOBRNER IS ZVEEZ SN D
Oz ey, NEFOE VPBRIEKBENCT T2 M E
T C allbp3 O EELZ I IRET 2D 0D, Zoib
DALY — A =17 T = A PIBMOF 2 A b 555
BEH 200w edb, b MUMUIEREEZ RS ZNWI &
BHENE o7z

23) Myg=2avsgst (5) b bR /8T

AaEE - v b omik, BERT, F= AUV 4 v

BB ~N' T e R, [Hbl=10g/dL; iR E LT
YAFEOZO/NNIE, 8BITDPPG &2 &ET 5/ Ak

EBHE ANEFOEMNEAZREANE PILEE 20%H 5
Wit 40% TREL, 37CITT 24 BMA v FaxR— 3 V1,
ROCE DM HDY 2BEL, 2o LEOHMAEAM (CH50)
Rl L BERICRITTEEE, dgedagsl, b
MATAE 7T /NEAREN (20%, 40%, 60%) L7iz3
o7 rna vyl (PT) B X OEELES bo v R
75 AF WEH (APTT) #Wl@L%. AYZ LA v -F=
VR BB, AT oY VN T R ER
BRmU, 37CICT 24 A Y FaxX—va Vi, HifER
BAOTX=/ =V osRic L 2 ES TSN BT 5=
=S YOWBEAL L Tay T4 Y FBEICTHRBLZ.

EhaSa - eiER T v 5 —

AR © Abe H, Fujihara M, Azuma H, Ikeda H, Ikebuchi K,
Takeoka S, Tsuchida E, Harashima H. Interaction of
hemoglobin vesicles, a cellular-type artificial oxygen carrier,

with human plasma: effects on coagulation, kallikrein-kinin,
and complement systems. Artif Cells Blood Substit Immobil
Biotechnol. 2006; 34(1): 1-10.

45



FEHR  BEMEE LT, BENNE PEG RIBMY KV —
LAERMUABETIZZE LW CHS0 (Hiffh) DETHAALR
LDICHL, NEFUE YNEERE 20%H 50X 40% TH
MUAETE, FhEFREEEZTRMLAEEICHAT,
CH50 DRIz A N d o7z, PTRBIZOWTIE, ~NE
Fa¥ yARRRNEOVWTNORBETY, £ERNOY
ELVAEBCEM SIS, TOEZIBLDHTH 7.
APTT BB EOMBEREDHHEICB VT HAERDEE L
BEWEALN o MEEICHL 40%H 50 IZ60%I1CT
DPPG-~E 7 u ¥ »/hfafk % 721% PEG K158i ® DPPG-~
Eru¥ vEARRNEEEE, intact BESTFF=
I = UBERSEESTFILEN BT = OB
DVEFICEEINSS, BITOANEZ 0¥ VA TIENE
NOMFEREOEAICBVWTIEROEFLEVITZALR
3, MEPESFFo ) —FrOSRE RIS hnwa
Bhhol, Dol ehs, BITOoANETaY VNIED
b MY 7 ADOBEVAERBEEEIRE .

F&H

ANTHRIMER (NEZTE /MK S8R, mRE FED
EREME T OB TH L. 0D, mERSOMEEZE
L, MEERBIIANEZ O VEBEIS U BE AR 4
5., REHRGEZMEI ETNVERIIBWTOEWIIBIERR S
BETHAEL, NRLEOFEZZZDONEV, MEFHHRET
&, —RICHEN TIOR3 HmERERLE 774 5 F
V—HRIERERTASARH B, NEFOY VNEKTE
HPRAOTRICE > TP ENT WS, /MR ML
BERICEZZHELBELTVEY, E¥ETDLALV,
MATERICOWT Y, BiinEeEZ Y VBRRTEN S s m
IR METEL, NEFOEYEATEMETHI L
FoTHBISNG. SHIEAEZTY V0K 2 A R e
BHRTCTHD NO OIS H T EMUIZ L o TEES W WH
I LHESCER LTS L Z2 Twa™ " kAEEIch
WTIX, NEFTE VARKZIETTORT S L Bk
FL LCmicfeo THEL, RENIGTHBNER (FICH
i, B CBITL, FITRECHMEN, TORSILE,
RAcHEEh 3 & & SBEHE T RVLEW 05 REH» S
Mo 7-, RAERSIC X D EBRMm LR DOEIC 25 0 A TRIMER
PBRE5TLIRBICBVC, FEEBRICEINEYFTY VIREFR
DoNLY, FRICLIEREBIBEIN TV, FRER
DEXKFZ—EBETHY, BLECEBEL, THEEREDH-72. MHF
PR3 HRETIED 52, REDHOBRIIBILIE & 7%
L&z bR ANTRMERGRIMER L FRICBEREE % 822
F, RERSFCELTRRALEMOFHOLEL 2 22%, &
e HICE2ERBEIRON R, - 72, BAMMLE TN,
V=V Refo ity 3 v 78ERRBRICBNTYH, £
DPEFLELTWS. Iy MBPREEBIE 7 VI 2 KERS
CEBELTY, EHNCHE NI L 2RALTWE R EY,
RIKCTFLDO-MERMRRICBVTD, BYIBEESES

46

I CRBROBELRLAEFTHIENE-TVD. Ty MERT
TN, AT AFNEEST-REBETSH, FREIRDON TV
WV, DVWESE, BRERERZRE (Ames RER) THEETZE
RERFAUEPBECNLEZHRALZ. TOLHIT, ~NEFuY
VNEREFENE, ZHHEICE ) REEPHERE STV 5.

BEiNEZOE YBRERTR, BE5BCIMENRS L2
0, MEAELEREICBOTHRASH, MBI TSERZ
5252 MBERoTWA, THICHLTAEZBE VR
JACRIE, SBRICSHIHEL DT, THERZEET
EBZLEMALTVAEY, Zhd—2o0REHRBEE & v
RB. FRZOSMERICE-T, ERDOXIICZHEAICES
MEACERESITREE 2D, NEFOE VRO REMED
LB o T0A,

LZAT, ThEITHEE SNTELEEERICOVWTE, B
BRI L 2 LS REIC R D BEICHAS O W2 (2012 4F
ICPCT MEE). FAREBORXIAEZOE Y OW#EIZD
WCik, EANOBFHRERDEHICL oTA PNESBE ¥
EROEBELBREAANEZOE VICETHES & & BiE
Yav I BHEETNT Y FOEBRPOHLPICLTVWEDT,
HEIMIETEDLEEZ TS,

~EFuUY VMNIAEANE, THFITEROCHEBELTSE
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Chapter 6

Biocompatibility of a
Highly Concentrated Fluid
of Hemoglobin-Vesicles as a

Transfusion Alternative

Hiromi Sakai*"*

1. Introduction

Blood transfusion systems have greatly benefited human health and @
welfare. Nevertheless, some problems remain: possibility of infection,
blood type mismatching, immunological response, and a short shelf
life that is insufficient for stockpiling for emergency situations.
Realization of artificial O, carriers is anticipated to solve such prob-
lems. The most abundant protein in blood is Hb ([Hb] = 12-16g/dL
in healthy human blood), indicating that oxygen transport to tissues
is the most important function of blood. To design an oxygen-carry-
ing fluid to substitute the function of blood, the Hb concentration of
the fluid should be high and comparable with that of blood Hb con-
centration. Chemically modified and cell-free Hb-based oxygen carri-
ers (HBOG:), such as intramolecularly crosslinked, polymerized, and
polymer-conjugated Hbs, were synthesized to prevent toxic effects of
cell-free Hbs.! The hydrodynamic radius of such cell-free HBOCs is
less than 20nm. On the other hand, hemoglobin-vesicles (HbV) or

*Waseda Bioscience Research Institute in Singapore, Biopolis, Republic of Singapore.
TOrganization for University Research Initiatives, Waseda University, Tokyo, Japan.
tDepartment of Chemistry, Nara Medical University, Kashihara, Japan.
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so-called liposome-encapsulated Hb, which encapsulate a concen-
trated Hb solution in phospholipid vesicles, are developed.>® One
particle of about 250-280 nm encapsulates nearly 30,000 Hb mole-
cules. In the case of the chemically modified cell-free HBOCGs, they
are “dissolved” in aqueous solutions like plasma proteins. On the
other hand, HbV as a cellular HBOC is “dispersed” in aqueous solu-
tions like blood cells. The difference between dissolution and disper-
sion results in a considerable difference in physicochemical
characteristics of the fluids containing a high concentration of Hb.
The fluid properties should be adjusted within the biocompatible and
physiological conditions for a massive blood exchange. In this chapter
I first summarize some views of physicochemical differences between
cell-free and cellular HBOCs. Second, biocompatibility of the dis-
persed particle is of course important. The blood compatibility, bio-
degradability, excretion, and immunological responses to the massive
injection of such dispersed small particles are summarized.

2. Biocompatible Solution Properties
of HbV Fluids

2.1. Colloid Osmotic Pressuve

Albumin, dissolved in a blood plasma at ca. 5g/dL, provides sufficient
colloid osmotic pressure (COP, ca. 20 Torr) to play an important role
in equilibrating COP between blood and interstitial fluid, thereby main-
taining the overall blood volume. This COP is one requisite for a trans-
fusion alternative to sustain blood circulation for transporting oxygen
and metabolites. The extremely high concentration of the HbV suspen-
sion ([Hb]) 10 g/dL; [lipids] 6g/dL, volume fraction, ca. 40 vol %
imparts an O, carrying capacity that is comparable to that of blood. The
HbV suspension does not possess a colloid osmotic pressure (COP),
because one HbV particle (ca. 250 nm diameter) contains about 30,000
Hb molecules. In fact, HbV acts as a particle, not as a solute. Therefore,
HbV must be suspended in or coinjected with an aqueous solution of a
plasma substitutes. This requirement is identical to that for emulsified
perfluorocarbon, which does not possess COP*®; it contrasts to charac-
teristics of other Hb-based O, carriers, intramolecular cross-linked Hbs,

b1569_Ch-08.indd 2 @ 6/25/2013 1:16:54 PM
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Fig. 1. Colloid osmotic pressures of cell-free and cellular HBOCs.® COP of HbV
is determined by the suspending medium. For example, 5% albumin has 20 torr
COP. It does not exceed the physiological condition at any HFIb concentration.

polymerized Hbs, and polymer-conjugated Hbs, which all possess very
high COP as protein solutions®” (Fig. 1). These chemically modified
Hb solutions can be categorized as “O,-carrying plasma expanders™
because they have the oxygen-carrying capacity and colloid osmotic
pressure. However, the problem with PEG-modified Hb solutions is
that the COP is too high such that the Hb concentration of the result-
ing fluid is as low as 4-6g/dL. On the other hand, HbV suspended in
any plasma expander shows COP of the suspending medium, at any Hb
concentration. When HbV is suspended in 5%-human serum albumin
solution (HSA), COP is nearly 20 mmHg, which is in a physiological
range of COP.

According to the guideline for safer blood transfusion, a transfusion
trigger (the critical Hb level) is 6 g/dL to minimize unnecessary trans-
fusion strictly or to avoid allogeneic transfusion as long as possible. But
the problem of HBOCs with low Hb concentration is that injection of
HBOCs cannot increase blood Hb level. In fact, according to the ret-
rospective description of Nosé, pyridoxalated Hb polyoxyethylene
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conjugated (PHP) had the same problem, and it was not easily
approved for clinical study during the negotiation of the FDA.® The
Hb concentration of HbV is adjusted to 10 g/dL, which is higher than
the concentration of transfusion trigger.

2.2. Flocculate Formation and Viscosity Incvease
in the Presence of Plasma Expanders

Animal tests of HbV suspended in plasma-derived HSA or recombi-
nant HSA (rHSA) showed an O, transporting capacity that is compa-
rable to that of blood.!™! We reported that HbV suspended in
plasma-derived HSA or rHSA was almost Newtonian: no aggregation
was detected microscopically.!' In Japan, rHSA was very recently
approved for clinical use, in May 2008,'* but various plasma substi-
tutes are used worldwide, such as hydroxylethyl starch (HES), dextran
(DEX), and modified fluid gelatin (MFG). The selection among these
plasma substitutes is best determined not only according to their safety
and efficacy, but also according to their associated price, experience of
clinicians, and customs of respective countries. Water-soluble polymers
generally interact with particles such as polystyrene beads, liposomes,
and RBCs to induce aggregation or flocculation.'®'® As for the cell-
free HBOCs dissolved in saline, they are Newtonian fluids, and do not
interact with plasma expanders. In the case of cellular HBOC dis-
persed in saline, it is important to determine the compatibility of HbV
with these plasma substitutes. With that background, we studied rheo-
logical properties of HbV suspended in these plasma substitute solu-
tions using a complex rheometer and a microchannel array.!” The
rheological property of an HBOC is important because the infusion
amount is expected to be considerably large, which might affect the
blood viscosity and hemodynamics. The HbV suspended in rHSA was
nearly Newtonian (Fig. 2). Its viscosity was similar to that of blood,
and the mixtures with RBCs at various mixing ratios showed viscosities
of 3—4 cP. Other polymers, HES, DEX, and MFG, induced floccula-
tion of HbV, possibly by depletion interaction, and rendered the sus-
pensions as non-Newtonian with the shear-thinning profile. These
HDbV suspensions showed high viscosity and a high storage modulus (G*)

b15698_Ch-08.indd 4 @ 6/25/2013 1:16:54 PM
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Fig. 2. Shear-thinning profiles of HbV suspended in a series of plasma expanders.
[Hb] =10 g/dL."”

because of the presence of flocculated HbV. On the other hand, HbV
suspended in rHSA exhibited a very low G’. The viscosities of HbV
suspended in DEX, MFG, and high-molecular-weight HES solutions
responded quickly to rapid step changes of shear rates of 0.1-100 s
and a return to 0.1 s7, indicating that flocculation formation is both
rapid and reversible. Microscopically, the flow pattern of the floccu-
lated HbV perfused through microchannels (4.5 um deep, 7 um wide,
20 cmH, O applied pressure) showed no plugging.

The mechanism of flocculate formation of liposome is controver-
sial.'* However, we believe PEG-modified liposomes are flocculated
by depletion interaction. The flocculation level increased with hydro-
dynamic radius (R,) or radius of gyration (R)) of series of HES or
DEX with different molecular weights at a constant polymer concen-
tration (4 wt%). However, the flocculation level differed markedly
among the polymers (Fig. 3). A crowding index (C;) representing the
crowding level of a polymer solution is defined as (excluded volume of
one polymer) X (molar concentration) X Avogadro’s number, using R,
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Fig. 3. Flocculaton index (F)) increases with the addition of dextran HES, MFEG, or
HSA, showing that the crowding index, C, of the polymer aqueous solution is the
determining factor of floceulate formation.'® We defined the flocculation index (F) as
Fi= (N4~ Ny)/(Mygge — My)- In that equation, 1, and 74, vespectively represent the
viscosity at the shear rates of 10 and 1000 s™. Crowding index ("C;, and "C) repre-
senting the crowding level of a polymer solution is defined using R, and R, respec-
tively, as [(excluded volume of one polymer) X (molar concentration) X Avogadro’s
number]. Adapted with permission from Sakai H, Sato A, Takeoka §, Tsuchida E.
(2009) Mechanism of flocculate formation of highly concentrated phospholipid vesi-
cles suspended in a series of water-soluble biopolymers. Biomacromolecules 10:
2344-2350. Copyright (2009) American Chemical Society.

or R . All polymers’ flocculation level increases when C; approaches 1:
when the theoretical total excluded volume approaches the entire
solution volume, the excluded HbV particles are forced to flocculate.

2.3. In Vivo Study of Co-Injection of HbV and a Sevies
of Plasma Expanders

It remained unknown whether such flocculate formation of HbV in
blood might affect an animal’s hemodynamics. Using a rat model, we
tested infusion of a series of plasma expanders (MFG, HES ., HES ,,,
HES,,, rHSA) to maintain the blood volume (level of blood exchange
led to 60%) at repeated hemorrhages and the subsequent infusion of
HbV (20mL/kg, 36% of blood volume).” (In this experiment we
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did not use dextran because rats show anaphylactic reaction to
dextran.?®) All rats survived for 4 hr after the infusion of HbV; hemo-
dynamic and respiratory functions were preserved, indicating that the
flocculation does not induce capillary embolism. Blood exchange
with rHSA and subsequent infusion of HbV showed more stable sys-
temic parameters because of the longer retention of rHSA in blood
than other plasma substitutes, indicating that rHSA is suitable for
combination with HbV in this experimental model.

2.4. Solution Properties Affects on Reactions of Hb and NO

It has been regarded that lower blood viscosity after hemodilution is
effective for tissue perfusion. However, microcirculatory observation
shows that, in some cases, lower “plasma viscosity” decreases shear
stress on the vascular wall, causing vasoconstriction and reducing the
functional capillary density.?! Therefore, an appropriate viscosity
might exist which maintains the normal tissue perfusion level. The
large molecular dimension of HbV can result in a transfusion fluid
with high viscosity. A large molecular dimension is also effective to
reduce vascular permeability and to minimize the reaction with NO
and CO as vasorelaxation factors.?*2

Increased fluid viscosity of a solution of hemoglobin-based oxygen
carriers (HBOGs) reduces vasoconstrictive effects because increased
shear stress on the vascular wall enhances the production of vasorelaxa-
tion factors such as NO. Nevertheless, on a microcirculatory level, it
remains unclear how viscosity affects the reaction of HBOCs and NO.
To clarify the effect of viscosity on the NO-binding, different HBOCs
were perfused through narrow gas-permeable tubes (25um inner
diameter at 1mm/s centerline velocity; hemoglobin concentration
[Hb]=5g/dL).* The reaction was examined microscopically based
on the Hb visible-light absorption spectrum. When immersed in a NO
atmosphere, the NO-binding of deoxygenated Hb solution (viscosity,
1.1 cP at 1000 s™) in the tube occurred about twice as rapidly as that
of red blood cells (RBCs): 1.6 cP (Fig. 4). Binding was reduced by
PEGylation (PEG-Hb, 7.7 cP), by addition of a high molecular
weight hydroxyethyl starch (HES) (2.8 cP), and by encapsulation to
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Fig. 4. Change of the level of NO-binding reactions of the Hb containing tluids,
Hb solution, PEG-Hb, HbV, Hb+HES, HbV+HES, and RBC (black circles) with
traveling distance.? (Permission obtained from Elsevier)

form Hb-vesicles (HbVs, 1.5c¢P; particle size 279 nm). However, the
reduction was not as great as that shown for RBCs. A mixture of HbVs
and HES (6.2cP) showed almost identical NO-binding to that of
RBCs. Higher viscosity and particle size might reduce lateral diffusion
when particles are flowing. The HbVs with HES showed the slowest
NO-binding. Furthermore, Hb encapsulation and PEGylation, but
not HES-addition, tended to retard CO-binding. Increased viscosity
reportedly enhances production of endothelium NO. In addition, our
results show that the increased viscosity also slows down the reaction
with NO. Each effect might mitigate vasoconstriction.

3. Biocompatibility of HbV in Terms
of Immunological Responses

3.1. Complement Activation

A so-called injection reaction, or pseudo-allergy, resulting from com-
plement activation after injection of a small amount of liposome
is well known, giving rise to anaphylatoxins, which trigger various
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hypersensitivity reactions.*?? Transient thrombocytopenia and pul-
monary hypertension in relation to complement activation is an
extremely important hematologic effect observed in rodent and por-
cine models after infusion of LEH (containing DPPG) developed by
the US Naval Research Laboratory.?® Neo red cells (Terumo Corp.)
containing stearic acid showed pulmonary hypertension in beagle and
porcine models,*! but not in monkeys. In our group, exchange trans-
fusion of prototype HbV (containing DPPG, no PEG modification)
in anesthetized rats engendered transient thrombocytopenia and
slight hypertension.®> The transient reduction in platelet counts and
increase of thromboxane B, caused by complement-bound liposomes
was also associated with sequestration of platelets in the lung and
liver.®® In the present formation of HbV, we use a negatively charged
lipid (DHSG) instead of DPPG. It does not induce thrombocytope-
nia or complement activation in animal experiments,**** probably
because it contains PEGylated lipids and a different type of negatively
charged lipid (DHSG), instead of DPPG or a fatty acid. The % pitro
human blood compatibility of HbV has been extensively stud-
ied.3¥%-7 The present PEG-modified HbV containing DHSG does
not affect the extrinsic or intrinsic coagulation activities of human
plasma, aithough HbV-containing DPPG and no PEG-modification
tends to shorten the intrinsic coagulation time. The kallikrein—kinin
cascade of plasma was activated slightly by the prototype DPPG-HbV,
but not by the present PEG-DHSG-HbV. The exposure of human
platelets to high concentrations of this HbV (up to 40%) i vitro does
not cause platelet activation and does not affect adversely the forma-
tion and secretion of prothrombotic substances or proinflammatory
substances that are triggered by platelet agonists.®® These results
imply that HbV, at concentrations of up to 40%, do not have aberrant
interactions with either unstimulated or agonist-induced platelets. It
can be concluded that the PEG-DHSG-HbV described here have
higher blood compatibility.

3.2. RES Trap, Degradation, and Excretion

Biodistribution of HbV was examined using **"Tc-conjugated homo-
cysteine or glutathione containing HbV?* and HbV containing
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%] labeled Hb.*® These experiments show that HbV are finally cap-
tured by macrophages, mainly in the spleen and liver. Electron micro-
scopic observation can detect the presence of Hb-encapsulating
particles in the phagosomes of macrophages because of the high
densities of protein and clectrons (derived from Fe) in the particles
such as RBCs. The HbV particles disappear in one week.*!
Immunohistochemical staining with antthuman Hb antibody and
antimethoxy-PEG indicates that Hb and PEG of HbV disappear in
two weeks.*™ It was shown recently that '**I-labeled Hb and
¥H-labeled cholesterol in HbV have identical blood clearance, indicat-
ing that HbV retains its integrity in the bloodstream, and distributes
to the reticuloendothelial system together. However, 1 mainly
appears in urine, and *H in feces, showing different metabolic routes
in the macrophages.**

3.3. Transient Immunosuppressive Effect

Accumulation of considerable amounts of liposome in a RES can
affect immunologic response. Actually, phagocytic index measured by
carbon particle clearance in rats showed significant reduction of
phagocytic index one day after injection of HbV. While, it increased
considerably three days after injection,*' indicating the increased
defense function. On the other hand, HbV showed transient suppres-
sive effect on the proliferation of rat splenic T cells. Takahashi er al.
of Hokkaido Red Cross Blood Center*® elucidated the mechanism
underlying that phenomenon and its effect on both local and systemic
immune response. HbV was injected intravenously at a volume of
20% of whole blood into rats. Then their spleens were removed, and
T cell responses to concanavalin A (Con A) or keyhole limpet hemo-
cyanin (KLH) were evaluated by measuring the amount of [*H]thy-
midine incorporated into DNA. Results showed that T cell proliferation
in response to Con A or KLH was inhibited from 6 hr to 3 days after
the liposome injection. The phagocytosis of the large load of
liposomes by rat CD11b/c+, class II immature monocytes temporar-
ily renders them highly immunosuppressive, but most importantly,
the systemic immune response was unaffected.
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4., Conclusion

Liposomes are clinically utilized for cancer and antifungal therapies,
and other usages as a vehicle of functional molecules are developed
aggressively. HbV is one liposomal product, but the differences from
such conventional liposomal products are that it is a highly concen-
trated fluid, and it inevitably requires a massive dose (like 20 mL /kg
body weight) as it will be utilized as a substitute for a RBC concen-
trate. Therefore, injection of HbV would affect spontaneously on
hemorheology, hemodynamics, immune system, phagocytosis, gas
exchange reactions between tissue and blood, etc. It is also important
to have stability as a capsule during storage and during blood circula-
tion to shield a toxic effect of molecular Hb. It also requires instability
to be decomposed by macrophages and complete excretion from a
body. In this chapter we discuss such important biocompatibilities of
HbV. We believe the above mentioned biocompatibility of HbV guar-
antees the safety of HbV and a potential for versatile clinical
application.
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