

行なわれていた。保存赤血球投与群、人工赤血球投与群ともに脾臓にヘモジデリンが観察されたことから、人工赤血球は老化赤血球の捕捉分解過程と同様の経路を辿ることが考えられた。

12) 出血性ショック蘇生試験

動物種：Wistar 系ラット（♂）

投与試料：ヘモグロビン小胞体を 5% リコンビナントアルブミンに分散、 $[Hb] = 8.6 \text{ g/dL}$

投与量：循環血液量の 50% の脱血 (28 mL/kg)、15 分後に同量の人工赤血球を投与、比較群は脱血液の投与（返血）

麻酔：出血性ショック蘇生後 6 時間、および犠牲死時のみ Sevoflurane 吸入麻酔

投与経路：大腿静脈

観察時間：蘇生完了後最長 14 日間

測定項目：生存率、体重、脾臓・肝臓重量の体重に対する比率、血圧、心拍数、血液ガス組成、グルコース、ヘマトクリット、血球数、エリスロポエチン、血液生化学検査 (AST, ALT, LDH, アミラーゼ, リパーゼ, CRE, UA, BUN, 総コレステロール, β リポ蛋白, リン脂質, ビリルビン, Fe^{3+}), 組織病理 (脾, 肝臓, 腎臓, 骨髓; ギムザ染色, ベルリンブルー染色), 血漿中サイトカイン濃度 ($IL-1\alpha, -1\beta, -2, -4, -6, -10, GM-CSF, IFN-\gamma, TNF-\alpha$), 組織病理 (H/E, Berlin blue, 抗PEG 抗体免疫染色; 肝臓, 脾臓)

実施場所：慶應義塾大学医学部

論文報告：Sakai H, Seishi Y, Obata Y, Takeoka S, Horinouchi H, Tsuchida E, Kobayashi K. Fluid resuscitation with artificial oxygen carriers in hemorrhaged rats: profiles of hemoglobin-vesicle degradation and hematopoiesis for 14 days. Shock. 2009 Feb; 31(2): 192-200.

主要結果：循環血液量の 50% を脱血することにより顕著な低血圧、過換気になったが、人工赤血球の投与によってこれらは改善され、脱血前の値にまで戻り、脱血液の投与と同等であった。生存率も脱血液の投与と同等であった。脾臓重量は 3 日後にピークを示したが、その後低下した。ヘマトクリットは人工赤血球の投与によって血液稀釀の影響により半減するが、1 週間で元に戻った。血小板数も稀釀により低下するが、3 日後には正常値に復した。AST, ALT, LDH が蘇生 1 日後に上昇するが、脱血液投与群と同等であり、出血性ショックの影響と考えられた。総コレステロール、 β リポ蛋白が 1 日後に増大したがその後正常値に復した。サイトカインレベル低値を推移した。組織病理より、人工赤血球を捕捉したマクロファージは 14 日後には消失していた。PEG も 14 日後には消失していた。

13) 出血性ショック蘇生－長期生存試験

動物種：ビーグル犬（♂）

投与試料：ヘモグロビン小胞体を 5% リコンビナントアルブミンに分散、 $[Hb] = 8.6 \text{ g/dL}$

投与量：1) 急速期：循環血液量 (86 mL/kg) の 50% の脱血、60 分後に同量の人工赤血球を投与、比較群は脱血液の投与（返血）、主に血行動態を観察、2) 長期観察：循環血液量の 40% の脱血、同量の人工赤血球を投与。

麻酔：出血性ショック蘇生後 4 時間、および犠牲死時のみ Sevoflurane 吸入麻酔

投与経路：大腿静脈

観察時間：蘇生完了後 365 日間

測定項目：(出血ショック－蘇生時) 血圧、肺動脈圧、中心静脈圧、肺動脈楔入圧、心拍数、心拍出量、肺血管抵抗、全身血管抵抗、酸素消費量、酸素運搬量、(長期生存例) 体重、ヘマトクリット、血球数、血液生化学検査 (AST, ALT, LDH, アミラーゼ, リパーゼ, CPK, LAP, CRE, UA, BUN, 総コレステロール, β リポ蛋白, リン脂質, 遊離脂肪酸, ビリルビン, Fe, Cu, K, IP, Mg, Ca), 組織病理 (脾, 肝臓, 腎臓, 肺, 脾臓, 心臓)

実施場所：慶應義塾大学医学部

論文報告：Ikeda T, Horinouchi H, Izumi Y, Sakai H, Tsuchida E, Kobayashi K. Cellular-type Hemoglobin-based oxygen carrier as a resuscitative fluid for hemorrhagic shock: Acute and long-term safety evaluation using beagle dogs. In: Hemoglobin-based oxygen carriers -principles, approaches and current status (Kim HW, Greenburg AG eds) Springer-Verlag, Germany, in press.

主要結果：ヘモグロビン小胞体による蘇生で全例が生存。体重の増加が見られた。血液生化学では脂質成分の増大が投与後 1 週間で見られるが、その後低下する。比較の脱血液投与群と同等の推移を示した。その他著変なし。別途実施した脾臓を摘出したビーグル犬ではヘモグロビン小胞体投与後に肺動脈圧の一過性上昇が観察されたが¹⁷⁾、脾臓を摘出していない本実験モデルでは、肺動脈の上昇は無かった。

14) 妊娠モデル反復投与試験

動物種：Wistar 系ラット（♀）妊娠 12 日後

投与試料：ヘモグロビン小胞体、 $[Hb] = 10 \text{ g/dL}$ (比較群、生理食塩水)

投与量： $2 \text{ mL/kg} \times 7 \text{ 日}$ (総投与量 14 mL/kg は、ラットの循環血液量 56 mL/kg の 25%)

麻酔：isoflurane 吸入麻酔

投与経路：頸静脈 (カテーテル留置)

観察時間：投与期間 7 日間のあと更に 1 日

測定項目：母体重、胎児体重、胎盤重量、母体臓器重量 (肝臓、脾臓、腎臓)、ヘマトクリット、血球数、 Hb 濃度、血液凝固機能 (APTT, PT, フィブリノゲン)、尿検査、血中 HbV 濃度、血液生化学検査 (総蛋白、アルブミン、AST, ALT, LDH, γ -GPT, LAP, ChE, 総ビリルビン, Fe, K^+, Ca^{2+} , inorganic phosphate, UIBC, 総コレステロール、遊離コレステロール、コレステリルエステル, HDL コレス

テロール, β リポ蛋白, TG, リン脂質, 遊離脂肪酸, 総脂質), 乳酸値, グルコース, 血液ガス組成, 血圧, 心拍数, 組織病理 (ヘモジデリン, 抗ヒト Hb 抗体免疫染色: 脾臓, 肝臓, 胎盤結合部位, 胎盤迷路層, 胎児肝臓), 125 I-ラベル Hb 小胞体の体内動態 (血漿, 脾臓, 肝臓, 腎臓, 肺, 心臓, 胎盤, 胎児肝臓), 胎児肺のサーファクタント蛋白 (SP-A) 発現量
実施場所: 東北大学医学部, 国立精神神経医療研究センター, 熊本大学薬学部

論文報告: Kaga M, Li H, Ohta H, Taguchi K, Ogaki S, Izumi H, Inagaki M, Tsuchiya S, Okamura K, Otagiri M, Sakai H, Yaegashi N. Liposome-encapsulated hemoglobin (hemoglobin vesicle) is not transferred from mother to fetus at the late stage of pregnancy in the rat model. *Life Sci.* 2012 Oct 5; 91 (11-12): 420-8

主要結果: 妊娠ラットに対する 7 日間の連投によって循環血液量の 1/4 の人工赤血球の投与を受けた後も, ラットは体重増加し, 全例が生存した. 臓器重量, 胎児重量, 血液生化学, 血球数, 尿検査, 血行動態など, どの項目も比較の生理食塩水投与群と比較して有意な変化は無かった. 母体側の脾臓, 肝臓で Hb 小胞体を捕捉したマクロファージの像が認められたが, 体内動態評価では, 人工赤血球は胎盤までは移行するが, 胎児には移行していないことを確認した. 胎児肺のサーファクタント蛋白 (SP-A) 発現量にも異常は無く, 胎児への影響は見られなかった.

15) 脳内出血モデル

動物種: Wistar 系ラット (♂)

投与試料: ヘモグロビン小胞体を 5% リコンビナントアルブミンに分散, [Hb] = 8.6 g/dL (比較群, 洗浄赤血球を同様に分散させたもの)

投与量: 20 μ L

麻酔: sevoflurane 吸入麻酔

投与経路: 脳実質に 28G 針を経由して投与

観察時間: 28 日間

測定項目: 体重, 行動学的テスト (旋回の有無, 立毛の有無, 下肢の強さ, 驚愕反射, 前肢握力), 脳組織病理 (H/E, 抗ヒト Hb 抗体免疫染色, 抗 HO-1 抗体免疫染色, 抗 GFAP 抗体免疫染色, Berlin blue), 電子顕微鏡観察

実施場所: 慶應義塾大学医学部

論文報告: Sakai H, Okamoto M, Ikeda E, Horinouchi H, Kobayashi K, Tsuchida E. Histopathological changes of rat brain after direct injection of Hb-vesicles (artificial oxygen carriers) and neurological impact in an intracerebral hemorrhage model. *J Biomed Mater Res A*. 2009 Sep 15; 90 (4): 1107-19.

主要結果: 脳に出血があり血液脳関門が破綻した状態で人工赤血球が投与された場合, 脳神経系と接触することになり, 何らかの影響を与える可能性がある. そこで, 脳内出血モデルとして少量の人工赤血球を脳実質に注入する実験を実施し

た. 比較としてはラット洗浄赤血球を用いた. 体重は増大し続け, 食餌に影響は無いと考えられた. 行動学的観察においても対照群と比較して特に問題はなかった. 組織病理では, 穿刺部位周辺に好中球が出現したが直ぐに消失した. 脳実質中には人工赤血球が 28 日後にも認められたが, 脳組織の修復過程 (gliosis) には特に影響は見られなかった. 本実験では人工赤血球による悪影響は認められなかった.

16) 肝硬変モデルへの単回投与試験

動物種: Sprague-Dawley 系ラット (♂) に対し, テトラクロロメタン (CCl₄) 400 mg/kg 腹腔内投与 (週 3 回) を 8 週間実施し肝硬変モデルを作成

投与試料: ヘモグロビン小胞体, [Hb] = 10 g/dL に rHSA を添加したもの.

投与量: 14 mL/kg (一部 3 H-cholesterol を添加)

麻酔: エーテル

投与経路: 大腿静脈

観察時間: 投与後 14 日

測定項目: 血液生化学検査 (総蛋白, アルブミン, AST, ALT, γ -GTP, ALP, BUN, CRE, lipase, TG, リン脂質, 総コレステロール, HDL-コレステロール, 総ビリルビン, 直接ビリルビン, 間接ビリルビン, Fe), 組織病理 (ペルリンブルー染色, 肝臓, 脾臓), 総抗酸化値 (Potential anti oxidant, PAO), チオバルビツール酸反応物質 (Thiobarbituric Acid Reactive Substances, TBARS), 脾臓および肝臓内の還元型 / 酸化型グルタチオン比, 24 時間後および 48 時間後の 3 H 体内動態

実施場所: 熊本大学薬学部

論文報告: Taguchi K, Miyasato M, Ujihira H, Watanabe H, Kadowaki D, Sakai H, Tsuchida E, Horinouchi H, Kobayashi K, Maruyama T, Otagiri M. Hepatically-metabolized and -excreted artificial oxygen carrier, hemoglobin vesicles, can be safely used under conditions of hepatic impairment. *Toxicol Appl Pharmacol.* 2010 Nov 1; 248 (3): 234-41.

主要結果: 肝硬変モデルラットにヘモグロビン小胞体を投与した後, 血液生化学検査では, リパーゼ, ビリルビン, コレステロールの一過性上昇が見られたが, 14 日後には低下した. その他のパラメータでは著変なし. 組織病理では, 肝臓, 脾臓, 腎臓, 肺, 心臓に形態学的影響はなし. 肝臓と脾臓にヘモジデリン沈着が認められたが, 酸化的ストレスの指標パラメータに著変無し. 体内動態評価から, 3 H は主に肝臓, 脾臓に分布し, 7 日以内に糞中に排泄されることが解った. 以上より, 肝硬変モデルにおいても, ヘモグロビン小胞体は分解排泄されることが解った.

17) 血液稀釀試験 (出血に対する投与), 各種代用血漿剤との併用の影響

動物種: Wistar 系ラット (♂)

投与試料: ヘモグロビン小胞体, [Hb] = 10 g/dL, および各種

代用血漿剤（ヒドロキシエチルスターHES, 3種, 修正ゼラチンMFG, リコンビナントアルブミンrHSA）

投与量：1mLの脱血と, 1mLの代用血漿剤の投与を繰り返し, 循環血液量の60%を置換する（血液稀釀）。その後, Hb小胞体を20mL/kg投与する。

麻酔：Sevoflurane吸入麻酔

投与経路：頸静脈から投与

観察時間：Hb小胞体投与後4時間

測定項目：ヘマトクリット, 血圧, 心拍数, 血液ガス組成 (PaO₂, PaCO₂, BE, pH, Lactate, PvO₂, PvCO₂, 血液粘度)

実施場所：慶應義塾大学医学部

論文報告：Sakai H, Miyagawa N, Horinouchi H, Takeoka S, Takaori M, Tsuchida E, Kobayashi K. Intravenous infusion of Hb-vesicles (artificial oxygen carriers) after repetitive blood exchange with a series of plasma expanders (water-soluble biopolymers) in a rat model. *Polymer Adv Technol* 2011 Nov; 22: 1216-22

主要結果：高分子量HES溶液やMFG溶液にヘモグロビン小胞体を分散させると, 枯渇性相互作用(depletion interaction)：非吸着性の巨大高分子鎖が粒子間の領域に存在できにくくなり(枯渇), その領域を少なくしようとする力(凝集力)が発生する)によって小胞体が極めて弱い flocculation(凝集)を形成することが明らかになったので, それが血行動態に与える影響を調べるために, Hb小胞体と代用血漿剤との併用試験を実施した。どの代用血漿剤を併用した場合もラットは4時間生存した。血行動態, 血液ガス組成とともに安定した値を推移した。従って, flocculationの影響は本モデル実験では認められなかった。

18) 免疫系への影響

動物種：WKAHラット

投与試料：生理食塩水に分散したヘモグロビン小胞体 [Hb] = 10g/dL

投与量：循環血液量の20% (V/V)

麻酔：エーテル麻酔

投与経路：尾静脈

実験法：HbV(あるいは空リポソーム)を投与し, 翌日に脾臓を摘出し, 単細胞浮遊液としたのち, T細胞の非特異的 mitogen (Concanavalin A; Con A)で刺激し, 脾T細胞の増殖反応を測定する。

測定項目：DNAへの³H-Thymidineの取り込み

実施場所：北海道赤十字血液センター

論文報告：Takahashi D, Azuma H, Sakai H, Sou K, Wakita D, Abe H, Fujihara M, Horinouchi H, Nishimura T, Kobayashi K, Ikeda H. Phagocytosis of liposome particles by rat splenic immature monocytes makes them transiently and highly immunosuppressive in ex vivo culture conditions. *J Pharmacol Exp Ther*. 2011 Apr; 337(1): 42-9.

主要結果：ヘモグロビン小胞体を投与した翌日の脾T細胞の

増殖はコントロールと比べて有意に抑制されていた。この抑制は投与後3目には観察されたが, 7日目には完全に回復していた。蛋白抗原KLH (Keyhole Limpet Hemocyanine)に特異的なT細胞増殖反応も同様に投与後3日まで抑制されていたが7日には完全に回復していた。空リポソーム(ヘモグロビンを内包していないリポソーム)の投与でも同様の現象が観察された。この現象は, ヘモグロビン小胞体(or空リポソーム)を貪食したマクロファージが一過性に, 免疫抑制機能を発揮するようになることが原因であること, その抑制にはマクロファージの産生するNOが関与している可能性のあることを報告した。一方, 蛋白抗原であるKLHに対する抗体産生反応は, ヘモグロビン小胞体投与による影響を受けなかった。以上のことから, ヘモグロビン小胞体の投与で生体内の一部のマクロファージが免疫抑制機能を獲得する可能性があるが, あくまでも一過性であり, 全身的な免疫反応に対して, 重篤な影響を与える可能性は極めて低いと推察された。

19) 血液学的検討 (1) ヒト多形核好中球への影響

細胞種：ヒト多形核好中球

試料：ヘモグロビン小胞体(プロトタイプ, DPPGを使用), [Hb] = 10g/dL

実験方法：ヒト末梢血から単離したヒト多形核好中球に, 最大0.6%の濃度で30分間作用させ, 洗浄後, ヒト多形核好中球の活性化剤N-formyl-methionyl-leucyl-phenylalanine(fMLP)刺激の反応への前処置の影響を調べる。

測定項目：走化能, 接着因子の発現, 活性酸素産生, 脱顆粒

実施場所：北海道赤十字血液センター

論文報告：Ito T, Fujihara M, Abe H, Yamaguchi M, Wakamoto S, Takeoka S, Sakai H, Tsuchida E, Ikeda H, Ikebuchi K. Effects of poly(ethylene glycol)-modified hemoglobin vesicles on N-formyl-methionyl-leucyl-phenylalanine-induced responses of polymorphonuclear neutrophils in vitro. *Artif Cells Blood Substitutes Immobilization Biotechnol*. 2001; 29(6): 427-437

主要結果：fMLP刺激による好中球の機能評価として, 好中球の走化能, β_2 インテグリンであるCD11bの膜発現, 脱顆粒にともなうmatrix metalloproteinase-9の放出, 活性酸素の産生のいずれの項目においても, ヘモグロビン小胞体の前投与の影響はみられなかった。

20) 血液学的検討 (2) ヒト臍帯血の造血幹細胞

細胞種：ヒト臍帯血の造血幹/前駆細胞

試料：ヘモグロビン小胞体, [Hb] = 10g/dL

実験方法：ヒト臍帯血から分離したCD34陽性細胞を含む単核球を, 造血に働く各種サイトカインを添加した半固形培地に播種し, 2週間または4週間培養により形成したコロニーの数を測定する。さらにCD34陽性細胞を液体培養下にてヘモグロビン小胞体を添加し, 赤芽球系または顆粒球系の細胞へ

の増殖の影響を調べる。添加するヘモグロビン小胞体の最大濃度は3% (v/v) とする。

実施場所：北海道赤十字血液センター

論文報告：Yamaguchi M, Fujihara M, Wakamoto S, Sakai H, Takeoka S, Tsuchida E, Azuma H, Ikeda H. Influence of hemoglobin vesicles, cellular-type artificial oxygen carriers, on human umbilical cord blood hematopoietic progenitor cells in vitro. *J Biomed Mater Res A*. 2009 Jan; 88(1): 34-42.

主要結果：in vitro の閉鎖系において、Hb 小胞体を長期間にわたり造血前駆細胞と共に存させると、造血前駆細胞のコロニー形成能や、赤芽球系または顆粒球系の細胞への増殖を抑制したが、Hb 小胞体との共存期間が3日間までであれば、造血前駆細胞のコロニー形成能や、赤芽球系または顆粒球系の細胞への増殖への影響は少ないことが示された。

21) 血液学的検討 (3) ヒト臍帯血の造血幹／前駆細胞

細胞種：ヒト臍帯血の造血幹／前駆細胞

試料：ヘモグロビン小胞体, [Hb] = 10 g/dL

実験方法：ヒト臍帯血由来 CD34 陽性細胞と骨髄由来ストロマ細胞との14日間の共培養により、造血幹細胞／造血前駆細胞を増幅させる系にヘモグロビン小胞体を作用させ、未熟な造血幹／造血前駆細胞の活性を測定する。添加するヘモグロビン小胞体の最大濃度は3% (v/v) とする。

実施場所：北海道赤十字血液センター

論文報告：Yamaguchi M, Fujihara M, Wakamoto S, Sakai H, Takeoka S, Tsuchida E, Hamada H, Azuma H, Ikeda H. Biocompatibility study of hemoglobin vesicles, cellular-type artificial oxygen carriers, with human umbilical cord hematopoietic stem/progenitor cells using an in vitro expansion system. *ASAIO J*. 2009 May-Jun; 55(3): 200-5.

主要結果：ヒト臍帯血由来 CD34 陽性細胞と骨髄由来ストロマ細胞の共培養系にヘモグロビン小胞体が培養期間14日間有る場合には、造血幹細胞／造血前駆細胞の増幅が抑制された。ヘモグロビンを含まない空の小胞体の場合は、抑制効果が軽減することから、ヘモグロビンの作用が示唆された。一方、ヘモグロビン小胞体との共存が3日間までの短期間であれば造血幹細胞／造血前駆細胞の増幅に影響をあたえないことを明らかとした。

22) 血液学的検討 (4) ヒト血小板

細胞種：ヒト血小板

試料：ヘモグロビン小胞体, [Hb] = 10 g/dL

実験方法：In vitro にてヒト血小板とヘモグロビン小胞体を0, 20, 40% (vol/vol) で1時間インキュベーションし、血小板のアゴニスト刺激による血小板活性化の評価を、血小板 α 顆粒中の RANTES と β -thromboglobulin (β -TG), 濃染顆粒に存在するセロトニンの各放出反応およびポジティブフィードバックによって血小板活性化を増幅する Thromboxane A₂ (TXA₂) の產生、さらに α 顆粒由来の CD62P の膜表面への

発現と血小板膜糖タンパク (α IIb β 3) の構造変化を認識する抗体 PAC-1 (first procaspase activating compound) の結合を指標とした。

実施場所：北海道赤十字血液センター

論文報告：Wakamoto S, Fujihara M, Abe H, Yamaguchi M, Azuma H, Ikeda H, Takeoka S, Tsuchida E. Effects of hemoglobin vesicles on resting and agonist-stimulated human platelets in vitro. *Artif Cells Blood Substit Immobil Biotechnol*. 2005; 33(2): 101-11.

主要結果：アゴニスト刺激の無い場合は、血小板反応上清中の RANTES, セロトニン, β -TG, TXB₂ および血小板表面 CD62P のレベルの上昇はみられず、ヘモグロビン小胞体に血小板活性化作用は無いと考えられた。アゴニスト刺激により血小板の脱颗粒を惹起させると、いずれの濃度のヘモグロビン小胞体処理においても RANTES, セロトニン, β -TG の放出、TXB₂ の產生、および CD62P 発現が引き起こされ、そのレベルはヘモグロビン小胞体未処理のものと有意差はみられなかった。一方、PAC-1 の発現はヘモグロビン小胞体未処理では影響がないものの、ヘモグロビン小胞体処理により低濃度の ADP 刺激血小板において僅かな亢進がみられたが、この程度の変化の臨床的意義は少ないと考えられた。以上のことから、ヘモグロビン小胞体は低濃度のアゴニスト存在下で α IIb β 3 の構造変化を僅かに促進するものの、他の活性化マーカーにはアゴニスト刺激の有無にかかわらず影響を与えないことから、ヒト血小板に悪影響を示さないことが明らかとなった。

23) 血液学的検討 (5) ヒト血漿タンパク

細胞種：ヒト血漿中の補体、凝固因子、キニン・カリクレイン

試料：ヘモグロビン小胞体, [Hb] = 10 g/dL; 比較として強陰性荷電の空の小胞体、および DPPG を含有する小胞体

実験方法：ヘモグロビン小胞体を健常人ヒト血清と 20% あるいは 40% で混合し、37°C にて 24 時間インキュベーション後、遠心により各種 HbV を除去し、その上清の補体価 (CH50) を測定した。凝固系に及ぼす影響は、対象を生食とし、ヒト血漿にヘモグロビン小胞体添加 (20%, 40%, 60%) した場合のプロトロンビン時間 (PT) および活性化部分トロンボプラスチック時間 (APTT) を測定した。カリクレイン-キニン系に対する影響は、血漿にヘモグロビン小胞体または生食を添加し、37°C にて 24 時間インキュベーション後、血漿中高分子キニノーゲンの分解による低分子化された高分子キニノーゲンの出現をイムノブロッティング法にて検出した。

実施場所：北海道赤十字血液センター

論文報告：Abe H, Fujihara M, Azuma H, Ikeda H, Ikebuchi K, Takeoka S, Tsuchida E, Harashima H. Interaction of hemoglobin vesicles, a cellular-type artificial oxygen carrier, with human plasma: effects on coagulation, kallikrein-kinin, and complement systems. *Artif Cells Blood Substit Immobil Biotechnol*. 2006; 34(1): 1-10.

主要結果：陽性対照として、強陰性荷電 PEG 未修飾リポソームを添加した群では著しいCH50（補体価）の低下がみられるのに対し、ヘモグロビン小胞体を20%あるいは40%で添加した群では、それぞれ生食を添加した場合に比べて、CH50の減少はみられなかった。PT時間については、ヘモグロビン小胞体は添加量のいずれの濃度でも、生食添加の場合より有意に短縮させたが、その差は1秒以内であった。APTT時間はどの血漿比率の場合においても生食の場合と違いはみられなかった。血漿に対し40%あるいは60%にてDPPG-ヘモグロビン小胞体またはPEG未修飾のDPPG-ヘモグロビン小胞体を添加させた場合、intactな高分子キニノーゲンが減少と低分子化された高分子キニノーゲンの増加が顕著に観察されたが、現行のヘモグロビン小胞体ではいずれの血漿比率の場合においても生食の場合と違いはみられず、血漿中高分子キニノーゲンの分解を引き起こさないことがわかった。以上のことから、現行のヘモグロビン小胞体のヒト血漿タンパクへの高い生体適合性が示された。

まとめ

人工赤血球（ヘモグロビン小胞体）分散液は、血液と同等の高濃度微粒子分散液である。そのため、血液と同等の粘性を有し、血液と同様にヘモグロビン濃度に応じた酸素運搬機能を有する。大量投与を伴うモデル実験においても動物は犠牲死させるまで生存し、外見上の著変は認められない。血液学的検討では、一般に微粒子分散液の投与は補体活性によるアナフィラキシー様反応を生起する場合があるが、ヘモグロビン小胞体では粒子表面の工夫によってこれが抑制されている。血小板や血液凝固系に与える影響も精査しているが、異常は認められない。血行動態についても、修飾ヘモグロビン溶液系で観測される血管収縮や血圧亢進は、ヘモグロビンをカプセル化することによって抑制される。これはヘモグロビンによる血管内皮由来弛緩因子であるNOの捕捉がカプセル化によって遅延される物理化学的な現象に起因していると考えている^{31,32)}。体内動態においては、ヘモグロビン小胞体は血液中で分解することなく微粒子として血流に乗って循環し、最終的には細網内皮系（主に肝臓、脾臓）に移行し、そこで完全に分解され、その成分は糞、尿中に排泄されることが放射化ラベル化合物の投与試験から解った。反復投与により循環血液量の実に2.5倍の人工赤血球を投与する試験において、肝臓脾臓にはヘモジデリン沈着が認められるが、それによる悪影響は観察されていない。肝臓脾臓の肥大は一過性であり、完全に回復し、可逆性があった。血中半減期は3日程度ではあるが、代謝分解の過程は献血と同等と考えられた。人工赤血球は赤血球と同様に膠質浸透圧を持たず、大量投与に際しては代用血漿剤の併用も必要となるが、薬剤との併用による悪影響は見られなかった。脳内出血モデル、ビーグル犬を使った出血性ショック蘇生試験においても、全例が生存している。ラット制御不能出血モデルに対する大量投与に際しても、短期的に問題が無いことを確認しているなど¹⁹⁾、表1にまとめた効能評価試験においても、動物が犠牲死させる

まで特段の影響なく生存することが解っている。ラット妊娠モデル、カニケイザルを使った試験でも、著変は認められていない。つい最近、復帰突然変異試験（Ames試験）でも遺伝子突然変異誘発性が無いことを確認した。このように、ヘモグロビン小胞体製剤は、多方面に亘り安全性が確認されている。

修飾ヘモグロビン溶液系では、投与後に血漿が赤くなるため、血液生化学検査において比色分析、比濁分析に干渉作用を与えることが問題となっている。これに対してヘモグロビン小胞体では血漿から容易に分離が出来るので、干渉作用を回避できることを確認している³³⁾。これも一つの安全性試験項目といえる。またこの分離技術によって、上述のように多項目に亘る血液生化学検査が可能となり、ヘモグロビン小胞体の安全性が明らかになっている。

ところで、これまで課題とされてきた製造法については、混練法による簡便化が可能になり量産に目処がついた（2012年にPCT出願済）。また投与後のメトヘモグロビンの漸増については、生体内の電子供与系の活用によってメトヘモグロビンを繰り返し還元型ヘモグロビンに復元出来ることを出血性ショック蘇生モデルラットの実験から明らかにしているので、課題は解決できると考えている。

ヘモグロビン小胞体製剤は、アカデミアを中心を開発してきた、極めて完成度の高い医薬品の候補物質であると自負している。是非とも日本発の医薬品として実用化に繋げたい。読者の皆様からの引き続きのご支援、ご協力をお願いしたい。

謝 辞

本研究は、厚生労働科学研究費補助金および日本学術振興会科学研究費補助金を受けて推進された。また、本研究班にご参画頂いた以下の多くの分担研究者、研究協力者の諸先生方のご貢献に心より感謝申し上げます。

（敬称略）

早稲田大学：土田 英俊（故）、西出 宏之、武岡 真司、宗 慶太郎
慶應義塾大学：四津 良平、末松 誠、武田 純三、相川 直樹、

村田 満、渡辺 真純、饗庭 了、泉 陽太郎、山崎 正敬、山本 学、河野 光智、池田 達彦、勢司泰久

山口大学：池田 栄二

北海道赤十字血液センター：関口 定美（故）、池田 久實、藤原 満博、高橋 大輔、阿部 英樹

東宝塚さとう病院：高折 益彦

崇城大学：田口 和明

熊本大学：丸山 徹

日本医科大学：小川 龍、坂本 篤裕、寺嶋 克幸

防衛医科大学校：大鈴 文孝

福井大学：藤林 康久、岡沢 秀彦

国立精神神経医療センター：太田 英伸

Univ. of California, San Diego: Marcos Intaglietta

Univ. of Texas, San Antonio: William T. Phillips

Weill Med. College of Cornell Univ.: Michiko Okamoto

Inselspital University Hospital, Bern: Dominique Erni

引用文献

1. 酒井宏水, 土田英俊. 人工赤血球の過去, 現在, 未来. ファルマシア 2009; 45: 23-28
2. Sakai H, Sou K, Horinouchi H, Kobayashi K, Tsuchida E. Hemoglobin-vesicles as artificial oxygen carriers: Present Situation and future vision. *J Intern Med* 2008; 263: 4-15.
3. 厚生科学研究費補助金（高度先端医療研究事業）「酸素運搬機能を有する人工赤血球の創製とその評価に関する研究」平成 9-11 年度 総合研究報告書, 主任研究者: 土田英俊. 2000 年 4 月 10 日提出
4. 厚生労働科学研究費補助金（医薬安全総合研究事業）「臨床応用可能な人工赤血球の創製に関する研究」平成 12-14 年度総括研究報告書, 主任研究者: 土田英俊. 2003 年 3 月提出
5. 厚生労働科学研究費補助金（医薬品・医療機器等レギュラトリーサイエンス総合研究事業）「人工赤血球の安全性向上に関する研究」平成 15-17 年度 総合研究報告書, 主任研究者: 小林紘一. 2006 年 4 月提出
6. 厚生労働科学研究費補助金（政策創薬総合研究事業）「人工酸素運搬体の臨床応用に関する研究」平成 18-20 年度 総合研究報告書, 研究代表者: 小林紘一, 堀之内宏久. 2009 年 4 月提出
7. 厚生労働科学研究費補助金（政策創薬総合研究事業）「人工赤血球の臨床応用を目指した至適投与法の策定と GMP 製造技術の確立」平成 21-23 年度 総合研究報告書, 研究代表者: 堀之内宏久. 2012 年 5 月提出
8. 厚生労働科学研究費補助金（創薬基盤推進研究事業）「人工赤血球（ヘモグロビン小胞体）製剤の実用化を目指す研究」平成 24 年度 総括・分担研究報告書, 研究代表者: 酒井宏水. 2013 年 5 月提出
9. Sakai H, Sou K, Tsuchida E. Hemoglobin vesicles as a transfusion alternative. *Methods Enzymol* 2009; 465 (Liposomes Part G): 363-384.
10. Sakai H, Takeoka S, Kobayashi K. Gas bioengineering using hemoglobin-vesicles for versatile clinical application. *Curr Pharmaceut Design* 2011; 17: 2352-2359.
11. Izumi Y, Sakai H, Kose T, Hamada K, Takeoka S, Yoshizuka A, Horinouchi H, Kato R, Nishide H, Tsuchida E, Kobayashi K. Evaluation of the capabilities of a hemoglobin vesicle as an artificial oxygen carrier in a rat exchange transfusion model. *ASAIO J*. 1997; 43: 289-97.
12. Sakai H, Takeoka S, Park SI, Kose T, Nishide H, Izumi Y, Yoshizuka A, Kobayashi K, Tsuchida E. Surface modification of hemoglobin vesicles with poly(ethylene glycol) and effects on aggregation, viscosity, and blood flow during 90% exchange transfusion in anesthetized rats. *Bioconjug Chem*. 1997; 8: 23-30.
13. Sakai H, Masada Y, Horinouchi H, Yamamoto M, Ikeda E, Takeoka S, Kobayashi K, Tsuchida E. Hemoglobin-vesicles suspended in recombinant human serum albumin for resuscitation from hemorrhagic shock in anesthetized rats. *Crit Care Med*. 2004; 32: 539-45.
14. Sakai H, Seishi Y, Obata Y, Takeoka S, Horinouchi H, Tsuchida E, Kobayashi K. Fluid resuscitation with artificial oxygen carriers in hemorrhaged rats: profiles of hemoglobin-vesicle degradation and hematopoiesis for 14 days. *Shock*. 2009; 31: 192-200.
15. Taguchi K, Ogaki S, Watanabe H, Kadowaki D, Sakai H, Kobayashi K, Horinouchi H, Maruyama T, Otagiri M. Fluid resuscitation with hemoglobin vesicles prevents *Escherichia coli* growth via complement activation in a hemorrhagic shock rat model. *J Pharmacol Exp Ther*. 2011; 337: 201-8.
16. Yoshizuka A, Izumi Y, Park S, Sakai H, Takeoka S, Horinouchi H, Ikeda E, Tsuchida E, Kobayashi K. Hemorrhagic shock resuscitation with an artificial oxygen carrier, hemoglobin vesicle, maintains intestinal perfusion and suppresses the increase in plasma tumor necrosis factor-alpha. *ASAIO J*. 2004; 50: 458-63.
17. Yamamoto M, Horinouchi H, Kobayashi K, Seishi Y, Sato N, Itoh M, Sakai H. Fluid resuscitation of hemorrhagic shock with hemoglobin vesicles in Beagle dogs: pilot study. *Artif Cells Blood Substit Immobil Biotechnol*. 2012; 40: 179-95.
18. Yamazaki M, Aeba R, Yozu R, Kobayashi K. Use of hemoglobin vesicles during cardiopulmonary bypass priming prevents neurocognitive decline in rats. *Circulation*. 2006; 114(1 Suppl): I220-5.
19. Seishi Y, Horinouchi H, Sakai H, Kobayashi K. Effect of the cellular-type artificial oxygen carrier hemoglobin vesicle as a resuscitative fluid for prehospital treatment: experiments in a rat uncontrolled hemorrhagic shock model. *Shock*. 2012; 38: 153-8.
20. Sakai H, Horinouchi H, Tsuchida E, Kobayashi K. Hemoglobin vesicles and red blood cells as carriers of carbon monoxide prior to oxygen for resuscitation after hemorrhagic shock in a rat model. *Shock*. 2009; 31: 507-14.
21. Sakai H, Takeoka S, Wettstein R, Tsai AG, Intaglietta M, Tsuchida E. Systemic and microvascular responses to hemorrhagic shock and resuscitation with Hb vesicles. *Am J Physiol Heart Circ Physiol*. 2002; 283: H1191-9.
22. Komatsu H, Furuya T, Sato N, Ohta K, Matsuura A, Ohmura T, Takagi S, Matsuura M, Yamashita M, Itoda M, Itoh J, Horinouchi H, Kobayashi K. Effect of hemoglobin vesicle, a cellular-type artificial oxygen carrier, on middle cerebral artery occlusion- and arachidonic acid-induced stroke models in rats. *Neurosci Lett*. 2007; 421: 121-5.
23. Verdu EF, Bercik P, Huang XX, Lu J, Al-Mutawaly N, Sakai

H, Tompkins TA, Croitoru K, Tsuchida E, Perdue M, Collins SM. The role of luminal factors in the recovery of gastric function and behavioral changes after chronic Helicobacter pylori infection. *Am J Physiol Gastrointest Liver Physiol.* 2008; 295: G664-70.

24. Contaldo C, Plock J, Sakai H, Takeoka S, Tsuchida E, Leunig M, Banic A, Erni D. New generation of hemoglobin-based oxygen carriers evaluated for oxygenation of critically ischemic hamster flap tissue. *Crit Care Med.* 2005; 33: 806-12.

25. Plock JA, Tromp AE, Contaldo C, Spanholz T, Sinovcic D, Sakai H, Tsuchida E, Leunig M, Banic A, Erni D. Hemoglobin vesicles reduce hypoxia-related inflammation in critically ischemic hamster flap tissue. *Crit Care Med.* 2007; 35: 899-905.

26. Plock JA, Rafatmehr N, Sinovcic D, Schnider J, Sakai H, Tsuchida E, Banic A, Erni D. Hemoglobin vesicles improve wound healing and tissue survival in critically ischemic skin in mice. *Am J Physiol Heart Circ Physiol.* 2009; 297: H905-10.

27. Yamamoto M, Izumi Y, Horinouchi H, Teramura Y, Sakai H, Kohno M, Watanabe M, Kawamura M, Adachi T, Ikeda E, Takeoka S, Tsuchida E, Kobayashi K. Systemic administration of hemoglobin vesicle elevates tumor tissue oxygen tension and modifies tumor response to irradiation. *J Surg Res.* 2009; 151: 48-54.

28. Tiwari VN, Kiyono Y, Kobayashi M, Mori T, Kudo T, Okazawa H, Fujibayashi Y. Automatic labeling method for injectable ^{15}O -oxygen using hemoglobin-containing liposome vesicles and its application for measurement of brain oxygen consumption by PET. *Nucl Med Biol.* 2010; 37: 77-83.

29. Kobayashi M, Mori T, Kiyono Y, Tiwari VN, Maruyama R, Kawai K, Okazawa H. Cerebral oxygen metabolism of rats using injectable ^{15}O -oxygen with a steady-state method. *J Cereb Blood Flow Metab.* 2012; 32: 33-40.

30. 高折益彦. “人工酸素運搬体作製に関する基本的留意事項(案)”を概説する. *人工血液* 2005; 13: 104-111.

31. Sakai H, Sato A, Masuda K, Takeoka S, Tsuchida E. Encapsulation of concentrated hemoglobin solution in phospholipid vesicles retards the reaction with NO, but not CO, by intracellular diffusion barrier. *J Biol Chem.* 2008; 283: 1508-17.

32. Sakai H, Okuda N, Sato A, Yamaue T, Takeoka S, Tsuchida E. Hemoglobin encapsulation in vesicles retards NO and CO binding and O_2 release when perfused through narrow gas-permeable tubes. *Am J Physiol Heart Circ Physiol.* 2010; 298: H956-65.

33. Sakai H, Tomiyama K, Masada Y, Takeoka S, Horinouchi H, Kobayashi K, Tsuchida E. Pretreatment of serum containing hemoglobin vesicles(oxygen carriers) to prevent their interference in laboratory tests. *Clin Chem Lab Med.* 2003; 41: 222-31.

Chapter 6

Biocompatibility of a Highly Concentrated Fluid of Hemoglobin-Vesicles as a Transfusion Alternative

Hiromi Sakai*,†,‡

1. Introduction

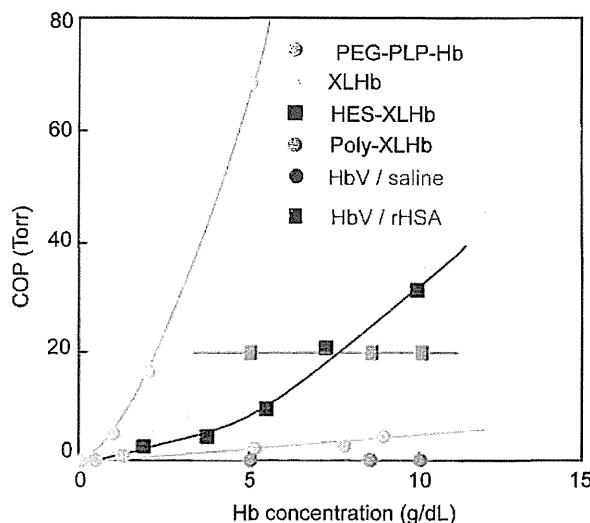
Blood transfusion systems have greatly benefited human health and welfare. Nevertheless, some problems remain: possibility of infection, blood type mismatching, immunological response, and a short shelf life that is insufficient for stockpiling for emergency situations. Realization of artificial O₂ carriers is anticipated to solve such problems. The most abundant protein in blood is Hb ([Hb] = 12–16 g/dL in healthy human blood), indicating that oxygen transport to tissues is the most important function of blood. To design an oxygen-carrying fluid to substitute the function of blood, the Hb concentration of the fluid should be high and comparable with that of blood Hb concentration. Chemically modified and cell-free Hb-based oxygen carriers (HBOCs), such as intramolecularly crosslinked, polymerized, and polymer-conjugated Hbs, were synthesized to prevent toxic effects of cell-free Hbs.¹ The hydrodynamic radius of such cell-free HBOCs is less than 20 nm. On the other hand, hemoglobin-vesicles (HbV) or

*Waseda Bioscience Research Institute in Singapore, Biopolis, Republic of Singapore.

†Organization for University Research Initiatives, Waseda University, Tokyo, Japan.

‡Department of Chemistry, Nara Medical University, Kashihara, Japan.

2 Selected Topics in Nanomedicine


so-called liposome-encapsulated Hb, which encapsulate a concentrated Hb solution in phospholipid vesicles, are developed.^{2,3} One particle of about 250–280 nm encapsulates nearly 30,000 Hb molecules. In the case of the chemically modified cell-free HBOCs, they are “dissolved” in aqueous solutions like plasma proteins. On the other hand, HbV as a cellular HBOC is “dispersed” in aqueous solutions like blood cells. The difference between dissolution and dispersion results in a considerable difference in physicochemical characteristics of the fluids containing a high concentration of Hb. The fluid properties should be adjusted within the biocompatible and physiological conditions for a massive blood exchange. In this chapter I first summarize some views of physicochemical differences between cell-free and cellular HBOCs. Second, biocompatibility of the dispersed particle is of course important. The blood compatibility, biodegradability, excretion, and immunological responses to the massive injection of such dispersed small particles are summarized.

2. Biocompatible Solution Properties of HbV Fluids

2.1. Colloid Osmotic Pressure

Albumin, dissolved in a blood plasma at ca. 5 g/dL, provides sufficient colloid osmotic pressure (COP, ca. 20 Torr) to play an important role in equilibrating COP between blood and interstitial fluid, thereby maintaining the overall blood volume. This COP is one requisite for a transfusion alternative to sustain blood circulation for transporting oxygen and metabolites. The extremely high concentration of the HbV suspension ([Hb]) 10 g/dL; [lipids] 6 g/dL, volume fraction, ca. 40 vol % imparts an O₂ carrying capacity that is comparable to that of blood. The HbV suspension does not possess a colloid osmotic pressure (COP), because one HbV particle (ca. 250 nm diameter) contains about 30,000 Hb molecules. In fact, HbV acts as a particle, not as a solute. Therefore, HbV must be suspended in or coinjected with an aqueous solution of a plasma substitutes. This requirement is identical to that for emulsified perfluorocarbon, which does not possess COP^{4,5}; it contrasts to characteristics of other Hb-based O₂ carriers, intramolecular cross-linked Hbs,

Biocompatibility of a Highly Concentrated Fluid of HbV 3

Fig. 1. Colloid osmotic pressures of cell-free and cellular HBOCs.⁶ COP of HbV is determined by the suspending medium. For example, 5% albumin has 20 torr COP. It does not exceed the physiological condition at any Hb concentration.

polymerized Hbs, and polymer-conjugated Hbs, which all possess very high COP as protein solutions^{6,7} (Fig. 1). These chemically modified Hb solutions can be categorized as “O₂-carrying plasma expanders”⁸ because they have the oxygen-carrying capacity and colloid osmotic pressure. However, the problem with PEG-modified Hb solutions is that the COP is too high such that the Hb concentration of the resulting fluid is as low as 4–6 g/dL. On the other hand, HbV suspended in any plasma expander shows COP of the suspending medium, at any Hb concentration. When HbV is suspended in 5%-human serum albumin solution (HSA), COP is nearly 20 mmHg, which is in a physiological range of COP.

According to the guideline for safer blood transfusion, a transfusion trigger (the critical Hb level) is 6 g/dL to minimize unnecessary transfusion strictly or to avoid allogeneic transfusion as long as possible. But the problem of HBOCs with low Hb concentration is that injection of HBOCs cannot increase blood Hb level. In fact, according to the retrospective description of Nosé, pyridoxalated Hb polyoxyethylene

4 Selected Topics in Nanomedicine

conjugated (PHP) had the same problem, and it was not easily approved for clinical study during the negotiation of the FDA.⁹ The Hb concentration of HbV is adjusted to 10 g/dL, which is higher than the concentration of transfusion trigger.

2.2. *Flocculate Formation and Viscosity Increase in the Presence of Plasma Expanders*

Animal tests of HbV suspended in plasma-derived HSA or recombinant HSA (rHSA) showed an O₂ transporting capacity that is comparable to that of blood.^{10,11} We reported that HbV suspended in plasma-derived HSA or rHSA was almost Newtonian: no aggregation was detected microscopically.^{12,13} In Japan, rHSA was very recently approved for clinical use, in May 2008,¹⁴ but various plasma substitutes are used worldwide, such as hydroxylethyl starch (HES), dextran (DEX), and modified fluid gelatin (MFG). The selection among these plasma substitutes is best determined not only according to their safety and efficacy, but also according to their associated price, experience of clinicians, and customs of respective countries. Water-soluble polymers generally interact with particles such as polystyrene beads, liposomes, and RBCs to induce aggregation or flocculation.^{15,16} As for the cell-free HBOCs dissolved in saline, they are Newtonian fluids, and do not interact with plasma expanders. In the case of cellular HBOC dispersed in saline, it is important to determine the compatibility of HbV with these plasma substitutes. With that background, we studied rheological properties of HbV suspended in these plasma substitute solutions using a complex rheometer and a microchannel array.¹⁷ The rheological property of an HBOC is important because the infusion amount is expected to be considerably large, which might affect the blood viscosity and hemodynamics. The HbV suspended in rHSA was nearly Newtonian (Fig. 2). Its viscosity was similar to that of blood, and the mixtures with RBCs at various mixing ratios showed viscosities of 3–4 cP. Other polymers, HES, DEX, and MFG, induced flocculation of HbV, possibly by depletion interaction, and rendered the suspensions as non-Newtonian with the *shear-thinning* profile. These HbV suspensions showed high viscosity and a high storage modulus (G')

Biocompatibility of a Highly Concentrated Fluid of HbV 5

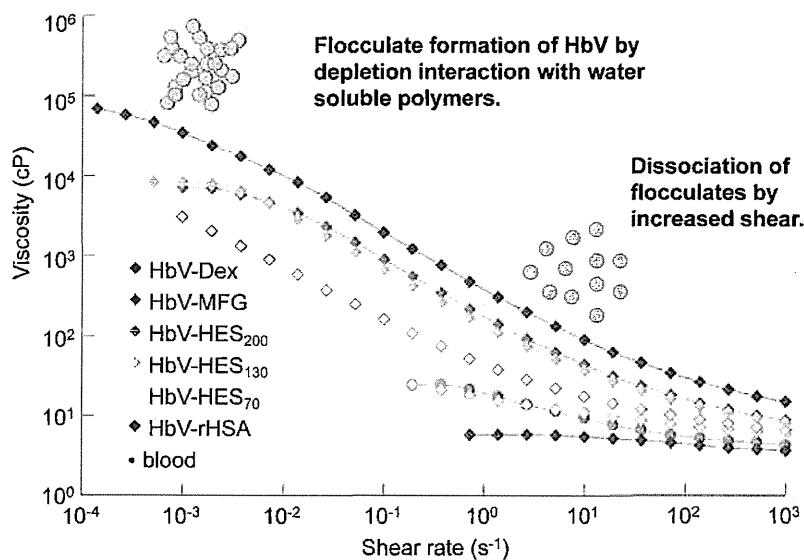
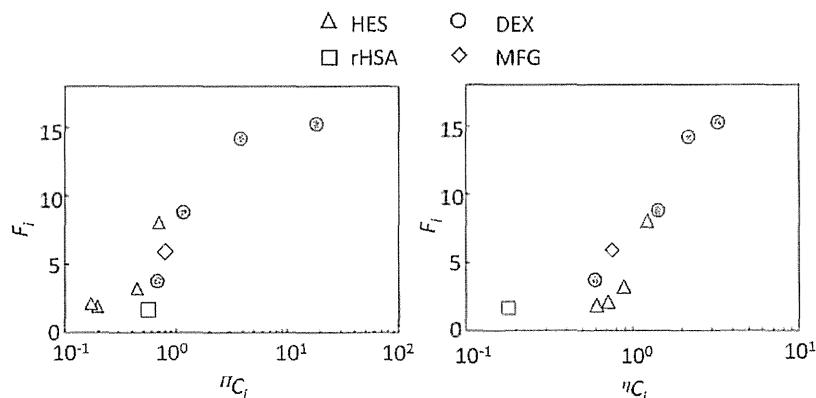



Fig. 2. Shear-thinning profiles of HbV suspended in a series of plasma expanders. $[Hb] = 10 \text{ g/dL}$.¹⁷

because of the presence of flocculated HbV. On the other hand, HbV suspended in rHSA exhibited a very low G' . The viscosities of HbV suspended in DEX, MFG, and high-molecular-weight HES solutions responded quickly to rapid step changes of shear rates of $0.1\text{--}100 \text{ s}^{-1}$ and a return to 0.1 s^{-1} , indicating that flocculation formation is both rapid and reversible. Microscopically, the flow pattern of the flocculated HbV perfused through microchannels ($4.5 \mu\text{m}$ deep, $7 \mu\text{m}$ wide, $20 \text{ cm H}_2\text{O}$ applied pressure) showed no plugging.

The mechanism of flocculate formation of liposome is controversial.¹⁸ However, we believe PEG-modified liposomes are flocculated by depletion interaction. The flocculation level increased with hydrodynamic radius (R_h) or radius of gyration (R_g) of series of HES or DEX with different molecular weights at a constant polymer concentration (4 wt%). However, the flocculation level differed markedly among the polymers (Fig. 3). A crowding index (C_i) representing the crowding level of a polymer solution is defined as (excluded volume of one polymer) \times (molar concentration) \times Avogadro's number, using R_h

6 Selected Topics in Nanomedicine

Fig. 3. Flocculation index (F_i) increases with the addition of dextran HES, MFG, or HSA, showing that the crowding index, C_i , of the polymer aqueous solution is the determining factor of flocculate formation.¹⁸ We defined the flocculation index (F_i) as $F_i = (\eta_{10} - \eta_0) / (\eta_{1000} - \eta_0)$. In that equation, η_{10} and η_{1000} respectively represent the viscosity at the shear rates of 10 and 1000 s⁻¹. Crowding index (nC_i , and nC_i) representing the crowding level of a polymer solution is defined using R_h and R_g , respectively, as [(excluded volume of one polymer) \times (molar concentration) \times Avogadro's number]. Adapted with permission from Sakai H, Sato A, Takeoka S, Tsuchida E. (2009) Mechanism of flocculate formation of highly concentrated phospholipid vesicles suspended in a series of water-soluble biopolymers. *Biomacromolecules* **10**: 2344–2350. Copyright (2009) American Chemical Society.

or R_g . All polymers' flocculation level increases when C_i approaches 1: when the theoretical total excluded volume approaches the entire solution volume, the excluded HbV particles are forced to flocculate.

2.3. *In Vivo Study of Co-Injection of HbV and a Series of Plasma Expanders*

It remained unknown whether such flocculate formation of HbV in blood might affect an animal's hemodynamics. Using a rat model, we tested infusion of a series of plasma expanders (MFG, HES₆₇₀, HES₁₃₀, HES₇₀, rHSA) to maintain the blood volume (level of blood exchange led to 60%) at repeated hemorrhages and the subsequent infusion of HbV (20 mL/kg, 36% of blood volume).¹⁹ (In this experiment we

Biocompatibility of a Highly Concentrated Fluid of HbV 7

did not use dextran because rats show anaphylactic reaction to dextran.²⁰ All rats survived for 4 hr after the infusion of HbV; hemodynamic and respiratory functions were preserved, indicating that the flocculation does not induce capillary embolism. Blood exchange with rHSA and subsequent infusion of HbV showed more stable systemic parameters because of the longer retention of rHSA in blood than other plasma substitutes, indicating that rHSA is suitable for combination with HbV in this experimental model.

2.4. Solution Properties Affects on Reactions of Hb and NO

It has been regarded that lower blood viscosity after hemodilution is effective for tissue perfusion. However, microcirculatory observation shows that, in some cases, lower “plasma viscosity” decreases shear stress on the vascular wall, causing vasoconstriction and reducing the functional capillary density.²¹ Therefore, an appropriate viscosity might exist which maintains the normal tissue perfusion level. The large molecular dimension of HbV can result in a transfusion fluid with high viscosity. A large molecular dimension is also effective to reduce vascular permeability and to minimize the reaction with NO and CO as vasorelaxation factors.²²⁻²⁵

Increased fluid viscosity of a solution of hemoglobin-based oxygen carriers (HBOCs) reduces vasoconstrictive effects because increased shear stress on the vascular wall enhances the production of vasorelaxation factors such as NO. Nevertheless, on a microcirculatory level, it remains unclear how viscosity affects the reaction of HBOCs and NO. To clarify the effect of viscosity on the NO-binding, different HBOCs were perfused through narrow gas-permeable tubes (25 μ m inner diameter at 1 mm/s centerline velocity; hemoglobin concentration [Hb]=5 g/dL).²⁶ The reaction was examined microscopically based on the Hb visible-light absorption spectrum. When immersed in a NO atmosphere, the NO-binding of deoxygenated Hb solution (viscosity, 1.1 cP at 1000 s⁻¹) in the tube occurred about twice as rapidly as that of red blood cells (RBCs): 1.6 cP (Fig. 4). Binding was reduced by PEGylation (PEG-Hb, 7.7 cP), by addition of a high molecular weight hydroxyethyl starch (HES) (2.8 cP), and by encapsulation to

8 Selected Topics in Nanomedicine

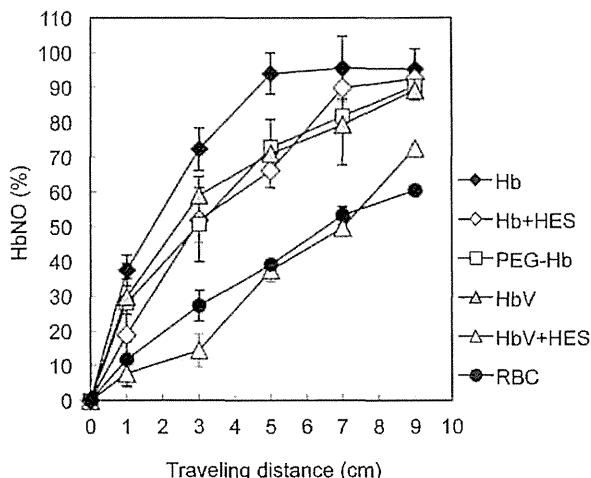


Fig. 4. Change of the level of NO-binding reactions of the Hb containing fluids, Hb solution, PEG-Hb, HbV, Hb+HES, HbV+HES, and RBC (black circles) with traveling distance.²⁶ (Permission obtained from Elsevier)

form Hb-vesicles (HbVs, 1.5 cP; particle size 279 nm). However, the reduction was not as great as that shown for RBCs. A mixture of HbVs and HES (6.2 cP) showed almost identical NO-binding to that of RBCs. Higher viscosity and particle size might reduce lateral diffusion when particles are flowing. The HbVs with HES showed the slowest NO-binding. Furthermore, Hb encapsulation and PEGylation, but not HES-addition, tended to retard CO-binding. Increased viscosity reportedly enhances production of endothelium NO. In addition, our results show that the increased viscosity also slows down the reaction with NO. Each effect might mitigate vasoconstriction.

3. Biocompatibility of HbV in Terms of Immunological Responses

3.1. Complement Activation

A so-called injection reaction, or pseudo-allergy, resulting from complement activation after injection of a small amount of liposome is well known, giving rise to anaphylatoxins, which trigger various

Biocompatibility of a Highly Concentrated Fluid of HbV 9

hypersensitivity reactions.²⁷⁻²⁹ Transient thrombocytopenia and pulmonary hypertension in relation to complement activation is an extremely important hematologic effect observed in rodent and porcine models after infusion of LEH (containing DPPG) developed by the US Naval Research Laboratory.³⁰ Neo red cells (Terumo Corp.) containing stearic acid showed pulmonary hypertension in beagle and porcine models,³¹ but not in monkeys. In our group, exchange transfusion of prototype HbV (containing DPPG, no PEG modification) in anesthetized rats engendered transient thrombocytopenia and slight hypertension.³² The transient reduction in platelet counts and increase of thromboxane B₂ caused by complement-bound liposomes was also associated with sequestration of platelets in the lung and liver.³⁰ In the present formation of HbV, we use a negatively charged lipid (DHSG) instead of DPPG. It does not induce thrombocytopenia or complement activation in animal experiments,^{33,34} probably because it contains PEGylated lipids and a different type of negatively charged lipid (DHSG), instead of DPPG or a fatty acid. The *in vitro* human blood compatibility of HbV has been extensively studied.^{33,35-37} The present PEG-modified HbV containing DHSG does not affect the extrinsic or intrinsic coagulation activities of human plasma, although HbV-containing DPPG and no PEG-modification tends to shorten the intrinsic coagulation time. The kallikrein-kinin cascade of plasma was activated slightly by the prototype DPPG-HbV, but not by the present PEG-DHSG-HbV. The exposure of human platelets to high concentrations of this HbV (up to 40%) *in vitro* does not cause platelet activation and does not affect adversely the formation and secretion of prothrombotic substances or proinflammatory substances that are triggered by platelet agonists.³⁸ These results imply that HbV, at concentrations of up to 40%, do not have aberrant interactions with either unstimulated or agonist-induced platelets. It can be concluded that the PEG-DHSG-HbV described here have higher blood compatibility.

3.2. RES Trap, Degradation, and Excretion

Biodistribution of HbV was examined using ^{99m}Tc-conjugated homocysteine or glutathione containing HbV³⁹ and HbV containing

10 *Selected Topics in Nanomedicine*

¹²⁵I-labeled Hb.⁴⁰ These experiments show that HbV are finally captured by macrophages, mainly in the spleen and liver. Electron microscopic observation can detect the presence of Hb-encapsulating particles in the phagosomes of macrophages because of the high densities of protein and electrons (derived from Fe) in the particles such as RBCs. The HbV particles disappear in one week.⁴¹ Immunohistochemical staining with antihuman Hb antibody and antimethoxy-PEG indicates that Hb and PEG of HbV disappear in two weeks.⁴¹⁻⁴³ It was shown recently that ¹²⁵I-labeled Hb and ³H-labeled cholesterol in HbV have identical blood clearance, indicating that HbV retains its integrity in the bloodstream, and distributes to the reticuloendothelial system together. However, ¹²⁵I mainly appears in urine, and ³H in feces, showing different metabolic routes in the macrophages.⁴⁴

3.3. *Transient Immunosuppressive Effect*

Accumulation of considerable amounts of liposome in a RES can affect immunologic response. Actually, phagocytic index measured by carbon particle clearance in rats showed significant reduction of phagocytic index one day after injection of HbV. While, it increased considerably three days after injection,⁴¹ indicating the increased defense function. On the other hand, HbV showed transient suppressive effect on the proliferation of rat splenic T cells. Takahashi *et al.* of Hokkaido Red Cross Blood Center⁴⁵ elucidated the mechanism underlying that phenomenon and its effect on both local and systemic immune response. HbV was injected intravenously at a volume of 20% of whole blood into rats. Then their spleens were removed, and T cell responses to concanavalin A (Con A) or keyhole limpet hemocyanin (KLH) were evaluated by measuring the amount of [³H]thymidine incorporated into DNA. Results showed that T cell proliferation in response to Con A or KLH was inhibited from 6 hr to 3 days after the liposome injection. The phagocytosis of the large load of liposomes by rat CD11b/c+, class II immature monocytes temporarily renders them highly immunosuppressive, but most importantly, the systemic immune response was unaffected.

4. Conclusion

Liposomes are clinically utilized for cancer and antifungal therapies, and other usages as a vehicle of functional molecules are developed aggressively. HbV is one liposomal product, but the differences from such conventional liposomal products are that it is a highly concentrated fluid, and it inevitably requires a massive dose (like 20 mL/kg body weight) as it will be utilized as a substitute for a RBC concentrate. Therefore, injection of HbV would affect spontaneously on hemorheology, hemodynamics, immune system, phagocytosis, gas exchange reactions between tissue and blood, etc. It is also important to have stability as a capsule during storage and during blood circulation to shield a toxic effect of molecular Hb. It also requires instability to be decomposed by macrophages and complete excretion from a body. In this chapter we discuss such important biocompatibilities of HbV. We believe the above mentioned biocompatibility of HbV guarantees the safety of HbV and a potential for versatile clinical application.

Acknowledgments

The author greatly appreciates the late Emeritus Professor Eishun Tsuchida, Waseda University, for his support for the Project of Oxygen Infusion. Research of Hb-vesicles has been conducted by an academic consortium comprising many domestic and overseas research institutes. The author acknowledges the contribution of the collaborators. This research has been supported by Health and Sciences Grants from Ministry of Health, Labour and Welfare, Japan; and a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Sciences (JSPS).

Disclosure

Hiromi Sakai is an inventor holding some patents related to the production and utilization of Hb-vesicles.

12 *Selected Topics in Nanomedicine*

References

1. Chang TMS. (1997) *Blood Substitutes: Principles, Methods, Products and Clinical Trials*. S. Karger AG, Basel.
2. Djordjevich L, Miller IF. (1977) Lipid encapsulated hemoglobin as a synthetic erythrocyte. *Fed Proc* **36**: 567.
3. Sakai H, Sou K, Tsuchida E. (2009) Hemoglobin-vesicles as an artificial oxygen carrier. *Methods Enzymol* **465**: 363–383.
4. Nolte D, Pickelmann S, Lang M, et al. (2000) Compatibility of different colloid plasma expanders with perflubron emulsion: an intravital microscopic study in the hamster. *Anesthesiology* **93**: 1261–1270.
5. Jouan-Hureaux V, Audonnet-Blaise S, Lacatusu D, et al. (2006) Effects of a new perfluorocarbon emulsion on human plasma and whole-blood viscosity in the presence of albumin, hydroxyethyl starch, or modified fluid gelatin: an *in vitro* rheologic approach. *Transfusion* **46**: 1892–1898.
6. Sakai H, Yuasa M, Onuma H, et al. (2000) Synthesis and physicochemical characterization of a series of hemoglobin-based oxygen carriers: objective comparison between cellular and acellular types. *Bioconjugate Chem* **11**: 56–64.
7. Vandegriff KD, McCarthy M, Rohlfs RJ, Winslow RM. (1997) Colloid osmotic properties of modified hemoglobins: chemically cross-linked versus polyethylene glycol surface-conjugated. *Biophys Chem* **69**: 23–30.
8. Cabrales P, Tsai AG, Intaglietta M. (2008) Isovolemic exchange transfusion with increasing concentrations of low oxygen affinity hemoglobin solution limits oxygen delivery due to vasoconstriction. *Am J Physiol Heart Circ Physiol* **295**: H2212–H2218.
9. Nosé Y. (1998) Oxygen-carrying macromolecules: therapeutic agents for the treatment of hypoxia. *Artif Organs* **22**: 618–622.
10. Sakai H, Masada Y, Horinouchi H, et al. (2004) Hemoglobin vesicles suspended in recombinant human serum albumin for resuscitation from hemorrhagic shock in anesthetized rats. *Crit Care Med* **32**: 539–545.
11. Terajima K, Tsueshita T, Sakamoto A, Ogawa R. (2006) Fluid resuscitation with hemoglobin vesicles in a rabbit model of acute hemorrhagic shock. *Shock* **25**: 184–189.
12. Sakai H, Takeoka S, Park SI, et al. (1997) Surface-modification of hemoglobin vesicles with poly(ethylene glycol) and effects on aggregation, viscosity, and blood flow during 90%-exchange transfusion in anesthetized rats. *Bioconjugate Chem* **8**: 23–30.
13. Sakai H, Tsai AG, Kerger H, et al. (1998) Subcutaneous microvascular responses to hemodilution with red cell substitutes consisting of polyethylene glycol-modified vesicles encapsulating hemoglobin. *J Biomed Mater Res* **40**: 66–78.
14. Kobayashi K. (2006) Summary of recombinant human serum albumin development. *Biologics* **34**: 55–59.

Biocompatibility of a Highly Concentrated Fluid of HbV 13

15. Meyuhas D, Nir S, Lichtenberg D. (1996) Aggregation of phospholipid vesicles by water-soluble polymers. *Biophys J* **71**: 2602–2612.
16. Neu B, Meiselman HJ. (2002) Depletion-mediated red blood cell aggregation in polymer solutions. *Biophys J* **83**: 2482–2490.
17. Sakai H, Sato A, Takeoka S, Tsuchida E. (2007) Rheological property of hemoglobin vesicles (artificial oxygen carriers) suspended in a series of plasma substitute aqueous solutions. *Langmuir* **23**: 8121–8128.
18. Sakai H, Sato A, Takeoka S, Tsuchida E. (2009) Mechanism of flocculate formation of highly concentrated phospholipid vesicles suspended in a series of water-soluble biopolymers. *Biomacromolecules* **10**: 2344–2350.
19. Sakai H, Miyagawa N, Horinouchi H, et al. (2011) Intravenous infusion of Hb-vesicles (artificial oxygen carriers) after repetitive blood exchange with a series of plasma expanders (water-soluble biopolymers) in a rat model. *Polymer Adv Technol* **22**: 1216–1222.
20. Koller ME, Reed RK. (1992) Increased negativity of interstitial fluid pressure in rat trachea in dextran anaphylaxis. *J Appl Physiol* **72**: 53–57.
21. Tsai AG, Friesenecker B, McCarthy M, et al. (1998) Plasma viscosity regulates capillary perfusion during extreme hemodilution in hamster skinfold model. *Am J Physiol Heart Circ Physiol* **275**: H2170–H2180.
22. Goda N, Suzuki K, Naito M, et al. (1998) Distribution of heme oxygenase isoforms in rat liver. Topographic basis for carbon monoxide-mediated microvascular relaxation. *J Clin Invest* **101**: 604–612.
23. Sakai H, Hara H, Yuasa M, et al. (2000) Molecular dimensions of Hb-based O₂ carriers determine constriction of resistance arteries and hypertension. *Am J Physiol Heart Circ Physiol* **279**: H908–H915.
24. Sakai H, Sato A, Masuda K, et al. (2008) Encapsulation of concentrated hemoglobin solution in phospholipid vesicles retards the reaction with NO, but not CO, by intracellular diffusion barrier. *J Biol Chem* **283**: 1508–1517.
25. Nakai K, Ohta T, Sakuma I, et al. (1996) Inhibition of endothelium-dependent relaxation by hemoglobin in rabbit aortic strips: comparison between acellular hemoglobin derivatives and cellular hemoglobins. *J Cardiovasc Pharmacol* **28**: 115–123.
26. Sakai H, Okuda N, Takeoka S, Tsuchida E. (2011) Increased viscosity of hemoglobin-based oxygen carriers retards NO-binding when perfused through narrow gas-permeable tube. *Microvasc Res* **81**: 169–176.
27. Chonn A, Cullis PR, Devine DV. (1991) The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes. *J Immunol* **146**: 4234–4241.
28. Loughrey HC, Bally MB, Reinish LW, Cullis PR. (1990) The binding of phosphatidylglycerol liposomes to rat platelets is mediated by complement. *Thromb Haemost* **64**: 172–176.
29. Szebeni J, Baranyi L, Savay S, et al. (2005) Complement activation-related cardiac anaphylaxis in pigs: role of C5a anaphylatoxin and adenosine in