

Figure 1. Reduction of metHb in HbV in the presence of RBCs and each dye. Each experiment was performed at 37 $^{\circ}$ C for 80 min under an aerobic condition. RBC suspension (12 g Hb/dL), HbV suspension of 50% metHb level, 0.3 mM dye solution, and 100 mM α-D-glucose solution were mixed in a 2:1:1:1 volume ratio. MB, DMB, AA, AB, AC, TDB, BCB, CV, and TLB assays were performed multiple times and are therefore also displayed with error bars (mean \pm standard deviation). The dashed red line denotes the 25% border used to separate the dyes into suitable/ unsuitable reduction. Each dye is displayed separately with the other dyes in the background for comparison.

AsA and GSH. Regarding the $E^{0'}$ s of IC and ITS, it is theoretically possible for NADH, NADPH, and GSH to reduce these dyes, but no significant reduction was achieved. Consequently, this type of dye seems to be unable to react in a favored way with relevant donating compounds. ^{10,11} It can be concluded that IC and ITS are unable to extract electron energies for the intended purpose. Negatively charged IC and ITS might be unable to interact with negatively charged NADH, NADPH, and AsA.

The highest reduction rates were obtained with TH and MG with all reducing agents as shown in Table 1. The metHb reduction curves of MG and TH both display initial reduction, but are then unable to maintain low levels over time. Rapid depletion of intracellular energy-rich compounds might engender reduced cellular function for energy extraction. Actually, AsA shows important antioxidant effects in cells and tissue, counteracting free radicals that damage DNA, lipid membranes, and enzymes. Experiments with AsA and GSH in several cases indicate minor reducing capabilities. Decrease in GSH has been reported in the presence of PM, in addition to overproduction of oxygen-reactive species (ROS) such as superoxide anion, ultimately leading to oxidative stress. For PM no reduction rates with the dinucleotides are presented in this work, but a higher rate was visible with AsA, which can be expected to deplete GSH because GSH metabolism is necessary

for AsA regeneration.²² This might further support the conclusion that excessive rates are not desirable, although the low incorporation of PM in the RBC probably restricts the uptake and possible reaction with intracellular molecules. NADH and NADPH are probably the key biomolecules enabling reduction of the dyes, whereas minor or nonexistent reaction with AsA and GSH is desired to avoid promoting oxidative stress in the RBC. Because MB and TLB displayed the lowest reduction rates with NADH/NADPH, but DMB deviated by having a higher reduction rate, it appears that the lower reduction rate with NADH/NADPH is not solely responsible for the slower initial metHb reduction. Seven of the suitable dyes produced higher rates with NADH/NADPH than MB did, possibly indicating a more effective acquisition of cellular energies. Of the seven, three dyes produced lower rates with AsA. These were DMB, TDB, and BCB. Less affinity to react with AsA might result in less oxidative stress in the cells.

A chemical structure-related pattern emerged in the reoxidation experiments. The indols were fastest, followed by the phenoxazines and the phenazine, whereas the phenothiazines and indamine obtained lower rates than the others. Theoretically, a low reoxidation rate with oxygen might be desirable to retain the reduced form of the dye during diffusion from the RBC to the HbV. In addition, because the reoxidation of the reduced form leucomethylene blue (MBH) will generate

Table 1. Summary of the Chemical Properties of 15 Dye Molecules to Be Selected As an Optimal Electron Mediator from RBC to metHb in HbV^a

	second-order reduction rate constant $(M^{-1} s^{-1})$				incorporation (%)			
dye	NADH	NADPH	AsA	GSH	vesicle	RBC	reoxidation rate $(M^{-1} s^{-1})$	$E^{0\prime}$ (V)
TH	30.4	35.6	6.02	0.237	92.2	48.9	11.6	+0.06014
MG	21.3	23.0	15.6	0.112	86.4	40.4	5.80	+0.17115
GC	13.6	3.35	1.47	n.r. ^b	<0.5	9.4	58.3	$+0.030^{14}$
AC	9.79	10.2	2.28	0.0893	97.4	44.5	18.0	+0.03816
CV	9.41	10.0	-0.0632	-0.245	78.1	78.1	451	-0.165^{17}
AA	5.35	5.44	0.841	0.0523	92.6	39.6	19.9	$+0.070^{18}$
TDB	4.84	6.34	0.436	0.0291	84.2	40.0	11.7	$+0.027^{14}$
DMB	4.47	6.96	0.0316	n.r.	87.2	86.1	10.7	$+0.026^{c}$
AB	3.88	4.02	0.674	0.0224	58.8	31.1	7.39	$+0.070^{18}$
BCB	3.43	4.20	n.r.	0.0894	98.7	37.4	196	+0.03517
MB	2.72	3.14	0.458	0.0155	8.0	19.4	16.5	$+0.011^{6}$
TLB	2.19	3.52	0.684	0.0634	9.1	17.1	5.84	+0.11514
ITS	n.r.	n.r.	n.r.	n.r.	0.5	<0.5	1030	-0.046^{14}
IC	n.r.	n.r.	n.r.	n.r.	<0.5	<0.5	2750	-0.125^{14}
PM	d	d	12.2	0.0404	71.3	<0.5	138	+0.08019

^aThe calculated second-order rate constants for each dye with respective reducing agent; incorporation into the vesicles or RBC fraction (dye concentration at 0.27 mM and lipid concentration at 0.73g/dL, while for RBC experiments dye concentration 0.21 mM and Hb concentration at 1.2 g/dL are displayed); reoxidation rate with O_2 ; and redox potential ($E^{0'}$). ^bn.r.: no reduction occurred or the reduction was negligibly small during the observed period. ^cMeasured with an Ag/AgCl (3.33 M KCl) reference electrode from Horiba Ltd. ^dUnable to measure because of the overlapped absorption spectra of PM and NAD(P)H.

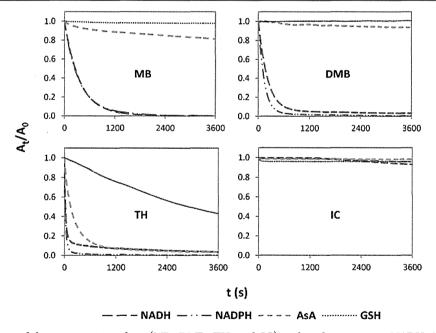


Figure 2. Reduction curves of four representing dyes (MB, DMB, TH, and IC) with reducing agents NADH, NADPH, AsA, and GSH. Deoxygenated dye (6 μ M, 3 mL) and reducing agent (50 mM, 60 μ L) solutions were mixed in a 1:167 molar ratio in a Thunberg cuvette and the reaction was monitored for 1 h.

ROS, e.g., superoxide, ²³ other leuco dyes might also produce harmful species. According to the results of the metHb reduction experiments, BCB and CV displayed promising reduction, but compared to the other dyes with favorable metHb reductions, these dyes had a visibly more rapid reformation of metHb, possibly indicating that generation of ROS tended to enhance metHb formation. Actually, IC and ITS were ruled out as suitable dyes because of their lack of incorporation in either entity, and lack of reaction with the NADH/NADPH, but they slightly enhanced metHb formation as well. Of the dyes with suitable metHb reduction, DMB, AB,

TDB, and TLB showed lower reoxidation rates than MB did, possibly pointing to less risk of unfavorable reaction in the presence of oxygen. However, the generation of ROS by the oxidation of these dyes should be the reason that the metHb level in HbV did not approach zero.

To function as an effective electron mediator, the compound of interest should have an $E^{0'}$ between the $E^{0'}$ s of the donating and accepting target molecules. In this case, the main donating molecules are NADH/NADPH ($E^{0'} = -0.32$ V) and the Hb/metHb-couple ($E^{0'} = 0.14$ V) is the accepting target. The $E^{0'}$ s considered reliable are compiled in Table 1, with the

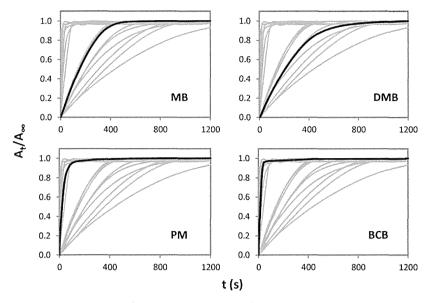


Figure 3. Reoxidation curves of four representing dyes (MB, DMB, PM, and BCB) with oxygen. 100 μ L of 0.3 mM dye solution, 5–15 μ L of 5 mM sodium hydrosulfite, and 2.49 mL deoxygenated PBS were mixed before addition of 500 μ L air-saturated PBS. The Thunberg cuvette was monitored for 20–40 min until the reaction was finished. The other dyes are represented by the gray lines in the background for comparison.

values for MG, AA, and AB being converted from values obtained versus a standard calomel electrode (SCE). 15,18 Because no reliable E^{0} was found in the literature for DMB, an Ag/AgCl (3.33 M KCl) electrode was used to obtain the value for DMB. Actually, MG appears to have a potential that is higher than that of Hb, and should not be able to reduce metHb, but some reduction of metHb was observed in our metHb reduction experiments. Contamination of another dye compound such as MB might explain the slight reduction. The dyes TDB and GC have E^{0} 's that are approximately equal to that of MB. TDB has been proposed previously to act as an efficient mediator in the treatment of methemoglobinemia.²⁴ Therefore, GC was thought to share this trait. However, the metHb reduction experiment displayed a nondesirable reduction, which might be attributable to the minor incorporation of GC into the HbV.

As for the dyes' suitability in an in vivo setting, toxicity must be considered. In concentrations up to 2 mg/kg body weight, MB is considered nontoxic for use in methemoglobinemia treatment.²⁵ TDB has been proposed to have favorable metHb reducing abilities in methemoglobinemia with lower side effects than MB.24 According to Wainwright, many phenothiazines have low mammalian toxicity, ²⁶ although the details were not thoroughly described. Phenothiazines should be examined in greater detail. Consumption of NADH/NADPH by the dyes in the cells would affect the cell function. Binding and intercalation of the dyes in DNA should also be investigated. $^{\rm 27}$ The phenoxazines BCB and CV and the indamine TLB showed suitable metHb reduction curves. However, BCB reportedly indicates toxicity in porcine oocytes in some conditions, resulting in impaired fertilization and embryonic development.²⁸ Both CV and TLB were tested alongside MB for oxygen consumption in starfish eggs, based on the putative low toxicity of these dyes in this model.¹⁷ Details of the toxic effects should be assessed to rule out potential precarious candidates.

Considering a clinical setting, the blood RBC concentration is reduced in cases of severe blood loss or very extensive exchange transfusion. It is required to clarify the minimal amount of RBC needed in the body to provide electron

energies to metHb in HbV for sufficient regenerating functions. We also have to clarify the dose response for all the potential electron mediators and compare with that of MB, as reported in the previous report, 10 to optimize and possibly minimize the dosage of the mediators. We clarified effective metHb reduction with increasing MB dose (0.42-1.27 mg/kg) in rat experiments after injection of HbV ([Hb] = 10 g/dL, 10 mL/kg). 10 This corresponded to as much as 18% of whole blood volume (56 mL/kg). MetHb level decreased immediately from 30% to 10% within only 20 min. We also confirmed fast reduction of metHb in an experiment of rat hemorrhagic shock induced by 50% blood withdrawal followed by HbV resuscitation. Injection of MB immediately reduced metHb from 40% to 10% within 45 min. This will be reported elsewhere. Because the metHb reduction is achieved rapidly, short circulation half-life of the small dyes would not be so critical, although circulation half-life should be measured eventually.

In fact, MB is used clinically as an intravenous injection solution for the treatment of patients suffering from methemoglobinemia. Because MBH generation is dependent mainly on NADPH production, the efficiency of electron transport by MB is decreased in the instance of G6PDH deficiency. However, according to studies conducted with normal cells, G6PDH-deficient cells, and MB, it was discovered that metHb reduction in the G6PDH-deficient cells were facilitated. Electron mediation between the normal and the G6PDH-deficient cells in the presence of MB appeared to be possible, ²⁹ giving further proof of MB's mediating abilities. Our results indicate the potential of the compounds we selected for possible use for methemoglobinemia with better efficacy and safety than conventional MB.

CONCLUSION

Electron mediation from RBC into HbV appears to be effective for the reduction of metHb inside the vesicles with several potential compounds. Of 15 compounds screened in this work, 6 did not appear to be suitable for the purpose. Results show that PM, GC, IC, and ITS suffer from restricted diffusion across membranes. MG and TH stimulate high rates with physiolog-

Bioconjugate Chemistry Article Article

ically relevant reducing agents compared with other examined compounds, perhaps depleting antioxidant reserves of the cells and promoting oxidative stress. Including MB, 9 dyes exhibited effective metHb reduction. Summarizing the apparently suitable dyes in consideration of all the examined properties, DMB and TDB might be interesting for further study for metHb reduction inside HbV. Incorporation to the lipid membrane to some extent is essential. These dyes tended to show slower reduction rates by NAD(P)H compared to other dyes (but not the slowest). In comparison to MB, DMB and TDB indicate higher reduction rates in the presence of NAD(P)H, and lower rates with AsA. They also show slower oxidation of the leuco form in the presence of oxygen. Further research is necessary to ascertain the best candidate for extending the functional half-life of in vivo devices such as HbV.

MATERIALS AND METHODS

Hb Vesicles, RBCs, and Dyes. HbVs were prepared as described previously. The lipid bilayer comprised 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine, cholesterol, 1,5-O-dihexadecyl-N-succinyl-L-glutamate (DHSG, Nippon Fine Chemical Co. Ltd., Osaka, Japan), and 1,2-distearoyl-sn-glycerol-3-phosphatidylethanolamine-N-PEG₅₀₀₀ (NOF Corp., Tokyo, Japan) at the molar composition of 5/4/0.9/0.03. The Hb concentration of the suspension was adjusted to 10 g/dL. The suspension was exposed to air and incubated in a water bath at 37 °C until an internal metHb concentration of 50% was achieved.

Fresh blood was collected in heparinized tubes from healthy anesthetized Wistar rats. The blood was immediately washed by centrifugation at 2000 rpm (himac CF12RX; Hitachi Koki Co. Ltd., Tokyo, Japan), removing the plasma, and then adding phosphate buffered saline (PBS, pH 7.4 1×; Gibco Life Technologies, Paisley, Scotland). After three washing repetitions, the resulting RBC concentrate was diluted to 12 g Hb/dL with PBS and refrigerated until use within 36 h.

The dyes were purchased from various manufacturers: MB, GC, and ITS from Sigma-Aldrich Corp. (St. Louis, USA); MG, AA, AC, TLB, BCB, and CV from MP Biomedicals (Illkirch, France); AB, TH, IC, and PM from Wako Pure Chemical Industries Ltd. (Osaka, Japan); TDB from Waldeck GmbH & Co. KG (Münster, Germany); and DMB from Polysciences Inc. (Warrington, USA). We used the dyes without further purification. Stock solutions of 0.3 mM dye in PBS were stored in the dark at room temperature. The dye solutions were subjected to heating and sonication in a water bath before experiments to eliminate precipitate if formed during storage. All the dyes exhibited characteristic light absorption in the oxidized form and no absorption in the reduced leuco form, which was useful for determination of the dye concentration and the level of oxidation (see Supporting Information).

MetHb Reduction in HbV in the Presence of RBCs and Dye. The metHb reduction in HbV, in the presence of RBCs and an electron mediator, was examined using 80 min assays. An RBC suspension (12 g Hb/dL), a 50% metHb HbV suspension, a 0.3 mM dye solution, and 100 mM α -D-glucose solution were mixed in a 2:1:1:1 volume ratio. Glucose was added to maintain comparable glycolytic enzymatic conditions of RBCs in all experiments. The mixed solution was incubated in water bath at 37 °C. Samples were collected in hematocritglass capillaries (Hirschmann Laborgerate GmbH & Co., Germany) at 5 min, and thereafter every 15 min. The capillary samples were centrifuged for 5 min at 12 000 rpm (micro

hematocrit centrifuge 3220; Kubota Corp., Tokyo, Japan), to separate the HbV from the RBCs. A small volume of HbV was then suspended in PBS in a Thunberg cuvette and deoxygenated for 10 min by $\rm N_2$ bubbling before spectrophotometric analysis to ascertain the level of metHb (%) from the ratio of the absorbances at 405 and 430 nm, which respectively correspond to $\lambda_{\rm max}$ of metHb and deoxyHb.

Incorporation of a Dye Molecule into Vesicles and **RBCs.** An empty vesicle suspension (without Hb) was prepared similarly using the same lipids as in HbV. The vesicle suspension at a lipid concentration of 7.3 g/dL was mixed in a 1:9 volume ratio with 0.3 mM dye solution in ultracentrifuge tubes (Hitachi Koki Co. Ltd.). After incubation for 30 min at room temperature, the tubes were ultracentrifuged at 35 000 rpm for 1 h (himac CP80WX; Hitachi Koki Co. Ltd.). Spectrophotometric analysis of the resulting supernatant in a UV-vis spectrophotometer (V-650; Jasco Corp. Tokyo, Japan; with an integrated sphere (ISN-470) for light scattering correction) was used to determine the incorporated fraction of the dyes. Subsequently, removal of all supernatant and resuspension of the remaining pellet in PBS was done before dissolving the vesicles by mixing detergent (10% polyoxyethylene 10 lauryl ether) with the pellet resuspension in a 1:1 volume ratio. After 5 min in a 60 °C water bath, the dissolved pellet solution was examined using spectrophotometric analysis to verify the dye concentration. For some dyes with high incorporation, the supernatant spectra displayed shifting absorbance from the expected maximum peaks. In the same manner, dyes incorporated to a low degree showed some shifting spectra after pellet disruption and examination. Only results that were deemed reliable after verification of a correct spectrum for respective dye were accepted, leading to alternate use of the supernatant spectrum or the disrupted pellet spectrum for incorporation fraction calculation.

Dye incorporation into RBCs was examined similarly, but with a RBC suspension (12 g Hb/dL), 0.3 mM dye solution, and 100 mM α -D-glucose solution (Sigma-Aldrich Corp., St. Louis, USA) present at a mixing volume ratio of 1:7:2 (blood:dye:glucose). The samples were incubated for 30 min in 37 °C water bath before centrifugation at 12 000 rpm for 1 min (micro hematocrit centrifuge 3220; Kubota Corp., Tokyo, Japan). The supernatant spectra were analyzed to ascertain the incorporated fraction of respective dye. No pellet examination was done with the RBCs.

Reduction Rate of the Dyes by Biological Reductants.

Direct reduction of the dyes with four reducing agents was examined over the course of an hour. NADH was purchased from Sigma-Aldrich Corp., NADPH from Oriental Yeast Co. Ltd. (Tokyo, Japan), L-(+)-AsA and GSH from Wako Pure Chemical Industries Ltd. (Osaka, Japan). Before the experiment, deoxygenation of the dye solution (6 μ M, 3 mL) in a Thunberg cuvette was performed by attaching inlet and outlet needles through the rubber stopper and supplying nitrogen gas for 5 min. This procedure reduced partial oxygen tension to less than 0.10 Torr. The reducing agent stock solution (50 mM) was deoxygenated in a rubber-capped glass vial in the same manner. A gas-tight glass syringe with a needle was used to collect the reducing agent solution (60 μ L) and inject it into the Thunberg cuvette. The molar ratio of a dye and a reducing agent was 1:167 to achieve sufficient excess. The reaction was monitored during 1 h using the spectrophotometer. Data of A_{+} / A_0 versus time were fit to an exponential curve using software

(Microsoft Excel Solver; Microsoft Corp., Redmond, WA). The apparent reduction rate was calculated.

Reoxidation Rate of the Dyes by Molecular Oxygen. Oxygen was excluded from all solutions of the dye and reductant by complete deoxygenation with N2 bubbling before the experiment. 100 μ L of 0.3 mM dye solution was diluted with deoxygenated PBS to a volume of 2.49 mL in the Thunberg cuvette. A 5 mM solution of sodium hydrosulfite (Tokyo Chemical Industry Co., Ltd.) was injected into the cuvette to reduce the dyes to a reduced leuco form. Because of the quick deterioration of the reducing agent the injected volume varied between 5 and 15 μ L. L-Cysteine (Wako Pure Chemical Industries Ltd.) was used for PM because of the absorption spectra overlap of PM and sodium hydrosulfite. 500 μ L air-saturated (0.24 mM oxygen³⁰) PBS was injected to start reoxidation and the change in absorbance was followed for 20-40 min until the reaction was complete. An exponential curve was fit using software (Microsoft Excel Solver; Microsoft Corp., Redmond, WA, USA) to the data $\Delta A_t/\Delta A_{\infty}$ versus time, enabling calculation of the apparent reoxidation rate.

ASSOCIATED CONTENT

Supporting Information

Absorption spectra of all 15 dyes were measured at different concentrations and used for the measurement of concentrations and the level of oxidation/reduction. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: hirosakai@naramed-u.ac.jp. Tel and Fax: +81-(0)744-29-8810.

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare the following competing financial interest(s). Of the authors, H.S. is an inventor holding some patents related to the production and utilization of Hb-vesicles.

ACKNOWLEDGMENTS

This research was supported by a Grant-in-Aid for Scientific Research (Kiban B, No. 25282136) from the Japan Society for the Promotion of Sciences (JSPS), and partly by Health and Labour Sciences Grants (Health Science Research Including Drug Innovation) from the Ministry of Health, Labour and Welfare, Japan. Karin Kettisen was recipient of scholarships from the Scandinavia—Japan Sasakawa Foundation, Ångpanne-föreningens Forskningsstiftelse, and Lundabygdens sparbanks stiftelse mm resestipendiefond för studerande. The authors acknowledge Ms. Tomoko Kure, Ms. Yumika Iga, Dr. Takashi Matsuhira, and Dr. Keizo Yamamoto (Nara Medical University) for their assistance in the experiments.

REFERENCES

- (1) Winslow, R. M. (2006). Blood Substitutes, Elsevier Academic Press, London.
- (2) Chang, T. M. (2012) From artificial red blood cells, oxygen carriers, and oxygen therapeutics to artificial cells, nanomedicine, and beyond. *Artif. Cells Blood Substit. Immobil. Biotechnol.* 40, 197–199.
- (3) Alayash, A. I. (2014) Blood substitutes: why haven't we been more successful? *Trends Biotechnol.* 32, 177–185.

- (4) Sakai, H., Sou, K., Horinouchi, H., Kobayashi, K., and Tsuchida, E. (2009) Review of hemoglobin-vesicles as artificial oxygen carriers. *Artif. Organs* 33, 139–145.
- (5) Tsuchida, E., Sou, K., Nakagawa, A., Sakai, H., Komatsu, T., and Kobayashi, K. (2009) Artificial oxygen carriers, hemoglobin vesicles and albumin-hemes, based on bioconjugate chemistry. *Bioconjugate Chem.* 20, 1429–1440.
- (6) Bunn, H. F., and Forget, B. G. (1986). *Hemoglobin: molecular, genetic and clinical aspects,* W. B Saunders Company, West Washington Square, PA, USA.
- (7) Yubisui, T., Matsuki, T., Takeshita, M., and Yoneyama, Y. (1979) Characterization of the purified NADPH-flavin reductase of human erythrocytes. *J. Biochem.* 85, 719–728.
- (8) Turrens, J. F., Crapo, J. D., and Freeman, B. A. (1984) Protection against oxygen toxicity by intravenous injection of liposome-entrapped catalase and superoxide dismutase. *J. Clin. Invest.* 73, 87–95.
- (9) Wright, R. O., Lewander, W. J., and Woolf, A. D. (1999) Methemoglobinemia: etiology, pharmacology, and clinical management. *Ann. Emerg. Med.* 34, 646–656.
- (10) Sakai, H., Li, B., Lim, W. L., and Iga, Y. (2014) Red blood cells donate electrons to methylene-blue mediated chemical reduction of methemoglobin compartmentalized in liposomes in blood. *Bioconjugate Chem.* 25, 1301–1310.
- (11) May, J. M., Qu, Z., and Cobb, C. E. (2004) Reduction and uptake of methylene blue by human erythrocytes. *Am. J. Physiol. Cell Physiol.* 286, C1390—C1398.
- (12) Tomoda, A., Yubisui, T., Tsuji, A., and Yoneyama, Y. (1979) Kinetic studies of methemoglobin reduction by human red cell NADH cytochrome b_5 reductase. *J. Biol. Chem.* 254, 3119–3123.
- (13) Nagai, M., Yubisui, T., and Yoneyama, Y. (1980) Enzymatic reduction of hemoglobins M Milwaukee-1 and M Saskatoon by NADH-cytochrome b₅ reductase and NADPH-flavin reductase purified from human erythrocytes. *J. Biol. Chem.* 255, 4599–4602.
- (14) Fultz, M. L., and Durst, R. A. (1982) Mediator compounds for the electrochemical study of biological redox systems: a compilation. *Anal. Chim. Acta* 140, 1–18.
- (15) Kubota, L. T., and Gorton, L. (1999) Electrochemical study of flavins, phenazines, phenoxazines and phenothiazines immobilized on zirconium phosphate. *Electroanalysis* 11, 719–728.
- (16) Ruiz-Haas, P., and Ingle, J. D., Jr. (2007) Monitoring redox conditions with flow-based and fiber optic sensors based on redox indicators: application to reductive dehalogenation in a bioaugmented soil column. *Geomicrobiol. J.* 24, 365–378.
- (17) Barron, E. S. G., and Hoffman, L. A. (1930) The catalytic effect of dyes on the oxygen consumption of living cells. *J. Gen. Physiol.* 13, 483–494.
- (18) Strehlitz, B., Gründig, B., Vorlop, K.-D., Bartholmes, P., Kotte, H., and Stottmeister, U. (1994) Artificial electron donors for nitrate and nitrite reductases usable as mediators in amperometric biosensors. *Fresenius' J. Anal. Chem.* 349, 676–678.
- (19) O'Neil, M. J. (2001) The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 14th ed., Merck & Co., Inc., Whitehouse Station, NJ, USA.
- (20) Bendich, A., Machlin, L. J., Scandurra, O., Burton, G. W., and Wayner, D. D. M. (1986) The antioxidant role of vitamin C. *Adv. Free Radic. Biol. Med.* 2, 419–444.
- (21) Maridonneau-Parini, I., Mirabelli, F., Richelmi, P., and Bellomo, G. (1986) Cytotoxicity of phenazine methosulfate in isolated rat hepatocytes is associated with superoxide anion production, thiol oxidation and alterations in intracellular calcium ion homeostasis. *Toxicol. Lett.* 31, 175–181.
- (22) May, J. M., Qu, Z. C., and Morrow, J. D. (2001) Mechanism of ascorbic acid recycling in human erythrocytes. *Biochim. Biophys. Acta* 1528, 159–166.
- (23) McCord, J. M., and Fridovich, I. (1970) The utility of superoxide dismutase in studying free radical reactions II. The mechanism of the mediation of cytochrome c reduction by a variety of electron carriers. *J. Biol. Chem.* 245, 1374–1377.

(24) Kiese, M., Lörcher, W., Weger, N., and Zierer, A. (1972) Comparative studies on the effects of toluidine blue and methylene blue on the reduction of ferrihaemoglobin in man and dog. *Eur. J. Clin. Pharmacol.* 4, 115–118.

- (25) Bradberry, S. M. (2003) Occupational methaemoglobinaemia mechanisms of production, features, diagnosis and management including the use of methylene blue. *Toxicol. Rev.* 22, 13–27.
- (26) Wainwright, M. (2000) Methylene blue derivatives suitable photoantimicrobials for blood product disinfection? *Int. J. Antimicrob. Agents* 16, 381—394.
- (27) Atamna, H., Krugliak, M., Shalmiev, G., Deharo, E., Pescarmona, G., and Ginsburg, H. (1996) Mode of antimalarial effect of methylene blue and some of its analogues on *Plasmodium falciparum* in culture and their inhibition of *P. vinckei petteri* and *P. yoelii nigeriensis in vivo. Biochem. Pharmacol.* 51, 693–700.
- (28) Wongsrikeao, P., Otoi, T., Yamasaki, H., Agung, B., Taniguchi, M., Nao, H., Shimizu, R., and Nagai, T. (2006) Effects of single and double exposure to brilliant cresyl blue on the selection of porcine oocytes for in vitro production of embryos. *Theriogenology* 66, 366–372.
- (29) Beutler, E., and Baluda, M. C. (1963) Methemoglobin reduction: studies of the interaction between cell populations and of the role of methylene blue. *Blood* 22, 323–333.
- (30) Robinson, J., and Cooper, J. M. (1970) Method of determining oxygen concentrations in biological media, suitable for calibration of the oxygen electrode. *Anal. Biochem.* 33, 390–399.

Supporting Information

Potential electron mediators to extract electron energies of RBC glycolysis for prolonged *in vivo* functional lifetime of hemoglobin-vesicles

Karin Kettisen^{1,2}, Leif Bülow², and Hiromi Sakai¹*

¹Department of Chemistry, Nara Medical University, Kashihara 634-8521, Japan

²Department of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden

*Corresponding author:

Hiromi SAKAI, Ph.D. (D.Eng.), Ph.D. (D.Med.Sci.)

Professor of Chemistry

Nara Medical University

840 Shijo-cho, Kashihara, Nara 634-8521, Japan

Tel&Fax: +81-(0)744-29-8810; e-mail: hirosakai@naramed-u.ac.jp

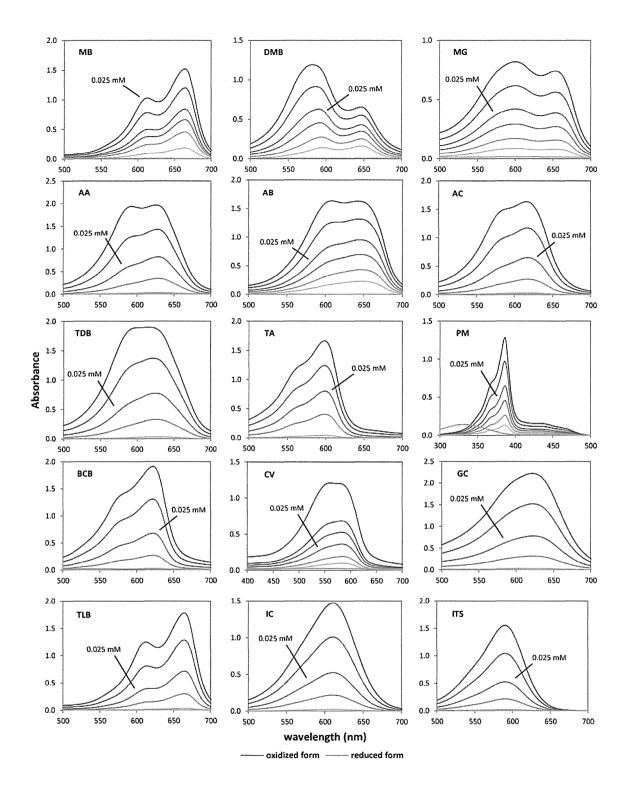
Table of Contents

Method to measure absorption spectra of all 15 dyes

Page S2

Figure S1: Absorption spectra of 15 dyes at different concentrations.

Page S3


Table S1: The list of wavelength of the maximum absorption (λ_{max}) and shoulder with molar absorption coefficient (ϵ) of 15 dyes. Page S4

Method to measure absorption spectra of all 15 dyes

Spectra were recorded in the range 300–700 nm using a UV–Vis spectrophotometer (V-650; Jasco Corp.) with an attachment of an integrated sphere (ISN-470). The optical path length was 1 cm. The following dyes were examined: the phenothiazines methylene blue (MB), di-methyl methylene blue (DMB), methylene green (MG), azure A (AA), azure B (AB), azure C (AC), toluidine blue (TDB), thionin acetate (TH); the phenazine, phenazine methosulfate (PM); the phenoxazines brilliant cresyl blue (BCB), cresyl violet (CV) and gallocyanine (GC); the indamine, toluylene blue (TLB); and the indols indigo carmine (IC) and indigotetrasulfonate (ITS). The spectra were obtained with dye solutions prepared with phosphate buffered saline (PBS, pH 7.4 1X; Gibco Life Technologies, Paisley, Scotland) at concentrations of 0.001, 0.01, 0.025, 0.05, and 0.075 mM for most dyes. Some dyes were checked at additional concentrations within this range. CV had low absorption. It was examined in the range of 0.006–0.1 mM. The spectra are displayed in **Figure S1**. The wavelengths of the maximum absorption (λ_{max}) and shoulder, and molar absorption coefficient (ϵ) of each dye are listed in **Table S1**.

To measure the spectra of the reduced forms, oxygen was excluded from all dye and reductant solutions by complete deoxygenation with N_2 bubbling. In the Thunberg cuvette, 250 μ l 0.3 mM dye solution was diluted with deoxygenated PBS to a volume of 2.94 ml. 60 μ l 50 mM sodium hydrosulfite solution (Tokyo Chemical Industry Co., Ltd.) was injected to achieve sufficient excess for reducing the dyes to leuco form to measure the spectra. The absorption spectra overlap of PM and sodium hydrosulfite interfered with the measurement and instead L-cysteine (Wako Pure Chemical Industries Ltd.) was used for producing the spectrum of the reduced form of PM.

Characteristic light absorption was observed in the oxidized form of all the dyes and no significant absorption at the established peak values in the reduced leuco form. This was useful for determination of the dye concentration and the level of oxidation. Twelve of fifteen dyes displayed shoulders in their spectra, but most dyes did not show linear relationship of absorption versus concentration at both observed wavelengths, especially at a higher concentration. This resulted in using one wavelength to determine the ϵ for the dyes at lower concentrations where a linear relationship was obtained. MB was an exception and both wavelengths were used to calculate ϵ .

Figure S1. Absorption spectra of 15 dyes at different concentrations. The 0.025 mM line is marked in each spectrum for respective dye for comparison. The concentration of the reduced forms was 0.025 mM.

Table S1. The list of wavelength of the maximum absorption (λ_{max}) and shoulder with molar absorption coefficient (ϵ) of 15 dyes.

Dye	λ_{\max} or shoulder (nm)	$\varepsilon \times 10^{-3}$ $(M^{1}cm^{-1})$
MB	664	67.8
	609	40.1
DMB	647	
	593	23.7
MG	654	
	599	16.5
AA	628	
	592	25.6
AB	646	
	604	32.8
AC	617	
	583	19.6
TDB	626	(Child Achdrid (Chan (Annatura An Aduld)), dindra mid marit y banabay ndipudang mendipungan anggapari
	590	24.6
TH	599	
	563	21.0
PM	386	25.8
	370	
BCB	622	
	578	18.3
CV	583	14.0
	555	
GC	623	30.0
TLB	664	######################################
	612	16.4
IC	610	19.9
ITS	591	20.7

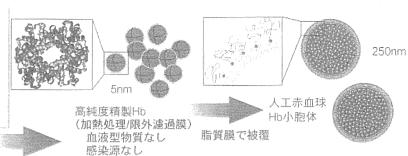
1 腎性貧血治療の進歩

6. 人工赤血球による生体組織への酸素輸送

はじめに

血液には実に多くの種類の蛋白質が存在しているが、そのうち最も濃度高く存在しているのが、血色素へモグロビン (Hb) である。その濃度は $12\sim15~\mathrm{g/dL}$ 程度である。Hb の機能は酸素分圧に応じて酸素を可逆的に結合-解離することであり、生体組織への酸素輸送が生命の維持にとっていかに重要であるかを物語っている。

Hb は赤血球内に 35 g/dL 濃度で封入され、血液の流れに沿って体内を循環し、酸素運搬をつかさどっている。平常時において中心静脈血の酸素飽和度は 75%程度であり、血液は一回の循環において酸素を全体の僅か 25%しか放出せず、いざという時(酸素消費量の多い運動時、あるいは失血時)のために余力として残しているといえる。しかし、この重要な蛋白質 Hb は最も多く存在しているにもかかわらず、赤血球からいったん遊離(溶血)すると、腎毒性(尿細管内での析出)や血管活性(NO〔一酸化窒素〕 捕捉による血管収縮、血管損傷)など、様々な副作用(毒性)を呈する。もちろん、ハプトグロビンやヘモペキシンなどが溶出した Hb、ヘムを排除しようとするが、その許容には限界がある。


1 人工赤血球の開発

虚血、貧血における有効な治療方法として赤血球輸血治療がある。わが国の献血・輸血システムは世界最高水準にあり、現行の医療に不可欠である。しかし、緊急時や大規模災害時の救命医療においては、血液型検査、感染の可能性(window period〔ウィンドウ・ピリオド〕による HIV 〔ヒト免疫不全ウイルス〕感染が話題になった)、短い保存期限(日本では僅か 3 週間)、少子高齢化 (2027年には 100 万人分の輸血用血液が不足するとの日本赤十字社の試算)などが、危機管理体制の不安要素となりうる。そこで筆者らは、輸血代替として、赤血球の細胞型構造を模倣した人工赤血球(ヘモグロビン小胞体) 製剤を開発してきた (2) (図 1)。

人工赤血球(粒子径約250 nm)は感染源を含まず、血液型がなく、長期間備蓄でき、いつでも何処でも使えるので、輸血治療を補完する技術として期待されている。さらに、脆弱な赤血球と比べ化学的に安定で、物性値の調節や機能分子の導入が可能なので、輸血では対応のできない疾患の治療や外科的治療への可能性も検討されている³⁾。

献血-輸血システムの課題

- 1)感染の可能性
- 2)血液型不一致
- 3)保存期間が僅か3週間
- 4)非常時の供給に不安
- 5) 少子高齢化の影響

NAT検査済み 期限切れ赤血球

[Hb] = 42a/dL

人工赤血球の利点

- 1)血液型なし
- 2)感染源なし
- 3)室温で2年間保存
- 4)血液適合性
- 5)高い酸素運搬機能
- 6)蓄積性なし
- 7)小粒子径

輸血の問題点を解決でき、輸血治療を補完する技術となる。 輸血では対応のできない疾患や外科的治療、Unmet Medical Needsにも酸素治療薬として応用ができる。

図1 人工赤血球 (ヘモグロビン [Hb] 小胞体) 製剤]

期限切れ赤血球から精製した、高純度・高濃度ヘモグロビンをリン脂質小胞体に封入している。血液型なし、感染源なし、長期保存可能などの特徴を持っている。

(筆者作成)

2 ヘモグロビン (Hb) の人工酵素運搬体としての研究

実は、Hb を使った人工酸素運搬体の研究は随分と長い歴史がある。Hb の毒性は早くから知られていたので、欧米のグループが、三量体への解離を抑制するために分子内架橋(crosslink)をしたり、分子量を大きくするために重合(polymerize)したり、あるいは水溶性高分子を結合させて(polymer conjugation)大きくするなど、実に数多の cell-free Hb-based oxygen carriers(HBOCs)が試されたが、それでも副作用が残ったり。血管内皮弛緩因子である一酸化窒素をHb が捕捉することにより、血管収縮により血圧が亢進し、末梢血管抵抗が増大する状況に陥るのである(ウシ由来のHb を架橋剤グルタルアルデヒドで重合した polyHb は、南アフリカとロシアのみのごく限られた地域で認可されていると聞くが、副作用が心配されている)。

また、米国 Sangart 社の PEG 修飾 Hb (Hemospan $^{\oplus}$) は臨床試験が進展し期待されていたものの、2013 年 11 月に開発を断念した。PEG 修飾によって分子サイズを大きくしたが、膠質浸透圧が生理条件をはるかに超え、Hb 濃度が僅か 4.8~g/dL と低いこと、また酸素親和度が高すぎる (P_{50} が低すぎる) ために、酸素輸送効果を明確に示すことができなかった(代用血漿剤としての効果に止まった)ことが原因と考えられる。

これらの結果から、筆者らは、やはり Hb は本来、赤血球あるいは赤血球構造に類似するカプセルの中にあるべき、という考えが正しいことを認識し「細胞型"cellular"」の人工赤血球(Hb 小胞体)を中心に研究している。

3 │ 赤血球細胞型構造の生理的意義

赤血球の細胞型構造の生理的意義を理解すれば、上述の cell-free HBOCs に副作用が生じたことは容易に理解できる。赤血球は直径約 8 μm の中窪み円盤状粒子であり、蛋白質 Hb(分子量 64,500)の高濃度溶液を赤血球膜に内包した構造を持つ。Hb 溶液が赤血球膜で覆われている理由は、① 本来様々な毒性のある Hb の逸脱、血管壁との直接的な接触の抑制、② 腎臓の糸球体からの漏出など血管外漏出を防ぎ血中滞留時間を長くする、③ 35%濃厚 Hb 溶液の高い粘度と膠質浸透圧の抑制(赤血球は膠質浸透圧を示さない)、④ Hb 機能維持のための各種リン酸化合物などエネルギー分子、解糖-ならびに還元-酵素系の保持、⑤ 血管弛緩因子 (NO, CO) との反応性の制御などの役割もある。また、⑥ 血液(血球分散系)は非 Newton 流体で、体内循環とくに末梢血管内における特色ある流動形式と生理作用が特性である。

4 | Hb 小胞体

いわゆる化学修飾 Hb の開発が北米で先行したが、NO 捕捉による副作用が問題となった。赤血球構造の生理的意義を考えれば当然の結果であり、これに対して、リン脂質小胞体(リポソーム)に高濃度 Hb を内包した Hb 小胞体 (250 nm) は、Hb の副作用を回避できる。

Hb 小胞体の特徴は、① 熱処理高純度 Hb を用い感染源なし・血液型なし、② 粒子表面の PEG 修飾と脱酸素化により 2 年間の備蓄が可能、③ 細胞型構造と最適粒子径により NO、CO との反応を抑制が、④ 血漿層に均一に分散して流動し、赤血球が通過できない狭窄血管なども通過できる。⑤ すぐれた血液適合性、RES に捕捉され分解・排泄されるが、など。その効能として、⑥ 出血性ショック、あるいは制御不能出血に対する投与では赤血球輸血と同等の蘇生効果を示すことで、⑦ 小粒径の特徴を活かすことにより、脳梗塞モデルにおいて梗塞巣を縮小すること、また皮弁モデルの虚血領域の酸素化と創傷治癒効果が得られること、⑥ 摘出臓器の灌流液としても有効であること、⑨ アロステリック因子を調節してヒト血液よりも Pso 値を小さくすると、低酸素領域に酸素を効率よく運ぶ、他方、⑩ CO 結合 Hb 小胞体の投与では、CO の徐放により細胞保護効果を示すが、などを報告している。

5 | 腎性貧血治療における人工赤血球の可能性

さて、第6章の主要テーマが「腎性貧血治療」ということなので、少しばかり腎臓を対象とした実験結果を紹介したい。筆者が大学院生だったときに慶應義塾大学医学部の小林紘一先生のグループと行っていた実験が、ラットの循環血液量の90%を人工赤血球で置換するというものであった。(図2)。全身への酸素供給の指標となる臓器が、腎臓であることから、腎皮質に polarographic 酸素電極(太さ200 μm 程度)を穿刺し、組織酸素分圧の変動を観察した。麻酔したラットの頸動脈から1 mL 脱血、頸静脈から1 mL の人工赤血球を投与し、ヘマトクリット 5 %以下まで交換した。人工赤血球は赤血球と同様に膠質浸透圧を持たないので、5 %アルブミン溶液を併用した。アルブミンのみで血液稀釈をすると、代償機能により最初は心拍出量の1.5 倍程度の増大がみられるがその後は低下し、また腎皮質酸素分圧も顕著に低下し、全例が90%交換を待たずに死亡した。対して人工赤血球/アルブミンで交換すると、腎皮質酸素分圧は高値を維持し、全例が生存した。

図 2 ラット循環血液量の 90%を人工赤血球で置換した場合の、血圧、腹部大動脈血流量、腎皮質酸素 分圧、酸素消費量の変化

アルブミンによる血液交換では循環血液量が保たれ、最初は血流量が増えて酸素供給を補うが、さらに交換率が高くなると、各パラメータは悪化し、死に至る。人工赤血球があると安定に推移し、全例が生存する。 (筆者作成)

臨床現場を考えた場合、出血がひどく止血手段がない状況(uncontrolled hemorrhage)では、輸液を絶えず注入することになり、ヘマトクリットが低下する。この状況下で、人工赤血球を投与し続けることによる延命が期待できる。他方、循環血液量の 40~50%を急速脱血してショック状態とした動物に、等量の人工赤血球を投与することにより蘇生でき、血行動態、血液ガス組成など対照群の脱血液を投与した場合と同等に推移し、全例が生存できることを確認している。このように、人工赤血球は、自然災害や有事の大量需要に対して、血液型にかかわらず、いつでも何処でも必要時に投与して延命ができる酸素輸液剤として期待できる。術前血液希釈、術中出血分の補充的投与の可能性も十分に考えられる。

おわりに

人工赤血球については上述のように、輸血代替物としてのみならず、酸素運搬体として様々な応用例が見出されている。是非とも皆様からのご支援をいただき、人工赤血球を実用化させたい。人工赤血球に興味のある方は、遠慮なくご一報頂きたい。

謝辞

本研究は厚生労働科学研究費補助金(創薬基盤推進研究事業)を受け、多くの研究者の協力を得て 推進されている。

(酒井 宏水)

文 献

- 1) 酒井宏水、土田英俊:人工赤血球の過去、現在、未来、ファルマシア 45:23-28, 2009.
- 2) 酒井宏水、堀之内宏久、東 寛 ほか:輸血代替としての人工赤血球(ヘモグロビン小胞体)製剤の安全性試験、人工血液 21:37-48,2013.
- 3) Sakai H: Present situation of the development of cellular-type hemoglobin-based oxygen carrier (hemoglobin-vesicles). Curr Drug Discov Techonl 9: 188-193, 2012.
- Natanson C, Kern SJ, Lurie P, et al: Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis. JAMA 299: 2304-2312, 2008.
- Sakai H, Sato A, Masuda K, et al: Encapsulation of concentrated hemoglobin solution in phospholipid vesicles retards the reaction with NO, but not CO, by intracellular diffusion barrier. J Biol Chem 283 (3): 1508-1517, 2008.
- 6) Taguchi K, Urata Y, Anraku M, et al: Pharmacokinetic study of enclosed hemoglobin and outer lipid component after the administration of hemoglobin vesicles as an artificial oxygen carrier. Drug Metab Dispos 37 (7): 1456-1463, 2009.
- Sakai H, Seishi Y, Obata Y, et al: Fluid resuscitation with artificial oxygen carriers in hemorrhaged rats: Profiles of Hb-vesicles degradation and hematopoiesis for 14 days. Shock 31: 192-200, 2009.
- Sakai H, Horinouchi H, Kobayashi K, et al: Hemoglobin-vesicles and red blood cells as carriers of carbon monoxide prior to oxygen for resuscitation after hemorrhagic shock in a rat model. Shock 31: 507-514, 2009.
- 9) Sakai H, Takeoka S, Park SI, et al: Surface modification of hemoglobin vesicles with poly (ethylene-glycol) and effects on aggregation, viscosity, and blood flow during 90% exchange transfusion in anesthetized rats. Bioconjug Chem 8: 23-30, 1997.

全人力·科学力·透析力·for the people 透析医学 定価(本体 15,000 円+税)

2014年 6 月20日初版発行

監 修 平方 秀樹

編 者 鶴屋 和彦

满生 浩司

升谷 耕介

谷口 正智

発行者 岩見 昌和

発行所 株式会社 医薬ジャーナル社

∞ 541-0047 大阪市中央区淡路町3丁目1番5号・淡路町ビル21

TEL 06-6202-7280

型 101-0061 東京都千代田区三崎町3丁目3番1号・TKiビル

TEL 03-3265-7681

http://www.iyaku-j.com/ 振替口座 00910-1-33353

乱丁、落丁本はお取りかえいたします。 ISBN978-4-7532-2679-5 C3047 ¥15000E

本書に掲載された著作物の翻訳・複写・転載・データベースへの取り込みおよび送信に関する著作権は、 小社が保有します。

· JCOPY <(社)出版者著作権管理機構 委託出版物>

小社の全雑誌、書籍の複写は、著作権法上の例外を除き禁じられています。小社の出版物の複写管理は、(社)出版者著作権管理機構(DCOPY))に委託しております。以前に発行された書籍には、「本書の複写に関する許諾権は外部機関に委託しておりません。」あるいは、「(株)日本著作出版権管理システム(ICIS))に委託しております。」と記載しておりますが、今後においては、それら旧出版物を含めた全てについて、そのつど事前に(社)出版者著作権管理機構(電話 03-3513-6969、FAX 03-3513-6979)の許諾を得てください。

本書を無断で複製する行為(コピー、スキャン、デジタルデータ化など)は、著作権法上での限られた例外(「私的使用のための複製」など)を除き禁じられています。大学、病院、企業などにおいて、業務上使用する目的(診療、研究活動を含む)で上記の行為を行うことは、その使用範囲が内部的であっても、私的使用には該当せず、違法です。また私的使用に該当する場合であっても、代行業者等の第三者に依頼して上記の行為を行うことは違法となります。

本書の内容については、最新・正確であることを期しておりますが、薬剤の使用等、実際の医療に当たっては、添付文書でのご確認など、十分なご注意をお願い致します。 株式会社 医薬ジャーナル社

特集:人間の体・五感に関連する造粒技術

人工赤血球(ヘモグロビン小胞体) 微粒子分散液の特徴

Characteristics of Artificial Red Cells (Hemoglobin-vesicles) Dispersion as a Transfusion Alternative

奈良県立医科大学 酒井 宏水 Hiromi SAKAI

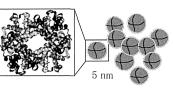
1. はじめに

血液には実に多くの種類の蛋白質が存在するが、 最も沢山ある蛋白質は、血中濃度:12~15g/dL の血色素ヘモグロビン(Hb)である。Hb は酸素 を可逆的に結合-解離する蛋白質である。という ことは、酸素供給が生命活動を維持するために最 も重要であることを意味するのかもしれない。Hb は赤血球(長径:8µm)の袋の中に極めて高濃度 に(35g/dL) 封じ込まれている。血液全体に対 する赤血球の占有体積分率をヘマトクリットと呼 ぶが、値はおおよそ40~50%であり、血液は赤血 球という微粒子の高濃度分散液であることが解る。 このため、血液は独特な溶液物性を示す。本稿で は、この赤血球の役割(酸素運搬)を代替する人 工物「人工赤血球」について概説する。血液に匹 敵する酸素運搬機能を期待するには、人工赤血球 についても高濃度微粒子分散液の構築が必要となる。

2. 人工赤血球の必要性

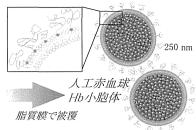
日本の献血 - 輸血システムの安全性は世界最高水準にあり、現行の医療に不可欠の治療行為である。しかし、感染の可能性や、保存期限が3週間と短く災害や有事の危機管理体制に不安を残している。受血者の血液型を確認する作業があり緊急時の対応に課題がある。少子高齢化により血液の需給バランスが崩れつつあることも事実で、2027年には101万人分の血液が不足するという試算が公表されている。人工赤血球は、これらの問題を改善する新しい製剤としてその実現が期待されている。人工赤血球の研究は、期限切れ血液に最も多く含まれるヘモグロビン(Hb)の有効利用の観点から政策的に始まった経緯がある。期限切れ赤血球は、我々が開発した精製/製造工程を経て、

感染源を含まず、血液型がなく、長期保存に耐え、 輸血治療を「補完」する人工赤血球製剤に「再 生」される。また、輸血では対応のできない疾患 や外科的処置、Unmet Medical Needsへの対応も 期待されている。


Hb を使った人工酸素運搬体の研究は実は長い 歴史がある。遊離Hbがもたらす腎毒性や神経毒性、 あるいは血中滞留時間が短いことは早くから認識 されていたので、分子内架橋(crosslink)をした り、分子量を大きくするために重合 (polymerize) したり、あるいは水溶性高分子を結合させて (polymer conjugation) 分子量を大きくするなど、 さまざまな構造の Cell-free Hb based oxygen carriers (HBOCs) が試された。調製法が比較的 簡単だからである。しかし、それでも副作用が残っ た1)。赤血球の細胞型構造の生理的意義を理解す れば、前述の Cell-free HBOCs に副作用が生じた ことは容易に理解できる。赤血球は直径約8µm の中窪み円盤状粒子であり、蛋白質 Hb (分子量 64,500) の高濃度溶液を赤血球膜に内包した構造 を持つ。Hb 溶液が赤血球膜で覆われている理由 は、①本来さまざまな毒性のある Hb の逸脱、血 管壁との直接的な接触の抑制、②腎臓の糸球体か らの漏出など血管外漏出を防ぎ血中滞留時間を長 くする、③35%濃厚 Hb 溶液の高い粘度と膠質浸 透圧の抑制 (赤血球は膠質浸透圧を示さない)、 ④ Hb 機能維持のための各種リン酸化合物などエ ネルギー分子、解糖-ならびに還元-酵素系の保 持、⑤血管内皮弛緩因子(NO、CO)との反応性 の制御などの役割もある。また、⑥血液(血球分 散系) は非 Newton 流体で、体内循環とくに末梢 血管内における特色ある流動形式と生理作用を示す。 筆者らは、やはり Hb は本来、赤血球あるいは赤 血球構造に類似するカプセルの中にあるべき、とい う考えが正しいことを認識し「細胞型 "cellular"」

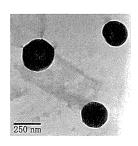
献血-輸血システムの課題

- 1) 感染の可能性
- 2) 血液型不一致
- 3) 保存期間が僅か3週間
- 4) 非常時の供給に不安
- 5) 少子高齢化の影響


期限切れ赤血球

高純度精製Hb (加熱処理/限外濾過膜) ▶ 血液型物質なし 感染源なし

(Hb) = 42 g/dL


200 = 844

人工赤血球の利点

- 1) 血液型なし
- 2) 感染源なし
- 3) 室温で2年間保存
- 4) 血液適合性
- 5) 高い酸素運搬機能
- 6) 蓄積性なし
- 7) 小粒子径

図-1 人工赤血球の調製法の概略

の人工赤血球:Hb小胞体を研究している (図-1)²⁾。 高純度·高濃度 Hb 溶液(濃度35%以上、約 3万個のHb分子)を、脂質分子二層膜(厚さ5nm) からなる小胞体(いわゆるリポソーム)に内包し た Hb 小胞体(平均粒子径250nm)は、脂質成分 と Hb が分子間相互作用(二次的相互作用:疎水 的相互作用、静電的相互作用、水素結合など)だ けで形成している分子集合体である(図-2)。原 料の Hb は日本赤十字社から提供される検査済み の献血由来の期限切れ赤血球由来であるが、精製 に際しHb に一酸化炭素(CO)を結合させて安 定化し、60℃、10時間の加熱処理とウィルス除去 膜処理の組合せで、感染に対する安全性を確保で きる。あるいは、ブタやウシなど家畜の血液から 採取した Hb も同様に利用できる。CO は光解離 によって除去する。約1,500本のポリエチレング リコール(PEG)鎖を粒子表面に配置することに より、小胞体粒子間の凝集抑制と分散安定度の向 上の効果が得られ、さらに脱酸素化して容器に封 入することにより溶液のまま室温にて長期保存が 可能になった。「ナマモノ」の血液から高純度 Hb 溶液を単離し、これを人工赤血球という安定な

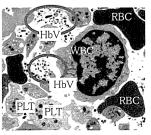


図-2 人工赤血球の電子顕微鏡写真

「物質」に再生したといえる。微粒子表面の性質は、生体適合性を決定する要素である。PEG修飾と負電荷脂質の導入により補体活性や凝固系の活性、あるいは阻害を誘導しない微粒子を構成している。

3. 人工赤血球濃厚分散液の特徴と体内酸 素輸送

人工赤血球の分散液([Hb]=10g/dL)は、粒 子占有体積が40%である。血液において赤血球の 占有体積(ヘマトクリット値)が40~55%である こととほぼ同等である。微粒子分散液の粘弾性特 性として、せん断速度の上昇に応じて粘度が僅か に上昇する非 Newton 性を呈する。しかし、粒子 径が赤血球より小さいので、血液よりは Newton 性に近い流体となる。血漿は電解質由来の晶質浸 透圧と、蛋白質(主にアルブミンとグロブリン) 由来の膠質浸透圧の両方を持っている。対して、 蛋白質 Hb を内包した人工赤血球は赤血球と同様 に、膠質浸透圧を示さない。従って、血管内に大 量に投与する場合には、水溶性高分子(アルブミ ンや、ヒドロキシエチルスターチなど) からなる 代用血漿剤溶液など、膠質浸透圧を持つ溶液を併 用すればよい。高分子量のヒドロキシエチルス ターチに微粒子を分散させると、枯渇性相互作用 (depletion interaction) により微粒子が極めて弱 い相互作用によって凝集することが知られている。 人工赤血球もそのような現象が観察されることが あるが、微弱なせん断応力によって凝集は容易に

解離することが解っている。

血液の微小血管内における流動様式を観察すると、赤血球は管の中央を流れようとする。結果として内壁近傍には、赤血球の存在しない血漿層が形成される(図-3)。下流に分岐がある場合、赤血球は流れの早い方に沢山流れ、流れの遅い方には血漿が多く流れることがある。これを血漿分離(plasma-skimming)とよぶ。人工赤血球は赤血球の大きさの1/30程度で、血漿層に均一に分散して流れる。従って、赤血球が流れ難い血管にも流入し、酸素を供給すると予想されている。実際に、毛細管内に均一に分散して流動することも確認されている³。このことは、血管性の虚血性疾患において、組織酸素化に威力を発揮すると考えられ、実際に効果が得られている。

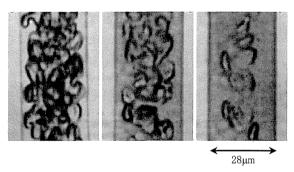


図-3 微小細管内の流動様式

人工赤血球分散液については、これまでに多く の動物投与試験を実施し、安全性と有効性につい て実証して来た(表-1)。出血性ショックにおけ る蘇生液、人工心肺など体外循環回路の補填液、 臓器灌流液、腫瘍組織の酸素化による放射線感受 性の向上、脳梗塞モデル、有茎皮弁における低酸 素領域の酸素化、などが挙げられる。また、最近 では、酸素のみならず、COを結合した状態で投 与することも試みている。勿論、CO は毒ガスで ある。しかし、生体内でごく微量産生されている。 CO には細胞保護効果があり、生体内で活性酸素 の産生を制御する機序が提案されている。その他、 さまざまな応用が研究され、全て論文として公表 されている4)。また、安全性試験についてもかな りの知見の蓄積があるので、総説などをご覧いた だきたい⁵⁾。

4. 人工赤血球の造粒技術に関する話題

リポソームは、水系媒体に分散されたリン脂質 分子が自発的に集合形成するカプセル状の構造体 である。1960年代に英国の Bangham らによって 初めて発見された。今やリポソーム製剤は既に抗 癌剤、抗真菌剤のデリバリーシステムとして実用

表-1 人工赤血球(ヘモグロビン小胞体)製剤の有効性試験(結果は全て学術誌に公表済み)3)

No.	動物試験	主な効能
1	ラット、循環血液量の90%交換輸血	血圧維持、赤血球と同等の酸素を運搬
2	ラット、循環血液量の50%出血性ショックからの蘇生	血圧維持、赤血球と同等の蘇生効果あり
3	ウサギ、循環血液量の40%出血性ショック(反復出血)からの蘇生	サイトカイン TNFα 過剰産生の抑制
4	ビーグル犬、循環血液量の50%出血性ショックからの 蘇生	中型動物での大量・急速蘇生効果を確認
5	ラット、体外循環(人工心肺)充塡液としての利用	高次脳機能を改善
6	ラット、制御不能出血モデル蘇生	生存時間の延長
7	ラット、出血性ショック蘇生(CO 結合体の投与)	再灌流時における細胞保護効果の確認
8	ハムスター、循環血液量の50%出血性ショックからの 蘇生、無麻酔	出血性ショック蘇生に有効、微小循環の回復
9	ラット、脳梗塞モデルに対する投与	梗塞巣の拡大を抑制
10	マウス、摘出小腸の体外灌流	37℃、2hr 灌流で組織構造を維持
11	ハムスター、有茎皮弁虚血部位の酸素化	側副経路を経由した酸素輸送を確認
12	マウス、皮弁モデル虚血領域酸素化	創傷治癒効果を確認
13	マウス、担がんモデルに対する投与	放射線感受性の向上、腫瘍重量の減少
14	ラット、 ¹⁵ O – 酸素結合 Hb 小胞体の脳梗塞モデルへ の投与と PET 診断	脳梗塞領域のイメージングが可能

化されている。リポソームの製造方法として専門書に記載されている方法としては⁶⁾、超音波照射法、有機溶媒を用いる逆相法、界面活性剤を用いて分散させた後、これを透析で除去する方法などがある(表-2)。人工赤血球の場合、Hbのような蛋白質を扱い、かつ、血管内投与を前提とした製剤の製造においては、工程中の蛋白質の変性や、残存物質の懸念があり、これらの方法は向いていない。また、一般的なリポソーム製剤と比較して大量投与を前提とする人工赤血球製剤の製造法としては、効率が極めて低い。

人工赤血球の粒子ひとつの性能を表すパラメータとして、単位脂質重量に対する Hb 重量の比が使われる。この値が高いほど、Hb に結合した酸素を効率よく運搬できることになる。そのためには、粒子の内水相の Hb 濃度をできるだけ高くすることが必要であり、要するに高濃度(赤血球内部と同等の35~45g/dL)の Hb 溶液中に複合脂質を分散させて、小胞体が形成される時に Hb を濃度が高い状態で内包させることが要件となる。高濃度 Hb 溶液は粘度が高く、そこに嵩高い脂質粉末を分散させるとさらに粘度が高くなる。これをいわゆる押出し法(Extrusion Method)によっ

て孔径の異なるフィルタを段階的に例えば、孔径 $3.0 \mu m$, $0.8 \mu m$, $0.6 \mu m$, $0.45 \mu m$, $0.3 \mu m$, 0.22 μm の順で透過させて粒子径を調節する方法 をこれまで採用してきた(図-4)。しかしこの場 合は、フィルタの交換が煩雑である上に、フィル タの目詰まりが起こり易い。それを回避するため に、脂質を予め水溶液中で、リポソームを形成さ せて凍結乾燥して得られた粉末を使用する方法が 知られている。しかし、水を凍結乾燥で除去する 操作は極めて長時間を要し、またコストもかかり、 産業化を考えた場合には効率が良いとはいえな かった。粘稠な濃厚 Hb 溶液に添加できる乾燥脂 質の重量も攪拌効率や押出し法の効率の面で制約 を受け、せいぜい6g/dLが上限であった(6gの 脂質を1dLの濃厚 Hb 溶液に分散させること)。 攪拌後に大量に発生する泡を消去するのに時間を 要すること、また泡が蛋白質の変性を助長するこ と、脂質粉末が完全に分散せずに塊になって残存 することも課題であった。

また、乾燥した複合脂質粉末を粘稠な濃厚 Hb 溶液に分散させる方法として、プロペラ式攪拌器 を用いる方法は、脂質塊が形成されることがあり 結果として長時間を要すること、また脂質粉末が

表-2 主なリポソーム調製法

方 法 名	操作
超音波処理法 (プローブ法、浴槽法)	脂質粉末を機能物質の溶解した水溶液に超音波で強制的に分散させて小粒子径リポソームを形成させる。
有機溶媒注入法	予め脂質を有機溶媒に溶解させ、これを少しずつ機能物質の溶解した水溶液中に注入 してリポソームを形成し、有機溶媒を最終的に排除させる。
界面活性剤除去法	界面活性剤を使って脂質分子を水中に分散させてリポソームを形成させたあと、透析 などによって界面活性剤のミセルを除去する。
凍結融解法	凍結融解を繰り返すことによって、脂質二分子膜に亀裂を生じさせ、粒子径を小さくしたり、あるいは逆に融合させて大きくしたりする。この形態変化の際に、内水相に機能物質を内包させる。
逆相蒸発法	エーテルなど揮発性有機溶媒に脂質を溶解させ、水と混濁させたまま、徐々にエーテ ルを除去し、脂質を水中に分散させてリポソームを形成する。
押出し法	何らかの方法で脂質を機能物質の溶解した水溶液中に分散させてリポソームを形成させたあと、加圧して孔径の異なるフィルタに段階的に透過させることにより、粒子径を厳密に制御する方法。
乾燥リポソーム粉末-水和法	上述の何らかの方法でリポソーム分散液を調製したあと、何らかの保護剤を添加して 凍結乾燥粉末とする。これを使用前に、機能物質の溶解した水溶液に分散させること によって、リポソーム内に機能物質を封入させる。
高圧乳化分散法	何らかの方法で機能物質の溶解した水溶液中に脂質を分散させたあと、高圧高速で対 面に噴出させて衝突させてせん断応力を発生させ、それにより粒子径を小さくする。
混 錬 法	混合したい成分を充塡した容器が自転しながら公転することにより、混合物に極めて 高いせん断応力が生じ、混合を迅速に行う。粉末状脂質濃度が極めて高い状況で機能 物質の溶解した水溶液と混合させて、リポソームを効率よく作成する。