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Figure 3. Determination of the specific recognition site of IgM against
H12-(ADP)-liposome after a single intravenous injection of H12-(ADP)-
liposome at a dose of 10 mg lipid/kg in healthy rats. Each point rep-
resents the mean + SD (n = 4). *¥*p < 0.01 versus 1 day of H12-PEG-
Glu2C18, #p < 0.01 versus 1 day of DSPE-PEG, *p < 0.05 versus 1
day of DSPE-PEG.

Furthermore, we also measured the CH50 levels in healthy
rats before and at 5 days after the injection of H12-(ADP)-
liposomes. The findings show that at 5 days after the H12-
(ADP)-liposome injection, the CH50 values decreased compared
with that before H12-(ADP)-liposome injection (Fig. 2b). In pre-
vious, Hashimoto et al.? reported that subsequent complement
activation following IgM binding is the most important step in
dictating the in vivo fate of PEGylated products. Therefore,
the production of IgM against H12-(ADP)-liposomes and com-
plement activation would relate to the induction of the ABC
phenomenon of H12-(ADP)-liposomes in the healthy rats.

Determination of the Specific Recognition Site of IgM Against
H12-(ADP)-Liposome in Healthy Rats

To evaluate the specific recognition site of IgM against
H12-(ADP)-liposomes, a modified ELISA was employed using
each lipid component (DPPC, cholesterol, DHSG, DSPE-PEG,
and H12-PEG-Glu2C18) of the H12-(ADP)-liposome. Figure 3
shows data for the quantitative determination of the specific
recognition site of IgM against H12-(ADP)-liposomes during 14
days after the H12-(ADP)-liposome at doses of 10 mg of lipid/kg.
IgM was observed to bind strongly to DSPE-PEG and H12-
PEG-Glu2C18. On the contrary, IgM against other lipid compo-
nents (DPPC, cholesterol, and DHSG) were negligible during
all times examined after the injection of H12-(ADP)-liposomes.
Previous reports have emphasized that the antigenic epitope
capable of generating anti-PEG IgM is the repeating -(O-CHaz-
CH,)- subunit in the PEG moiety.2%27 The fact is that modifi-
cation of the liposome surface with a polyglycerol-derived lipid,
in which the repeating -(O-CH3-CHy),,- subunit in the PEG is
changed to a -(O-CHy-CH(CH3OH)),,- subunit, enables both the
production of anti-polyglycerol IgM and the induction of the
ABC phenomenon to be avoided.?®?® It therefore appears that
anti-H12-(ADP)-liposome IgM would react with both DSPE-
PEG and H12-PEG-Glu2C18, even though the end of PEG is
modified with H12.
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Figure 4. (a) Plasma concentration curve of 4C and H-radiolabeled
H12-(ADP)-liposome after the first injection (closed symbol) or the
second injection (open symbol) of 3H, 14C-radiolabeled H12-(ADP)-
liposome at a dose of 10 mg lipid/kg to busulphan-induced thrombo-
cytopenic model rats. (b) The hepatic distribution of #C and 3H ra-
dioactivity at 2 h after the first injection (closed bar) or the second
injection (open bar) of 8H,* C-radiolabeled H12-(ADP)-liposome at a
dose of 10 mg lipid/kg to busulphan-induced thrombocytopenic model
rats. The data for the first injection were cited from a previous report.1?
Each point represents the mean + SD. (n = 4).

Pharmacokinetic Properties of H12-(ADP)-Liposome After
Repeated Injection in Anticancer Drug-Induced
Thrombocytopenic Rats

We next investigated whether repeated injections of H12-
(ADP)-liposomes resulted in the development of the ABC phe-
nomenon in busulphan-induced thrombocytopenic rats, as was
observed in the case of healthy rats. Figure 4a shows the time
course for the plasma concentration of *C, *H-labeled H12-
(ADP)-liposomes that were injected into thrombocytopenic rats
at a dose of 10 mg lipid/kg, which was lowest recommended
dosage to exert a sufficient hematostatic effect in thrombocy-
topenic rats.!* Contrary to healthy rats, the plasma concen-
tration curves for 14C radioactivity and *H radioactivity in the
second injection were not significantly different from those for
the first injection. The pharmacokinetic parameters, plasma
clearance, for both C radioactivity and ®H radioactivity were
also not different between the first and a significant reduction
was observed compared with the values for the first injection
(Table 2). In addition, the hepatic distributions of 1*C and *H
radioactivity (% of dose/g tissue) at 2 h after the administration
of C, *H-labeled H12-(ADP)-liposomes were similar between
the first and the second injections (Fig. 4b). Furthermore, as
shown in Figure 5a, anti-H12-(ADP)-liposome IgM was elicited
at negligible levels during the 14 days after the first injection.
Accompanying the minor changes in anti-H12-(ADP)-liposome
IgM production, the CH50 values were not changed at 5
days after the H12-(ADP)-liposome injection as compared with
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Table 2. The Pharmacokinetic Parameters of Inner ADP [(8-*C)ADP| and Outer Lipids Membranes [(1,2-3H(N))-Cholesterol] Derived from
3H, “C-Radiolabeled H12-(ADP)-Liposomes After One or Two Intravenous Injections at a Dose of 10 mg Lipids/kg to Thromboeytopenic Rats

First Injection

Second Injection

SH 140 3 140
tye (h) 1.81 £ 0.39 1.68 + 0.78 1.96 + 1.35 1.53 + 0.60
AUC (h-% of dose/mL) 10.7 £ 4.1 10.2 + 4.3 7.34 £+ 2.69 7.40 + 3.93
CL (ml/h) 10.4 + 4.2 114 + 5.4 16.0 + 8.78 17.0 +£ 104
Viss (mL) 20.7 £ 2.9 202 + 1.9 28.3 £+ 13.5 24.1 + 6.54

Each value represents the mean =+ SD (n = 4).
The data for the first injection are cited from our previously reported paper.!?

t1/2, half-life; AUC, area under the concentration—time curve; CL, clearance; Vygs, distribution velume.
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Figure 5. (a) Determination of IgM against H12-(ADP)-liposomes af-

ter a single intravenous injection of H12-(ADP)-liposomes at a dose
of 10 mg lipid/kg in busulphan-induced thrombocytopenic model rats.
(b) CH50 values in busulphan-induced thrombocytopenic model rats
before the administration of busulphan (control) and H12-(ADP)-
liposomes (0 day) or 5 days after a single intravenous injection of H12-
(ADP)-liposomes at a dose of 10 mg lipid/kg. Each bar represents the
mean + SD (n = 4).

before the administration of busulphan and H12-(ADP)-
liposomes (Fig. 5b).

The induction of the ABC phenomenon appears to be time-
dependent, and to involve two phases; an induction phase, fol-
lowing the first injection, during which the immune system
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is primed (reflected in the production of antiliposome IgM),
and an effectuation phase, following the second injection, dur-
ing which PEG-liposomes are rapidly cleared from the blood-
stream (reflected by the enhanced uptake by Kupffer cells).?°
It was previously reported that the intravenous injection of
doxorubicin-encapsulated liposomes did not induce the ABC
phenomenon, when they are administrated twice in the same
murine model.3%3! However, Laverman et al.?® reported that
the effects of a second injectection of doxorubicin-encapsulated
liposomes were altered dramatically when empty PEGylated
liposome were injected 1 week prior to the first injection. On
the basis of these fact, it is thought that a cytotoxic drug (e.g.,
doxorubicin) delivered via PEGylated liposomes inhibits the
secretion of anti-PEG IgM from MZ-B cells, and consequently
attenuates the ABC phenomenon, which means that a cyto-
toxic drug inhibits the induction phase. To induce a thrombocy-
topenic condition, rats were intraperitoneally injected with a
total busulphan at a dose of 20 mg/kg before the injection
of H12-(ADP)-liposomes. Busulphan is a bifunctional alkylat-
ing agent and is mainly cytotoxic for proliferating tissues and
depletes noncycling primitive stem cells, including spleen.??
Therefore, the busulphan pretreatment may have impaired
splenic MZ-B cells and anti-H12-(ADP)-liposome molecules
might not be produced by the first injection of H12-(ADP)-
liposomes, resulting in abrogating the induction of the ABC
phenomenon in thrombocytopenic rats induced by busulphan.
In fact, the suppression of anti-H12-(ADP)-liposome IgM-
mediated complement activation was observed (Fig. 5).

Our present study clearly shows that H12-(ADP)-liposomes
themselves did not induce the ABC phenomenon under the con-
ditions of these experiments, that is, thrombocytopenia induced
by an anticancer drug. However, predosing with topotecan, a
cell-cycle phase-specific drug-containing PEGylated liposomes
did induce the ABC phenomenon as the result of a second dose
in mice, rats, and dogs.?®3* In addition, it is well known that
not only anticancer drugs, but also other noncytotoxic drugs are
capable of inducing thrombocytopenia.?® Furthermore, Suzuki
et al.>% reported that doxorubicin-encapsulated liposomes in-
duce the ABC phenomenon in mice, rats, dogs, minipigs, and
monkeys when injected repeatedly at very lower doses. There-
fore, the possibility of the ABC phenomenon being induced by
the repeated injection of H12-(ADP)-liposomes with the pro-
duction of IgM against H12-(ADP)-liposome in patients with
thrombocytopenia who take noncytotoxic drugs (including non-
cytotoxic anticancer drug) or low doses of a cytotoxic anticancer
drug, cannot be completely excluded. It will be necessary to ac-
cumulate further evidence in these points.
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CONCLUSION

Repeated injections of H12-(ADP)-liposomes to rat models of
an adaptation disease (thrombocytopenia) at the putative dose
for a clinical situation (10 mg lipids/kg) did not appear to in-
duce the ABC phenomenon accompanied with the suppression
of anti-H12-(ADP)-liposome IgM-mediated complement activa-
tion. As the thrombocytopenic rats used in this study reflect
the clinical features of patients with thrombocytopenia induced
by anticancer drugs, a similar phenomenon would be expected
in clinical situations. Therefore, the results obtained in this
study suggest that, in a clinical situation, the repeated use of
H12-(ADP)-liposomes would not be expected to induce the ABC
phenomenon. The above findings clearly show that H12-(ADP)-
liposomes have potential for the treatment in the patients with
thrombocytopenia from the view point of pharmacokinetics.
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BLOOD COMPONENTS

Treatment with fibrinogen y-chain peptide-coated, adenosine
5’-diphosphate-encapsulated liposomes as an infusible
hemostatic agent against active liver bleeding in rabbits with
acute thrombocytopenia

Kohsuke Hagisawa," Kahoko Nishikawa,? Rempei Yanagawa,® Manabu Kinoshita, Mami Doi,’
Hidenori Suzuki,® Keiichi Iwaya,” Daizoh Saitoh,® Shuhji Seki,” Shinji Takeoka,” Makoto Handa,’
and Yasuhiro Nishida'

BACKGROUND: We evaluated the hemostatic efficacy
of H12-(adenosine 5’-diphosphate [ADP])-liposomes in
the setting of active liver bleeding in rabbits with
dilutional thrombocytopenia after massive transfusion.
STUDY DESIGN AND METHODS: Acute thrombocyto-
penia (platelet [PLT] count < 50 x 10%L) was induced in
rabbits by repeated blood withdrawal and isovolemic
transfusion of autologous washed red blood cells. Liver
hemorrhage was initiated by a penetrating liver injury.
Subsequently, the animals received tamponade treat-
ment for the liver hemorrhage for 5 minutes and were
intravenously administered H12-(ADP)-liposomes with
PLT-poor plasma (PPP), PLT-rich plasma (PRP), PPP
alone, H12-(phosphate-buffered saline [PBS])-liposome/
PPP, or H12-(ADP)-liposomes/PPP plus fibrinogen con-
centrate during the tamponade.

RESULTS: Administration of H12-(ADP)-liposomes/PPP
rescued 60% of the rabbits from the liver hemorrhage;
PRP administration rescued 50%. In contrast, rabbits
receiving PPP or H12-(PBS)-liposome/PPP achieved
only 10 or 17% survival, respectively, for the first 24
hours. H12-(ADP)-liposomes/PPP as well as PRP con-
sistently reduced bleeding volumes and shortened clot-
ting times (CTs) in comparison to PPP administration.
Specifically, bleeding volumes in the initial 5 minutes
averaged 11 mL (H12-(ADP)-liposomes/PPP) and

17 mL (PRP) versus 30 mL (PPP; p < 0.05); CTs aver-
aged 270 and 306 seconds versus 401 seconds

(p < 0.05). H12-(ADP)-liposomes were observed at the
bleeding site with thrombus formation, suggesting an
induction of thrombi. Neither macro- nor microthrombi
were detected in the lung, kidney, spleen, or liver in
rabbits treated with H12-(ADP)-liposomes. Supplemen-
tation of fibrinogen to H12-(ADP)-liposomes/PPP did
not significantly improve rabbit survival.
CONCLUSIONS: H12-(ADP)-liposomes might be a safe
and effective therapeutic tool during damage control
surgery for trauma patients with acute thrombocytope-
nia and massive bleeding.
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luid resuscitation after massive hemorrhage in
severe trauma might result in extensive hemodi-
lution and coagulopathy.! Coagulopathy, hypo-
thermia, and acidosis are identified as a lethal
triad for patients presenting with exsanguinating

ABBREVIATIONS: APTT = activated partial thromboplastin
time; AT = antithrombin; CR(s) = clotting rate(s);

CT(s) = clotting time(s); MAP = mean arterial pressure;

PPP = platelet-poor plasma; PRP = platelet-rich plasma;
PT(s) = prothrombin time(s).
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H12-(ADP)-LIPOSOMES FOR THROMBOCYTOPENIC BLEEDING

hemorrhage.” Platelet (PLT) transfusion is more effective
for management of actual coagulopathy involved in
trauma injury or surgery than the transfusion with fresh-
frozen plasma (FFP), cryoprecipitate, desmopressin, or
recombinant activated Factor VIL3® The current US mili-
tary resuscitation practice is to use a balanced approach,
using FFP, PLIs, and red blood cells (RBCs; 1:1:1) as the
primary resuscitation fluid for the most seriously injured
casualties.>® Nevertheless, FFP is usually preferred over
PLTs for the treatment of coagulopathy after massive
transfusion because, from a logistic point of view, the
availability of PLT concentrates is restricted due to their
short shelf life.” PLT concentrates expire within several
days in spite of shaking preservation at 22°C.

We have developed liposome-based artificial PLTs
bearing synthetic HHLGGAKQAGDV (H12) peptides cor-
responding to the carboxyl terminal of the fibrinogen
y-chain on the surface. The liposomes also contain the
physiologic PLT agonist adenosine 5’-diphosphate (ADP)
inside.® Preliminary observations indicate that this com-
pound can be stored for at least 6 months at 4°C without
shaking (S. Takeoka etal., unpublished observation,
2014). We previously demonstrated that H12-(ADP)-
liposomes were a synthetic PLT substitute preventing
uncontrollable traumatic hemorrhage confounded by
acute thrombocytopenia after massive RBC transfusion.’
However, the administration of H12-(ADP)-liposomes
preceded liver injury by 30 minutes in that study. Thus it
did not precisely simulate a clinical situation in which PLT
transfusion starts after active bleeding. In this study, we
examined the hemostatic effects of H12-(ADP)-liposomes
after the occurrence of acute bleeding from liver injury.

MATERIALS AND METHODS

This study was conducted according to the guidelines of
the institutional review board for the Care of Animal Sub-
jects of the National Defense Medical College. The institu-
tional review board approved this study and the ethical
approval number was Number 13042.

Rabbits and reagents

A total of 68 New Zealand white rabbits (2.0 £0.2 kg,
male; Japan SLC, Hamamatsu, Japan) were used in
this study as follows: 52 rabbits for monitoring survival,
12 for pathologic examination, and four for electron
microscopic  observation. Cholesterol and 1,2-
dipalmitoyl-sn-glycero-3-phosphatidylcholine were pur-
chased from Nippon Fine Chemical (Osaka, Japan),
1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine-N-
[monomethoxypoly(ethylenglycol)] (PEG-DSPE, 5.1 kDa)
was obtained from NOF (Tokyo, Japan), and adenosine
5'-diphosphate (ADP) was from Sigma-Aldrich (St Louis,
MO). We synthesized 1,5-dihexadecyl-N-succinyl-i-

glutamine (DHSG) and H12-PEG-Glu2C18. The fibrinogen
v-chain dodecapeptide (C-HHLGGAKQAGDYV, Cys-H12)
was conjugated to the end of the PEG-lipids, as described
elsewhere.'?

Preparation of H12-( ADP)-liposomes

H12-(ADP)-liposomes were prepared as described
elsewhere.! Briefly, 1,2-dipalmitoyl-sn-glycero-3
-phosphatidylcholine (1g,  1.36 mmol), cholesterol
(527 mg, 1.36 mmol), DHSG (189 mg, 272 umol), PEG-
DSPE (52 mg, 9 pmol), and H12-PEG-Glu2C18 (47 mg,
9 umol) were dissolved in benzene and freeze-dried. The
resulting mixed lipids were hydrated with phosphate-
buffered saline (PBS) containing 1 mmol/L ADP with fiiter
membranes (pore size, 0.45, 0.22 um; Millipore, Tokyo,
Japan) to prepare H12-(ADP)-liposomes. After liposomes
were washed with PBS followed by centrifugation (100,000
x g 30min, 4°C), the remaining ADP was removed
using gel filtration medium (Sephadex G25, GE Health-
care, Tokyo, Japan). H12 liposomes without ADP (H12-
(PBS)-liposome) were also prepared by skipping ADP
encapsulation.

Acute thrombocytopenic rabbit model

Acute thrombocytopenia was induced in rabbits, as
described elsewhere.® Briefly, rabbits were anesthetized
using intramuscular injections of ketamine (25 mg/kg)
and xylazine (10 mg/kg), followed by maintaining anes-
thesia with intravenous (IV) injections of pentobarbital
(15 mg/kg) every 30 minutes during the experiment. The
adequacy of anesthesia was monitored by the loss of the
ear pinch reflex. Anaesthetized rabbits were placed on a
warming plate to maintain the body temperature at 37°C.
Aseptic techniques were adopted for all surgical proce-
dures. Surgical catheters (polyethylene indwelling
20-gauge needle; Terumo Co., Tokyo, Japan) were inserted
into the femoral artery and vein in each rabbit (Fig. 1).
Thereafter, 12.5 mL/kg blood (Sample 1) was drawn from
the femoral artery, and the same volume of dextran 40
(308 mOsm/L, Otsuka, Tokushima, Japan) was simultane-
ously transfused via the femoral vein (Fig.2). Forty
minutes later, the next blood sample (12.5 mL/kg, Sample
2) was withdrawn and the same volume of washed RBCs
prepared using Sample 1 was transfused. This isovolemic
blood exchange was repeated eight times, and the PLT
counts were approximately fewer than 50 x 10°/L. The last
transfusion of washed RBCs was performed without
simultaneous blood withdrawal (Fig. 2). Arterial pH was
spontaneously maintained at 7.35 to 7.45 in rabbits.

Preparation of washed RBCs, PLT-rich plasma,
and PLT-poor plasma

Blood samples drawn with a 10% volume of 3.8% (wt/vol)
sodium citrate were centrifuged at 100 x g for 15 minutes,

Volume 55, February 2015 TRANSFUSION 315



HAGISAWA ET AL.

and the supernatant was used as PLT-rich plasma
(PRP; Fig. 1). The remaining sample was further centri-
fuged at 500 x g for 10 minutes and the supernatant was
used as PLT-poor plasma (PPP). Thereafter, remaining
cells were washed with saline, diluted in 12.5 mL/kg lac-
tated Ringer’s solution containing 5% human serum
albumin, and transfused into the rabbit as washed RBCs
(Fig. 1).

Blood withdrawal (12.5 mL/kg/each time)
from the femoral artery

Transfusion with washed RBC (12.5
mL/kg/each time) into the femoral vein

A

Washing RBC
with saline

Fig. 1. Scheme of blood withdrawal from rabbits: preparation of PRP, PPP, and

washed RBCs and transfusion of washed RBCs into rabbits.

J

Penetrating liver injury followed by balloon
compression in the bleeding site

After it was confirmed that the PLT count was fewer than
50 x 10%/L, rabbits underwent laparotomy to expose a
liver lobe. We cut a hole in a surgical glove and passed the
lobe through the hole to collect exsanguinating blood in
the glove and precisely evaluate bleeding volume. There-
after, the liver was penetrated using a disposable punch
biopsy apparatus (5 mm in diameter;
DermaPunch, Nipro Medical Industries
Ltd., Tokyo, Japan; Figs.3A and 3B).
Immediately after the injury was
induced, a 4-Fr wurologic -catheter
(Bardex Biocath, 0165PL 8 ch/Fr
2.7 mm, C. R. Bard, Inc., Murray Hill, NJ)
was inserted into the lesion and the
balloon was inflated to compress the
lesion for 5 minutes, simulating manual
compression as damage control
surgery"! (Figs. 3C and 3D). During
the balloon compression, Hi2-(ADP)-
liposomes, PRP PPP, H12-(PBS)-
liposomes, or fibrinogen concentrates
were administered to the rabbits. After
deflating and removing the balloon
catheter, we then measured the bleed-
ing volume from the site of the liver
injury for the initial 5-minute period
(0 to 5 min) and the following 5 minutes
(5 to 10 min). Bleeding time from the

Centrifugation
100 x g, 15 min

Centrifugation
500 x g, 10 min

Penetrating liver injury

| Blood withdrawal 12.5 mL/kg x 8 (100mL/kg)

[Sampleét- | I Sample 5 | | Sample 6I

Balloon compression

15 min

H - H . H .
i Washcd RBC i § Washed RBC £ 3 Washed RBC 3§ Washed RBCE § Washed RBC3 i Washed RBC 3§ Washed RBC2 i Washed RBC }
i from Sample 13 £ from Sample 23 § from Sample 3 : from Sample 43 1 from Sample 53 : from Sample 63 2 from Sample 73 £ from Sample 8%

initial 5 min following 5 min

Measurement of bleeding volume

ed R i;ge;l 2-.5-r-nLﬁ<g- 1

|

|

1

1

| Transfusion with washed RBC 12.5 mL/kg x 8 (100 mL/kg)
L

Administration (15 mL/kg)

H12-(ADP)-liposome/PPP + fibrinogen (n=10)

H12-(ADP)-liposome/PPP (n=10)
PRP (n=10)
PPP (n=10)
H12-(PBS)-liposome/PPP (n=6)

V Collection of blood samples for the measurements of coagulation factors and Sonoclot analyses

Fig. 2. Experimental design for acute thrombocytopenia and liver hemorrhage in rabbits, followed by balloon compression and

infusion of hemostatic agents.
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Making the penetrating liver injury

Insernt the balloon catheter into the hollowing lesion

25 min aflier injury, bleeding has siopped

Fig. 3. Hemostasis after balloon compression. (A, B) Making a penetrating liver
injury. (C, D) Balloon compression against penetrating liver injury by indwelling
urethral catheter. (E) Hemostasis was achieved after administration of H12-(ADP)-
liposomes/PPP following balloon compression. (F) Complete hemostasis was

observed with ischemic change in the lesion 24 hours later.

penetrating liver injury was monitored for 60 minutes.
Thereafter, the rabbit’s abdomen was closed to monitor
survival for 72 hours under ad libitum feeding with labo-
ratory diet and water. Postoperative analgesia was per-
formed with two intramuscular injections of bupre-
norphine (0.02 mg/kg), immediately after wound closure
and 12 hours later.

Administration of H12-( ADP)-liposomes, PRP,
PPP, and H12-(PBS)-liposomes

PRP or PPP was prepared from the blood taken at the first
and second phlebotomy. These PRP and PPP samples

Immediately after penctrating liver injury

Hemostasis by balloon compression

AL 24 howrs afier injury

showed similar coagulation activities
(fibrinogen, approximately 150 mg/dL;
antithrombin [AT] III activity, 99%; pro-
thrombin time [PT], 12 sec; activated
partial thromboplastin time [APTT],
32 sec).’? During balloon compression
against liver bleeding, HI12-(ADP)-
liposomes (20 mg/4 mL/kg)  were
administered IV into the rabbits, fol-
lowed by administration of 11 mL/kg
PPP (n=10, Fig. 2). In our previous
studies of rabbits with busulfan-
induced  thrombocytopenia, HI12-
(ADP)-liposomes administered at a dose
of 20mg/kg gave optimal bleeding
time-shortening effects, similar to those
of PRP! Therefore, this dose was
selected for all of the present experi-
ments. Similarly, 15 mL/kg PRP or PPP
was administered to the rabbits during
the balloon compression (n = 10 in each
group, Fig.2). Also, HI12-(PBS)-lipo-
somes that contain no ADP were admin-
istered IV to the rabbits, followed by
administration of 11 mL/kg PPP (n = 6).
To supplement an adequate amount
of fibrinogen, 70mg/kg fibrinogen
concentrate (Haemocompletan, CSL
Behring, Marburg, Germany) was
injected into the rabbits, after the
administration of HI12-(ADP)-lipo-
somes (20 mg/4 mL/kg) and PPP
(11 mL/kg, n = 10; Fig. 2). For negative
controls, two rabbits with thrombocyto-
penia treated with balloon compression
alone (without PLT and/or plasma
replacement) were evaluated. Also, the
rabbits with thrombocytopenia treated
with H12-(ADP)-liposome or PRP alone
(without balloon compression) were
evaluated (n = 2 in each group).

Analyses of whole blood coagulation activity

Whole blood samples were analyzed for hemostatic func-
tion three times: before and after blood exchange and 20
minutes after liver injury. The coagulation activity of
whole blood was examined using the a coagulation and
PLT function analyzer {Sonoclot, Sienco, Morrison, CO).°
Briefly, a tubular probe mounted on an ultrasonic trans-
ducer and vibrating vertically with a distance of 1 um and
a frequency of 200 Hz is immersed to a fixed depth in a
cuvette containing 400 uL of whole blood obtained from
the femoral artery without anticoagulant. As the sample
clots, the increasing impedance to the probe vibration is

Volume 55, February 2015 TRANSFUSION 317



HAGISAWA ET AL.

detected by the sensor and converted to an output signal
that reflects the viscoelastic properties of the developing
clot. The signal typically describes coagulation variables
including “clotting time (CT),” which indicates the period
up to the beginning of fibrin formation, and “clotting rate
(CR),” which indicates the slope of fibrin gel formation
that is affected by both the rate of the fibrinogen to fibrin
conversion and the amount of fibrinogen (Fig. 4A).

Measurements of mean arterial pressure,
hematologic variables, and coagulation factors

Mean arterial pressure (MAP) was measured from the can-
nulated femoral artery with a polygraph recording system
(RM-6000, Nihon Kohden, Tokyo, Japan). Blood samples
were also collected from the femoral artery. PLT count,
hemoglobin (Hb) concentration, and white blood cell
count were measured using a hematology analyzer (PEC
170, Erma, Inc., Tokyo, Japan). Plasma concentration of
fibrinogen, AT III activity, PT, and APTT were measured at
the BML Laboratory (Tokyo, Japan).

Electron microscopic examinations

For electron microscopy, four rabbits treated with H12-
(ADP)-liposomes were prepared. Liver specimens were
obtained at 1 hour after liver hemorrhage. These were
fixed with a fixative containing 4% paraformaldehyde and
0.5% glutaraldehyde in 0.1 mol/L phosphate buffer
(pH 7.4) for 3 hours at 4°C, followed by postfixing in 1%
osmium tetroxide in 0.1 mol/L phosphate buffer (pH 7.4)
for 2 hours at 4°C, dehydration, and embedding in epoxy
resin. To select the bleeding site lesion, semithin sections
were stained with toluidine blue. Ultrathin sections
stained with uranyl acetate and lead citrate were then
examined under an electron microscope (JEM 1010, JEOL,
Tokyo, Japan) at an accelerating voltage of 80 kV.!?

Histopathologic examinations

For histopathologic examinations, the rabbits treated with
H12-(ADP)-liposomes, PRP or HI12-(ADP)-liposomes/
PPP plus fibrinogen were euthanized 24 hours after liver
hemorrhage (n = 3 in each group). Three rabbits with PPP
that died after several minutes were also examined. The
liver (uninjured lobe), lung, spleen, and kidney were
removed from the subject rabbits. Excised organs
were fixed by 20% formalin for 2 days and processed to
paraffin embedding blocks to stain with hematoxylin and
eosin.

Statistical analyses

Statistical analyses were performed with a software
package (Stat View 4.02], Abacus Concepts, Berkeley, CA).

318 TRANSFUSION Volume 55, February 2015

Survival rates were compared by Wilcoxon signed rank
test. Statistical evaluations between two groups were
compared using the t test, and any other statistical
evaluations were compared using the one-way analysis
of variance, followed by Bonferroni post hoc test. Data
are presented as means * standard deviation (SD), with
p values of less than 0.05 considered to be significant.

RESULTS

Acute thrombocytopenia in rabbits

After isovolemic blood exchange and plateletpheresis, PLT
counts in rabbits were decreased to 45 x 10°+ 8 x 10%/1,
indicating acute thrombocytopenia (Table 1). Although
the subject rabbits maintained MAP as a result of
isovolemic exchanges, their Hb concentrations were
decreased to approximately 6 g/dL due to inevitable loss of
RBCs during plateletpheresis, which we attribute to
mechanical destruction of RBCs in the processes of cen-
trifugation and washing with saline. However, apparent
hemolysis was not observed in the blood samples obtained
from rabbits with thrombocytopenia (Table 1). Their
coagulation factors were also decreased to very low levels
(Table 1), because they had not yet received PPP or PRP
administration. CT and CR were also markedly worsened
by the blood exchange (Table 1).

Survival from liver hemorrhage in the rabbits with
acute thrombocytopenia

Balloon compression alone did not rescue any of the
rabbits with thrombocytopenia from hemorrhage
induced by the penetrating liver injury, as the treatment
did not stop the bleeding and death occurred within 1
hour. However, administration of H12-(ADP)-liposomes/
PPP as well as PRP after balloon compression signifi-
cantly increased the survivals from liver hemorrhage in
the rabbits with thrombocytopenia in comparison to
administration of PPP (Fig.5). Unlike H12-(ADP)-
liposomes/PPP, administration of H12-(PBS)-liposomes/
PPP after balloon compression was not effective (Fig. 5).
Supplementation with fibrinogen concentrate did not
increase the survival of the rabbits with thrombocytope-
nia treated with H12-(ADP)-liposomes/PPP (Fig. 5). We
also treated the rabbits with thrombocytopenia with
H12-(ADP)-liposome/PPP or PRP alone (without balloon
compression, n=2 in each group). However, neither
treatment with H12-(ADP)-liposomes nor treatment with
PRP rescued any rabbits from hemorrhage. Specifically,
after treatment with H12-(ADP)-liposomes, two animals
failed to stop bleeding and died within 12 hours; after
treatment with PRP bleeding stopped in one of
two animals but both died within 6 hours. These out-
comes suggested the importance of damage control
intervention.
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Bleeding time of the liver injury site

Administration of H12-(ADP)-liposomes/PPP as well as
PRP achieved significant hemostasis in nine of 10 rabbits
in both groups, while administration of PPP stopped
bleeding in only two of 10 rabbits (90% vs. 20%, p < 0.01;
Fig. 6A). Administration of HI12-(PBS)-liposomes/PPP
stopped bleeding in four of six rabbits; however, this treat-
ment only rescued one rabbit, suggesting that H12-(PBS)-
liposomes induced a weak (ineffective) hemostasis
(Fig. 6A). Interestingly, although supplementation of
fibrinogen to the HI12-(ADP)-liposomes/PPP achieved
hemostasis in all rabbits, six of 10 rabbits eventually died

TABLE 1. Changes in the hematologic variables
and coagulation factors in rabbits before and
after blood exchange*

Before blood  After blood
exchange exchange

Variable ) (n=68) (n=68)
MAP (mmHg) 7112 67 +14
Hb concentrations {g/dL) 11.3+21 6.3+2.3t
PLT counts (x10°%L) 217 £ 66 45+ 8t
Fibrinogen concentration (mg/dL.) 186 + 38 <55
AT 111 activity (%) 115+ 18 35+ 11t
PT (sec) 10+1 >30
APTT (sec) 24+8 >75
CT (sec) 114+ 16 387 + 185t
CR (sec) 17+5 21+£1.3t

* Hematologic variables and coagulation factors were measured
in rabbits before and after blood exchange. Data are reported
as mean + SD.

T p <0.01 versus before blood exchange.

e

80 LI}

H12-(ADP)-liposomes/PPP

60

(Fig. 6A). We further analyzed the bleeding time in rabbits
showing hemostasis. All treated groups showed signifi-
cantly shorter bleeding times than those receiving the PPP
group (Fig. 6A).

Bleeding volume from the liver injury site

Administration of H12-(ADP)-liposomes/PPP as well as
PRP significantly reduced the bleeding volume from the
site of the liver injury in the initial 5 minutes compared to
that of PPP (Fig. 6B). However, administration of H12-
(PBS)-liposomes/PPP resulted in a substantial amount of
bleeding in the rabbits during the initial 5 minutes com-
pared to treatment with H12-(ADP)-liposomes/PPP or
PRP alone (Fig. 6B), suggesting that H12-(PBS)-liposome
did not promptly exert a hemostatic effect. Supplementa-
tion of fibrinogen to H12-(ADP)-liposomes/PPP resulted
in a significant reduction of bleeding volume as did
administration of H12-(ADP)-liposomes/PPP alone. H12-
(ADP)-liposomes/PPP and PRP markedly reduced the
bleeding volume in the subsequent 5 minutes (5 to
10 min) in comparison to those in the initial 5 minutes,
suggesting achievement of effective hemostasis (Fig. 6B).
PPP and H12-(PBS)-liposomes/PPP groups also showed a
marked reduction of bleeding volume in the subsequent 5
minutes in comparison to those in the initial 5 minutes.
However, both groups remarkably decreased their blood
pressure 20 minutes after liver injury (Table 2), presum-
ably owing to their substantial hemorrhage in the initial 5
minutes. In turn, this severe hypotension (shock) might
have affected reducing the hemorrhagic volume in the

next 5 minutes and caused subsequent

death.

Immediately after making the pen-
etrating liver injury, rabbits showed
exsanguinating hemorrhage at the
injured site (Figs.3A and 3B). The
rabbits received balloon compression

(n=10) for 5 minutes and were administered

i Do PRP *

Survival rate (%)

20} -

- P L] LR T TP Y T sEsmsmEEnas aEEsREsesuman s

1
40 L ! H12-(ADP)-liposomes/PPP + fibrinogen

H12-(ADP)-liposomes/PPP  (in this
case) during balloon compression
(Figs. 3C and 3D). Twenty-five minutes
after penetrating liver injury, blood
coagulation or hemostasis was observed
in the rabbits, and 24 hours later, com-
plete hemostasis in the liver's site of
(0=10) injury was confirmed (Figs.3E and
3F).

Hours

Fig. 5. Survival rates of rabbits with acute thrombocytopenia after liver hemorrhage.
Balloon compression and administration of H12-(ADP)-liposomes/PPP, PRP, PPP,
H12-(PBS)-liposome/PPP, or H12-(ADP)-liposomes/PPP with fibrinogen were used
to treat liver hemorrhage in rabbits with acute thrombocytopenia. *p < 0.01 versus

PPP, p < 0.05 versus H12-(PBS)-liposome.
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Changes in hemodynamics,
hematologic variables, and
coagulation factors

Twenty minutes after liver injury,
rabbits in the PPP group and the H12-
(PBS)-liposomes/PPP group showed
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liposomes/PPP, PRP, and H12-(ADP)-
liposomes/PPP plus fibrinogen
groups, although PPP and H12-(PBS)-
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impairment in these variables (Table 2).
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Fig. 6. Liver hemorrhage in rabbits with thrombocytopenia after administration of
H12-(ADP)-liposomes/PPP, PRP, PPP, H12-(PBS)-liposome/PPP, or H12-(ADP)-
liposomes/PPP with fibrinogen. (A) Bleeding time from liver injury. *p < 0.05 versus
PPP. (B) Bleeding volumes from the penetrating liver injury. () 0 to 5 minutes; ()
5 to 10 minutes. *p < 0.05 versus PPP, p < 0.01 versus H12-(PBS)-liposomes/PPP;

**p < 0.01 versus PPP, H12-(PBS)-liposomes/PPP.

significantly lower MAP (<40 mmHg) than the other
groups (approx. 60 mmHg; Table 2). These two groups
also showed severe anemia (Hb < 4 g/dL) due to massive
hemorrhage (Table 2). As expected, only rabbits receiving
PRP showed a significantly higher PLT count, which might
have contributed to the cessation of bleeding (Table 2).
Plasma fibrinogen was below the lower limit of detection
except for the H12-(ADP)-liposomes/PPP plus fibrinogen
group (Table 2), suggesting that supplementation of
coagulation factors such as fibrinogen by PPP or PRP
administration appeared to be insufficient. However,
there were no significant differences in the AT III activities

ﬁ Analyses of whole blood
%Qe*? coagulation activity
;g,v Administration of H12-(ADP)-

liposomes/PPP as well as PRP alone
significantly shortened the CT in com-
parison to that observed in the PPP and
the H12-(PBS)-liposomes/PPP groups
(Table 2). Supplementation of fibrino-
gen to H12-(ADP)-liposomes/PPP did
not significantly affect CT in rabbits
(Table 2). Although H12-(ADP)-
liposomes/PPP and PRP groups tended
to show an increase in the CR compared
to that of the PPP or HI2-(PBS)-
liposomes/PPP groups, supplementa-
tion of fibrinogen to HI12-(ADP)-
liposomes/PPP remarkably augmented
CR (Table 2), suggesting that fibrinogen
potently affected CR in the Sonoclot
analyses. Representative data in each
group are shown in Fig. 4.

Electron microscopic examinations

Clot formation adjacent to the injured
site in the liver was observed
after administration of HI12-(ADP)-
liposomes/PPP (Fig. 7A). These clots
involved both PLTs and fibrin (Fig. 7B).
Electron microscopic assessment of the
lesion revealed liposomes (approx. 0.2
to 0.4 um in diameter) around the PLTs or fibrin deposits
(Fig. 7B, indicated by arrows), suggesting the presence of
H12-(ADP)-liposomes in the lesion.? In the uninjured
hepatic lobe, a few liposomal particles were found in
the sinusoidal space; however, they did not accumulate
PLTs or fibrin (Fig. 7C, indicated by left arrow). Kupffer
cells as well as splenic macrophages phagocy-
tosed liposomal particles (Fig. 7C, indicated by right
arrow; Fig. 7D, indicated by arrows), suggesting degrada-
tion of HI12-(ADP)-liposomes by reticuloendothelial
system; however, no thrombi were found in the
spleen.
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TABLE 2. Hematologic variables and coagulation factors or activities in rabbits 20 minutes after liver injury*

H12-(ADP)- H12-(PBS)- Fibrinogen + H12-
liposomes/PPP PRP PPP lipasomes/PPP (ADP)-liposomes/PPP
Variable (n=10) (n=10) (n=10) (n=16) (n=10)
MAP (mmHg) 59+20 59 + 11 4112t 39+ 101 62 = 11
Hb concentrations (g/dL) 55+22 48+24 3.0+£0.8% 3.8+1.3 53+15
PLT counts (x10%L) 55+ 14 70£21§ 54 +10 48 + 14 53+ 10
Fibrinogen concentration (mg/dL) <55 <55 <55 <55 93+ 22
AT 11 activity (%) 39+9 4010 26 + 8% 24 + 9t 39+8
PT (sec) 14+3 12+2 >30 >30 141
CT (sec) 270+ 57 306 £77 401 £149% 461 + 196% 251 £ 112
CR (sec) 29+1.6 2513 1.8+£1.1 1.6+03 6.2+£3.1ll

* Hematologic variables and coagulation factors were measured in rabbits 20 minutes after liver injury (followed by administration of H12-

mean + SD.
T p<0.01.
1 p <0.05 versus H12-(ADP)-liposomes/PPP or PRP.

(ADP)-liposomes/PPP, PRP, PPP, H12-(PBS)-liposomes/PPP, or H12-(ADP)-liposomes/PPP plus fibrinogen). Data are reported as

§ p <0.05 versus H12-(ADP)-liposomes/PPP, PPP, H12-(PBS)-liposomes/PPP, or H12-(ADP)-liposomes/PPP plus fibrinogen.
il p <0.05 versus H12-(ADP)-liposomes/PPP, PRP, PPP, or H12-(PBS)-liposomes/PPP.

Histologic examinations

Neither macro- nor microthrombi were found in the lung,
liver (uninjured lobe), kidney, or spleen in the rabbits 24
hours after administration of H12-(ADP)-liposomes or PRP
or PPP (Fig. 8). We also carefully examined the tissue
specimens from the HI12-(ADP)-liposomes/PPP plus
fibrinogen group; however, no thrombi were detected in
their organs (Fig. 8). Moderate septum thickness in the
lung was observed in the PPP group but not other groups
(Fig. 8).

DISCUSSION

It is difficult to control exsanguinating hemorrhage from
an injured organ in patients with acute thrombocytope-
nia. Treatment for coagulopathy as well as surgical inter-
ventions including damage control surgery is important
for their intensive care. Even with damage control inter-
vention, such patients can die due to complications from
severe coagulopathy. In the present rabbit model, loss of
blood volume reached approximately 45% to 50% of
systemic circulation in the PPP group and 35%
to 40% of that in the H12-(ADP)-liposomes/PPP or PRP
groups (Fig. 6B). Those levels were sufficient to achieve
shock criteria Classes IV and III, respectively.’® Balloon
compression alone failed to rescue rabbits with thrombo-
cytopenia from severe hemorrhage, although it likely
offered critical damage control. The rabbits’ residual PLT
counts might have been too low to achieve effective
hemostasis because when we deflated the balloon after a
5-minute compression, exsanguinating hemorrhage was
observed again in the rabbits with thrombocytopenia (in
the absence of agent administration). Therefore, effective
treatment against pernicious coagulopathy is required.
PIT transfusion is believed to be quite effective
against severe coagulopathy. In line with this, PRP admin-
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istration after balloon compression rescued half of the
rabbits with thrombocytopenia from lethal hemorrhage
(Fig. 5). However, PLT concentrates are often not readily
available (at least in hospitals, if not prehospital), because
of their short shelf life.!*!> Currently, the US military uses
apheresis PLTs prepared on site in its Role 3 hospitals
(combat support hospital) in Afghanistan and these are
the only Role 3 hospitals currently deployed in active
combat.®

We previously reported that pretreatment with H12-
(ADP)-liposomes effectively prevented noncompressible
liver hemorrhage and rescued all rabbits with acute
thrombocytopenia. However, in clinical settings, hemo-
static treatments are usually performed in response to
ongoing exsanguinating hemorrhage in patients. Damage
control surgery is also often performed and accompanied
by hemostatic treatment. Therefore, we attempted to
simulate those conditions in the present model. Infusion
of H12-(ADP)-liposomes or PRP showed effective hemo-
static potential even after hemorrhage was initiated and it
rescued more than half of the rabbits with thrombocyto-
penia (Fig. 5). However, neither H12-(ADP)-liposomes nor
PRP alone without balloon compression rescued any of
the rabbits with thrombocytopenia from hemorrhage.
Those results suggest that treatments for coagulopathy
using PLTs or a PLT substitute as well as damage control
intervention are indispensable for the rescue of patients
experiencing severe bleeding.

In our previous study, pretreatment with H12-(PBS)-
liposomes significantly improved the survival of rabbits
with thrombocytopenia from hemorrhage, whereas H12-
(PBS)-liposomes were not effective in the present model.
In the present study, hemorrhagic injury preceded admin-
istration of H12-(PBS)-liposome, whereas in the previous
study, hemorrhagic injury followed administration of
H12-(PBS)-liposome. Blood loss due to hemorrhage in the
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Fig. 7. Microscopic (A) and electron microscopic (B) observations of the penetrating

liver injury site in rabbits. Electron microscopic observation of the uninjured
hepatic lobe (C) and spleen (D) in rabbits. Specimens were obtained 1 hour after
injury from rabbits with thrombocytopenia administered H-12(ADP)-liposomes/

PPP. Liposomes are indicated with arrows.

current model was more severe than that of our previous
study (bleeding volume from the liver injury site was sev-
eralfold larger). These differences between the present
and previous studies might have affected the efficacy of
H12-(PBS)-liposome. Because ADP plays a key role in both
initiating and sustaining integrin alIbf3 activation neces-
sary for the development of stable PLT-PLT adhesion con-
tacts,'” we designed the H12-coated liposomes to contain
ADP and release it at the bleeding site.!® The ADP might be
required to induce PLT activation at the bleeding site fol-
lowed by prompt aggregation of PLTs, resulting in effective
hemostasis even in the severe hemorrhagic condition
encountered in the present model.

Nevertheless, administration of HI12-(ADP)-
liposomes was unable to rescue 40% of the rabbits from

hemorrhage in this study. In contrast,
H12-(ADP)-liposomes achieved 100%
survival of rabbits with thrombocytope-
nia in our previous study.® PRP treat-
ment rescued only one-half of the
rabbits in this study, whereas PRP pre-
treatment rescued all subject rabbits in
the previous study. Considering this dif-
ference in the survival of PLT-transfused
rabbits, one can ask why H12-(ADP)-
liposome/PPP supported lower survival
in the present report than the previous
study (60% vs. 100% survival). The
reasons are, in fact, not entirely clear,
but the marked severity of hemorrhage
in the present model might have con-
tributed to the poor survival rates.

To further improve the survival
of H12-(ADP)-liposome-treated rabbits,
we combined fibrinogen concen-
trates with H12-(ADP)-liposomes/PPP
because there is a consensus that the
level of fibrinogen required for effective
clot formation to overcome hemorrhag-
ing is at least 100 mg/dL blood.?*
However, even though fibrinogen levels
were corrected to approximately
100 mg/dL and the CRs markedly
improved from 2.1 to 6.2, enhanced sur-
vival was not observed. At present, the
reason for the failure of fibrinogen
supplementation to improve survival
from coagulopathy is not known. Theo-
retically, fibrinogen might contribute to
the coagulation step, not to the primary
PLT aggregation step. Therefore, further
experiments are needed to explore the
role of fibrinogen and other coagula-
tion factors in this particular animal
model.

Finally, in the present model, we examined the
effect of adding fibrinogen concentrate to PPP for
administration to the rabbits with thrombocytopenia.
However, none of the rabbits survived the experimental
conditions (data not shown). Interestingly, blood that
accumulated in the peritoneal cavity from the injured
liver showed a clot formation. This was not observed in
the rabbits receiving PPP alone. In addition, clot forma-
tion was not observed at the site of bleeding in the liver
in rabbits treated with fibrinogen concentrates added to
PPP. Those results suggest that it is important to form the
PLT clot in the bleeding site to achieve effective hemo-
stasis. Notably, H12-(ADP)-liposomes effectively formed
PLT thrombi in the bleeding site, resulting in effective
hemostasis.

Volume 55, February 2015 TRANSFUSION 323



HAGISAWA ET AL.

Lung Liver ~ Kidney Spleen

HI12-(ADP)-
liposome /PPP

PRP

PPP

H12-(ADP)-
liposome /PPP
Fibrinogen

Fig. 8. Histologic findings 24 hours after liver hemorrhage in rabbits with thrombocytopenia. Lung, liver, spleen, and kidney
samples were obtained from the rabbits 24 hours after liver injury.

Limitations (ADP)-liposomes might be a safe and effective therapeutic
Despite achieving hemostasis, several rabbits eventually tool during damage control surgery for trauma patients
died even in the H12-(ADP)-liposomes/PPP and the PRP with acute thrombocytopenia with massive bleeding.
group (Fig. 6A). We noted that the deceased rabbits

showed severe anemia. In this study, to exclude the effects CONFLICT OF INTEREST

of allogeneic RBC transfusion, we utilized autologous
blood. However, in clinical settings of acute hemorrhage,
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