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Toll-like receptor (TLR) agonists (e.g., LPS, CpG, polyL:() (Ichinohe et al. 2011).
These findings indicate that signals from distal mucosal regions can support
immune priming in the mucosal effector in the respiratory tract. Additional studies
are needed to determine whether distal regions contribute to immunity in the
respiratory tract.

§ Innate Sensing and Mucosal Adjuvants

Influenza viruses activate pattern recognition receptors belonging (o several dif-
ferent families, namely the TLR family, the RIG-1 like receptor (RLR) family, the
Nod-like receptor (NLR) family (Pang and Iwasaki 2011}, and the C-type lectin
family (Londrigan et al. 2011). To improve vaccine efficacy, members of the
pattern recognition receptor family, which are not activated by influenza virus
infection, can be employed. For example, flagellin, which activates TLRS, pro-
motes IgA production and heterosubtypic protection when incorporated into the
membrane of influenza virus-like particles (Wang et al. 2010). Similarly, Polyl:
PolyC U, activating TLR3, has been shown to induce heterosubtypic protection
through IgA antibodies after administration of an intranasal vaccine (Ichinohe
et al. 2007). Moreover, the TLR3 ligand acts synergistically with the TLR-2 ligand
zymosan (Ainai et al. 2010).

Recently, several models have demonsirated the importance of TLR signaling in
CSR. Early studies have shown only two signals to induce CSR in naive B-cells,
namely, the presentation of antigenic peptides on MHC class II molecules after
antigen binding to the B-cell receptor, and the activation of these B-cells via
cytokines and the interaction of CD40-CD40L with antigen-specific T-cells. Pres-
ently, TLR signaling is thought to involve an important third signal (Bekeredjian-
Ding and Jego 2009). A recent study has shown that MyDS88 can induce a protective
immune response during primary, but not secondary, influenza virus infection. The
IgA level in MyDE88-/-TRIF-/~ mice is reduced in the saliva during secondary
infection: however, in seram and nasal wash, the level, which was induced in 2
TLR-independent manner, is similar to those in wild type mice (Seo et al. 2010}
Furthermore, TLRs play a role in both T-cell-dependent and -independent IgA
responses in mucosal and systemic antibody levels (Bessa et al. 2009),

Some APCs such as plasmacyioid DCs (pDC), Tip-DCs (TNF and Inducible
nifric oxygen species (iINOS) Producing DC) and LAPCs have been reported to
with the IgA response. In addition, pDCs trigger the anti-influenza response by
inducing type 1 interferon, Thl, and cytoloxic responses and enhancing B-cell
expansion and differentiation into CD27 high plasmablasts upon TLR7 stimulation
{Douagi et al. 2009). pDCs are also necessary for optimal mucosal TgA and serum
1gCG production after primary, but not secondary, booster influenza vaccination,
live attenuated virus vaccinabion, and inactivated whole viras or split virus vac-
cination. By contrast, pDCs are not needed fo induce an immune response o a live
virus (Koyama et al. 2010)
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Upon infection of highly pathogenic influenza virus strains, Tip-DCs produce
farge concentrations of both tumor necrosis factor (TNF) and nitric oxide (N
which results in tissue damage (Aldridge et al. 2009). However, controlled con-
centrations of NO induce TGF-fRII expression by B-cells, thereby enabling T-cell
dependent IgA class switching. MyDS88 signaling downstream of TLR2, 4, and/or
9, which is critical for the induction of INOS, facilitates T-cell-independent IgA
secretion in BAFE- and APRIL-dependent manners (Tezuka et al. 2007).

Late-activator APC (LAPC), a newly identified APC, may play an important
role in the immune response several days after influenza virus infection. While the
influenza virus activates DCs at approximately 3 days after infection and induces
Thi-type responses, the LAPC is activated at approximately 8 days after infection.
This results in the induction of a Th2-type response, production of IgA, IgG, and
1g(G, antibodies, and downregulation of the anti-viral Thl-type response (Yoo
et al, 20100

6 Mucosal Vaccine Design

Currently used seasounal influenza vaccines are produced based on the prediction of
straing that might cause an epidemic in the following season. These vaccines are
generally injected intramuscularly or subcutaneously, and are expected to reduce
the severity of the disease caused by specific strains that are homologous to the
vaceine strain. These vaccines neither mnduce cross-protection against the heter-
ologous strain nor prevent infection because they largely induce neutralizing IgG
antibodies in the serum. On the other hand, influenza vaccines currently under
design aim to induce broader cross-protection and are referred 1o as ‘universal
influenza vaccines’. The more diverse and broader cross-protective immune
response induced by natural infection than by current parenteral vaccinations
suggests the induction of several possible immunological effectors that add to
cross-protection. Furthermore, individuals of different genders, ages, and genetic
backgrounds respond differently to vaccines, thus, they may rely on different
immune mediators for their protection (Nayak et al. 2010; McKinstry et al. 2011).
While infection with the natural influenza virus is superior to vaccination in
inducing cross-protection against infection by mutated viruses within a particular
subtype of the A-type virus in humans (Hoskins et al. 1976, 1979; Couch and
Kasel 1983), an inactivated whole virus particle vaccine has been shown to be
more immunogenic than split vaccines. This is in agreement with the general view
that the effectiveness and safety of vaccines are usually inversely correlated.
Both inactivated whole virion vaccines and split seasonal vaccines can induce
protective immune responses against the homologous virus (Greenbaum et al.
2004). While heterosubtypic immunity is not observed after administration of an
ether-split vgs;:{:iﬁeg an inactivated whole f%i‘iﬁ}ﬁ vaccine can induce broad hetero-
subtypic immunity (Takada et al. 2003). The stronger immunogenicity of the
mmactivated w 33 ole virion vaccine in mice is likely due to the stimulation of innate
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immunity by genomic single-siranded RNA via TLR7 (Diebold et al. 2004; Lund
et al. 2004). Since most viruses produce dsRNA during replication (Jacobs and
Langland 1996), synthetic dsRNA can likely act as a partial molecular mimic of
viral infection.

This has been confirmed in a previous study where intranasal “éi}&iﬁé@if&%éfsf} of
an ether-split vaccine from PR8 (a HINI influenza virus strain) and poly(1:C), a
TLR3 agonist adjuvant, induced a strong anti-HA IgA and I1gG response in nasal
washes and serum, respectively, while vaccimation without poly(L:C) induced a
weak response. In addition, administration of either an A/Beijing (HINI) or
A/Yamagata (HINI) vaccine, which are antigenically different from A/PRE, in the
presence of poly(1:C) confered complete protection against A/PRS virus challenge
in a mouse model of nasal infection, indicating that infranasal vaccination with
poly(1:C) adjuvant confers cross-protection against variant viruses (Ichinohe et al.
2005). Safety issue of the adjuvant is very important. One of dsRNA
poly(l:C Uy Ampligen) which are clinically safe were recently shown to be a
potent inducer of innate immune responses (Caskey et al. 2011). This dsRNA,
poly(L:CI12U) Ampligen), was investigated as a dsRNA adjuvant for intranasal
avian influenza vaccines (ichinche et al. 2009).

The stronger immunogenicity produced by the live virus than by the whole
inactivated %fimsi may be caused by a mechanism that does not involve stimulation
of TLR7 or 3. For example, other receptors, or a different biodistribution or kinstic
profile may E"m involved. For inactivated vaccine the former might be mimicked by
using a ligand for TLRs as an adjuvant, the latier two might possibly be mimicked
by the use of different carriers for the antigens that will influence kinetics as well
as biodistribution (Bachmann and Jennings 2010).

While investigators continue to understand infections caused by the influenza

virus, the ultimate goal is to produce a vaccine that can overcome natural infec-
tions. This might be achieved by carefully selecting highly conservative domains
within influenza membrane proteins and using them as vaccines in combination
with several adjuvants which could activate a broad spectrum of tissues and cells.

A recent clinical study reported that intranasal administration of a whole inac-
tivated influenza virus without adjuvant but with a prime-booster induced high
levels of nasal neutralizing antibodies that consisted primarily of polymeric IgA
(Ainai et al. 2013). It is not clear whether the absence of adjuvant was not important
for eliciting the antibody response in these subjects who would have had a cross-
protective memory resulting from a history of infections and/or vaccinations.

In conclusion, the induction of IgA antibodies after vaccination can enhance the
immune response by introducing a local immune response, which adds to cross-
protection, balances pro-inflammatory responses, and increases the diversity of
immunological memory. The fact that IgA antibodies alone cannot induce com-
plete protection after he m{;w%wﬁa infection may be an advantage because partial
g}za}?emg}n by TgA antibodies can reduce the viral load and provide tme for
immune system priming. In Sm way, innate, humoral, and cellular responses are
activated, resulting in the sirongest renewal of immunological memory. This
ensures the best possible preparedness for the next influenza virus encountered.
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