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Induction of ventricular arrhythmias in mice with chronic pressure overload. (A) Representative traces showing polymorphic ventricular tachy-
cardia (VT) induced by programmed ventricular stimulation in a mouse subjected to transverse aortic constriction (TAC). RV, right ventricle; RA,
right atrium. Ten pacing stimuli (S1; a coupling interval is 80-90 ms) followed by 2-3 extra stimulations (52-4) were used to induce VT. (B) Effects
of chronic pressure overload on left ventricular ion channel gene transcription 4 weeks after TAC or sham operation. Graphs show relative
expression levels of SCN5A, CACNATc, KCND2, Kchip2, KCNJ2, KCNH2 and KCNJ11 mRNA normalized to corresponding GAPDH mRNA levels.
The mean relative level of each mRNA in sham-operated WT mice was assigned a value of 1.0. Values are means + SEM (n = 8 each). *P < 0.01

versus sham-operated mice in each genotype.

activates kinases that modulate Cx43 phosphorylation
(Sadoshima and' Izumo, 1996; Zou etal., 1998; Lampe
and Lau, 2004; Sovari etal., 2011). Particularly, it has
been recently reported that angiotensin II induces c-sic
TK-mediated remodelling of Cx43, which leads to the
increase in sudden arrhythmic death (Sovari et al., 2011). We
therefore examined the tyrosine phosphorylation status and
protein amount of Cx43 in TAC- and sham-operated
AT1aR-KO and WT mice. We observed prominent tyrosine

1390 British Journal of Pharmacology (2013) 170 1384-1395

phosphorylation of Cx43 and a substantial reduction in
tissue Cx43 protein levels in WT mice subjected to TAC
(Figure SA and B). Both the TAC-induced increase in tyrosine
phosphorylation of Cx43 (Figure SA and B) and the reduction
in the levels of Cx43 protein were diminished in AT1aR-KO
mice (Figure SA and C). ATlaR-mediated signalling thus
appears to play a key role in a pressure overload-induced
increase in the tyrosine phosphorylation of Cx43 that leads
to diminished tissue levels of Cx43 protein (Toyofuku et al.,
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Figure 5

Phosphorylation status and tissue level of Cx43 protein in the left ventricles of angiotensin Il type 1a receptor knockout (AT1aR-KO) and wild-type
(WT) mice 4 weeks after transverse aortic constriction (TAC) or sham operation. (A) Protein obtained from left ventricles was immunoprecipitated
(IP) with anti-Cx43 antibody. The panels show the immunocomplexes separated by electrophoresis and blotted with the indicated antibodies
(Blot). Crude lysates were analysed by Western blotting to control for variation in protein expression (Input). (B) The ratios of phospho-Cx43 to
total Cx43 in immunoprecipitation assays evaluated by quantitative densitometry. The mean value of the phospho-Cx43/total Cx43 ratios in
sham-operated WT mice was assigned a value of 1.0. Values are means = SEM (n =3 each). *P < 0.05. (C) The results of quantitative densitometric
analysis of left ventricular Cx43. The mean relative levels (corrected by B-actin level) of total Cx43 in sham-operated WT mice was assigned a value

of 1.0. Values are means + SEM (n = 3 each). *P < 0.05.

2001). It may be that the preservation of Cx43 underlies the
reduced arrthythmogenicity of chronic pressure overload in
AT1aR-KO mice.

Acute blockade of ATIR signalling decreased
induced ventricular tachyarrhythmias in mice
with chronic pressure overload

Finally, we tested whether acute pharmacological blockade of
AT1R signalling would decrease tachyarrhythmias induced in
mice with chronic pressure overload. We compared the
effects of vehicle to those of 0.3 mg-kg™ EXP-3174, an active
metabolite of the ATIR blocker losartan, which reduced sys-
tolic BP as much as 10.2 mmHg in WT mice (Figure 6A).
Intravenous administration of EXP-3174 or vehicle to mice

after 4 weeks of TAC did not significantly affect heart rates
60 min after administration under anaesthesia (Figure 6B).
In addition, cardiac hypertrophy evaluated based on heart
weight-to-body weight ratios was similar in the two groups
(Figure 6C and Table 2). Meanwhile, the induction rate of VT
in the mice acutely administered EXP-3174 was significantly
lower than in the mice administered vehicle (Figure 6D and
Table 2). The CX43 protein level was decreased in mice sub-
jected to TAC with vehicle treatment (Figure 6E, left lane),
compared with sham-operated mice with vehicle treatment
(Figure 6, right lane). Acute EXP-3174 treatment restored the
decreased CX43 protein level in mice subjected to TAC
(Figure 6E, middle lane). The relative amount of Tyr?%-
phosphorylated Cx43 to total Cx43 was tended to be
increased in mice subjected to TAC with vehicle treatment
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Figure 6

Effects of acute pharmacological blockade of AT1R signalling on the inducibility of ventricular tachycardia (VT) in mice with chronic pressure
overload. (A) Systolic BP before (Pre) or 60 min after injection of control wild-type (WT) mice with vehicle or 0.3 mg-kg™ of EXP-1374 (n= 6 each).
*P < 0.05. (B) Heart rates recorded after 4 weeks of transverse aortic constriction (TAC) in mice treated with vehicle (n=11) or EXP-3174 (n=12)
under anaesthesia. (C) Heart weight-to-body weight (HW/BW) ratios after 4 weeks of TAC in mice treated with vehicle (n = 11) or EXP-3174 (n
=12) treatment. (D) Representative traces recorded during programmed ventricular stimulation in a mouse subjected to 4 weeks of TAC and then
acutely injected with vehicle (left panel) or EXP-3174 (right panel). RV, right ventricle; VT, ventricular tachyarrhythmias. Ten pacing stimuli (S1;
a coupling interval is 80 ms) followed by 2 extra stimulations (52, S3) were used to induce VT. (E) Representative Western blots showing
Tyr?5-phosphorylated Cx43, total Cx43 and GAPDH protein in a mouse subjected to 4 weeks of TAC or sham-operation and then acutely injected
with vehicle (Sham-vehicle and TAC-vehicle) or EXP-3174 (TAC-EXP). Protein obtained from left ventricles was separated by electrophoresis and
blotted with the indicated antibodies (Blot). Two different experiments gave essentially identical results.

(Figure 6E, left lane) compared with that in sham-operated
mice (Figure 6E, right lane) and that in mice subjected to TAC
with EXP-3174 treatment (Figure 6E, middle lane). The result
is consistent with the results obtained in the experiments
using AT1aR-KO mice and suggests that acute EXP-3174 treat-
ment affected tyrosine phosphorylation of Cx43 and then
restored Cx43 protein levels, thereby reducing the increased
arrhythmogenicity in mice subjected to TAC. These results
suggest that acute inhibition of ATIR-mediated signalling can
provide a significant protective effect against induction of
VT in hypertrophied hearts, and further supports our
hypothesis that AT1R-mediated signalling directly modulates
arrhythmogenicity in hypertrophied ventricles.

1392 British Journal of Pharmacology (2013) 170 1384-1395

Discussion and conclusions

The evidence suggests that angiotensin II signalling contrib-
utes to adverse electrical remodelling in patients with heart
failure. It has been shown that angiotensin II signalling plays
an important role in the structural remodelling of the heart
(e.g. cardiomyocyte hypertrophy and cardiac fibrosis), which
can contribute to the increase in arrhythmogenicity, during
the development and progression of cardiomyopathy.
However, it remained unclear whether this signalling makes a
direct contribution to the altered electrical properties that
increase cardiac arrhythmogenicity independently of struc-
tural remodelling. In the present study, we compared the
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susceptibility to arrhythmia of WT and AT1aR-deficient mice
following induction of cardiac hypertrophy through chronic
pressure overload. We found that AT1aR-KO mice with TAC
developed cardiac hypertrophy in exactly the same manner
as WT mice with TAC, as was seen previously in a study
of AT1aR-KO mice subjected to abdominal aortic banding
(Harada etal., 1998b). Nevertheless, induction of VT by
programmed stimulation was significantly diminished in
AT1aR-KO mice, as compared to WT mice. The overall ven-
tricular levels of several ion channel genes, including those
responsible for the I, Icat, Ito, Ix1, Ir and Ixamp, Were compa-
rable in the two genotypes, although the protein levels of
these ion channels and their spatial distribution throughout
the ventricles were not assessed in detail. We found that there
was significantly less tyrosine phosphorylation of Cx43 in
AT1aR-KO than WT mice subjected to TAC, and that levels of
Cx43 protein were better preserved in AT1aR-KO mice, which
would be expected to ameliorate the functional deterioration
of junctional conductance caused by loss of Cx43. Collec-
tively, these results demonstrate that ATlaR-mediated
signalling makes a direct contribution to the increase in
arrhythmogenicity in hypertrophied hearts independently of
structural remodelling, in addition to its potential effects on
the increased susceptibility to arrhythmias by promoting
structural remodelling.

Harada et al. (1998a) previously showed that the inci-
dence of arrhythmias is lower in AT1aR-KO than WT mice
following ischaemia-reperfusion. Although the mechanism
involved in reperfusion-induced arrthythmias, which occur in
an acute setting, may differ from the one underlying the
arrhythmogenicity induced by chronic pressure overload,
there is the possibility that a common molecular mechanism
underlies the anti-arrhythmogenic effects of AT1aR inhibi-
tion under both acute and chronic pathological conditions.
In this regard, the observed reduction in tyrosine phosphor-
ylation of ventricular Cx43 in AT1aR-KO mice is intriguing.
That acute blockade of ATI1R signalling by EXP-3174, an
active metabolite of ATIR blocker losartan, significantly
reduced the induction rate of VT in mice with chronic pres-
sure overload supports this notion. Lynch et al. (1999) also
reported the acute anti-arrhythmic effect of EXP-3174 in
canine model of acute myocardial ischaemia. In this report,
however, the authors could not preclude the possible exist-
ence of AT1R-independent mechanisms underlying the anti-
arthythmic effect of EXP-3174 (Lynch et al., 1999). Further
studies are necessary to assess the possible contribution of
AT1R-independent mechanism to the anti-arrhythmic effect
of EXP-3174 observed in this study. In addition, EXP-3174
reduced systolic BP as much as 10.2 mmHg in WT mice
(Figure 6A). There is another possibility that acute reduction
of systemic BP may influence the effect of EXP-3174 on mice
subjected to TAC.

Phosphorylation of Cx43 affects the function of gap junc-
tions (Warn-Cramer and Lau, 2004) largely by facilitating the
degradation of Cx43, which leads to functional deterioration
of the junction (Saffitz etal., 1999; Toyofuku etal., 2001;
Warn-Cramer and Lau, 2004). Such gap junctional dysfunc-
tion is thought to be involved in the increased arrhythmo-
genicity seen in models of chronic cardiac hypertrophy and
heart failure (Danik et al., 2004; Poelzing and Rosenbaum,
2004; van Rijen et al., 2004). Altered Cx43 phosphorylation is

also reportedly involved in the increased arrhythmogenicity
seen after ischaemia-reperfusion, although the precise
molecular mechanisms linking Cx43 phosphorylation and
arthythmogenicity appear to differ in acute and chronic
disease models. Nonetheless, Cx43 may be the common
target of ATlaR-mediated signalling leading to increased
arrhythmogenicity in both acute and chronic pathological
conditions. Consistent with that idea, cardiac overexpression
of ACE in mice was shown to reduce Cx43 expression via c-src
TK-mediated pathways and increase susceptibility to cardiac
arrhythmias and sudden death in the absence of structural
remodelling (Xiao et al., 2004; Kasi et al., 2007; Sovari et al.,
2011). In addition, transgenic rats overexpressing human
renin and angiotensinogen also died from lethal arrhythmias,
and Cx43 disorganization was detected in the ventricles of
those rats (Fischer ef al., 2007). All of these findings implicate
angiotensin II signalling in post-translational modification of
Cx43 that increases the arrhythmogenicity of diseased hearts.
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Abstract: Many neurohumoral factors play important roles in the regulation of the cardiovascular system and in the
pathophysiology of cardiovascular disease. Adrenomedullin (AM) is a potent vasodilatory peptide originally discovered in
the acid extract of human pheochromocytoma tissue but now known to exert a variety of effects within the cardiovascular
system. AM expression is widely distributed throughout the cardiovascular system and has been identified in the heart,
lungs, blood vessels and kidneys. In addition, the co-localization of AM and its receptor components suggest AM acts as
an autocrine and/or paracrine factor to play a key role in the regulation of cardiovascular function. Evidence also strongly
suggests that cardiovascular disease is associated with elevated levels of AM in plasma and tissue. In this review, we de-
scribe the pathophysiological changes in plasma and local AM associated with myocardial infarction, heart failure and
pulmonary hypertension. We also describe the clinical application of AM in cardiovascular disease from the viewpoints of

diagnosis and treatment.

Keywords: Adrenomedullin, myocardial infarction, heart failure, pulmonary hypertension, prognosis, ischemia/reperfusion.

INTRODUCTION

Adrenomedullin (AM) was discovered in 1993 in the
acid extract of human pheochromocytoma tissue by monitor-
ing the cAMP activity evoked by the extract in rat platelets
[1]. Since then, strong expression of AM mRNA has been
observed in the cardiovascular system and related organs,
including the adrenal gland, heart, lung, kidney and blood
vessels [2] and subsequent studies demonstrated that AM has
a variety of biological actions related to the regulation of
cardiovascular function [3]. For that reason, AM is consid-
ered to be a cardiovascular peptide. In addition, tissue and
plasma AM levels are increased in various cardiovascular
diseases, suggesting the potential involvement of AM in the
pathophysiology of cardiovascular disease. Here we describe
recent advances in our understanding the role of AM in the
pathophysiology of acute myocardial infarction, heart failure
and pulmonary hypertension. We also discuss the clinical
application of AM for both the diagnosis and treatment of
cardiovascular disease.

1. ADRENOMEDULLIN (AM) IN ACUTE MYOCAR-
DIAL INFARCTION

1.1. Plasma AM Levels in Acute Myocardial Infarction

Early studies showed that plasma AM levels increase
immediately after the onset of acute myocardial infarction
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Clinical Science, Kyoto University Graduate School of Medicine, 54,
Shogoin-Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Tel: 81-75-771-
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and then decline gradually, and that patients with congestive
heart failure have higher plasma AM levels than those with-
out congestive heart failure [4]. When, in a subsequent study,
plasma AM levels were serially measured in patients with
acute myocardial infarction over a 4-week period, it was
found that plasma AM reaches a peak 24 to 48 h after the
onset of symptoms and then remains higher than in healthy
subjects at all sampling points for at least a week (Fig. 1) [5].
This study also showed that plasma AM levels were higher
on admission in patients with heart failure than in those
without heart failure, and that the levels correlated positively
with peak creatine phosphokinase and left ventricular end
diastolic volume index, and correlated negatively with left
ventricular ejection fraction [2]. The increase in plasma AM
seen during the acute phase of myocardial infarction was
thus in proportion to the clinical severity. In another study,
which examined plasma AM levels before and immediately
after reperfusion using percutaneous transluminal coronary
angioplasty, it was found that the intervention did not rapidly
affect the plasma AM level [6].

AM is produced from AM precursor through a two-step
enzymatic reaction. First the signal peptide[1-21] is removed
from preproAM[1-185], yielding proAM[22-185] [7]. Then
proAM is cleaved by the processing enzyme into three prod-
ucts: glycine-extended AM (AM-Gly), glycine-extended
PAMP and mid-regional proAM (MR-proAM) (Fig. 2). AM-
Gly is a 53-amino acid, inactive intermediate that is con-
verted through enzymatic amidation to active mature AM
(AM-m), a 52-amino acid peptide containing a C-terminal
amide (Fig. 2). Asakawa et al investigated the pathophysi-
ological significance of the two molecular forms of AM in

© 2013 Bentham Science Publishers
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the plasma and urine of patients with acute myocardial in-
farction [8]. They found that plasma AM-m and AM-Gly
(Fig. 2) were both elevated on admission in patients with
acute myocardial infarction and reached a peak 24 h after the
onset of symptoms. In addition, plasma AM-m and AM-Gly
levels were significantly correlated with those of BNP and
with pulmonary arterial pressure. Urinary excretion of AM-
m and AM-Gly was also elevated on admission, reached a
peak 12 h after the onset of symptoms, and was significantly
correlated with urinary sodium excretion. AM-m levels were
significantly correlated with AM-Gly in both the urine and
plasma; however, there was no significant correlation be-
tween plasma and urinary AM levels. These results suggest
that levels of both molecular forms of AM are elevated in the
urine and plasma during acute myocardial infarction, and
that urinary AM and plasma AM are regulated by different
mechanisms. The higher concentrations of AM in plasma
and urine during acute myocardial infarction may exert a
protective effect against further increases of peripheral and
pulmonary vascular resistance and oliguria.

Time Course of Plasma AM Levels in AMI

I
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Admission 12k 1d 2d  3d 74

Time from the onset (day)

Plasma AM Levels (pmol/L)

4w Control

Fig. (1). Time course of plasma AM levels in patients with acute
myocardial infarction (AMI). Plasma AM levels were increased at
the time of admission. The AM levels thereafter increased further
and reached a peak approximately 24 ~ 48 hours after the onset of
acute myocardial infarction. Plasma AM levels remained raised
until seven days and then gradually declined.

To determine whether cardiac synthesis of the mature
forms of AM is accelerated in patients with acute myocardial
infarction, Yasu ef al used a specific immunoradiometric
assay to measure AM-m and AM-Gly, in the aorta and coro-
nary sinus (CS) [9]. Plasma levels of both AM-m and AM-
Gly in the aorta and CS were higher in patients with acute
myocardial infarction than in controls. In addition, CS-aortic
step-up of AM-m, an index of myocardial production of
AM-m, was significantly greater in acute myocardial infarc-
tion patients than in controls, though there was no significant
change in the CS-aortic step-up of AM-Gly. Patients with
left ventricular dysfunction had a significantly greater CS-
aortic AM-m step-up than those without left ventricular dys-
function, and AM-m in the aorta and CS correlated nega-
tively with the left ventricular ejection fraction. From these
results, it was concluded that myocardial synthesis of AM-m
is accelerated in patients with acute myocardial infarction,
especially patients with critical left ventricular dysfunction.
It was hypothesized that increased myocardial synthesis of

265

Nishikimi et al.

active AM may protect against cardiac dysfunction, myocar-
dial remodeling, or both after the onset of acute myocardial
infarction.

1.2. Plasma AM and MR-proAM as Predictors of Acute
Myocardial Infarction

Plasma AM levels may be a useful as a predictor of sur-
vival after acute myocardial infarction. Nagaya et al [10].
measured plasma AM and other clinical and hemodynamic
variables on day 2 after myocardial infarction in 113 patients
and then followed up for 25 months. Univariate Cox propor-
tional hazards analysis showed that plasma AM, age, coro-
nary reperfusion, maximum creatine kinase concentrations,
pulmonary congestion, pulmonary capillary wedge pressure,
cardiac index and left ventricular ejection fraction were all
significantly related to mortality. Multivariate Cox propor-
tional hazards analysis showed that among the non-invasive
variables, only plasma AM was an independent predictor of
mortality after myocardial infarction. The Kaplan-Meier
survival curves based on the median plasma AM concentra-
tion showed that patients with higher plasma AM had a
higher mortality than those with lower plasma AM, suggest-
ing plasma AM can be used as a prognostic indicator in acute
myocardial infarction. Richard et al. [11] compared the abil-
ity of several neurohumoral factors to serve as prognostic
markers after acute myocardial infarction. They showed that
plasma AM levels have a significant inverse relation with
left ventricular function, which is comparable to that of
norepinephrine. They also showed that plasma AM is predic-
tive of death in the 2 years after myocardial infarction, but
this relation was generally weaker than that observed for N-
terminal proBNP (NT-proBNP). It was speculated that the
prognostic value of AM was weakened by the fact that its
elevation in plasma is mediated by a variety of mechanisms.
Hence AM appears to be an indirect reflector of left ven-
tricular function with a weaker association with left ventricu-
lar size, contractile function and prognosis than BNP or NT-
proBNP.

MR-proAM, another part of the AM precursor, has been
identified in plasma (Fig. 2), and an MR-proAM assay has
been developed [12].This peptide is inactive and stable and
has a longer half-life in plasma than AM, because it does not
bind to a receptor (Table 1). On a molar basis, plasma MR-
proAM levels are about 20-30 times higher than AM levels
[12]. Khan et al [13] first investigated the cardiovascular
prognostic value of MR-proAM in 983 patients with acute
myocardial infarction. They found that MR-proAM was
higher in patients who had died or had survived with heart
failure than in other survivors. Using a multivariate binary
logistic model, log MR-proAM (odds ratio 4.22) and log
NT-proBNP (odds ratio 3.20) were found to be significant
independent predictors of death or heart failure. The areas
under the receiver-operating characteristic (ROC) curve for
MR-proAM and NT-proBNP were similar, so that MR-
proAM provided further risk stratification in patients with
NT-proBNP levels above the median. Thus MR-proAM ap-
pears to be a powerful predictor of adverse outcome, espe-
cially in those with elevated NT-proBNP. MR-proAM may
also be a clinically useful marker of prognosis after acute
myocardial infarction. The same group assessed MR-proAM
levels on admission and discharge in 745 myocardial
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Fig. (2). Schematic diagram of the AM gene, AM mRNA, preproAM, proAM and the biosynthesis of AM, proadrenomedullin N-terminal 20

peptide (PAMP) and mid-regional proAM (MR-proAM).

infarction patients without ST-elevation [14]. Plasma MR-
proAM was elevated on both admission and discharge, and
the levels on admission were particularly associated with
early (< 30 days) mortality. Multivariate adjusted Cox re-
gression models revealed that plasma MR-proAM levels on
both admission and discharge were associated with mortality
and heart failure. From these results, they concluded that
plasma MR-proAM levels are prognostic for death and heart
failure in cases of myocardial infarction with or without ST-
elevation [14]

Recently, Klip et al. [15] assessed the cardiovascular
prognostic value of MR-proAM and compared it to BNP and
NT-proBNP with respect to death or a composite end point
in a 214-patient subset from the OPTIMAAL study who had
developed heart failure after an acute myocardial infarction.
In multivariable Cox proportional hazard models, a doubling
of MR-proAM led to a 3.02 times increase in the risk of mor-
tality and a 1.77 times increase in the risk of reaching the
composite end point. ROC curves indicated that MR-proAM
was a stronger predictor of mortality than BNP or NT-
proBNP. Moreover, MR-proAM significantly enhanced risk
classification and improved integrated discrimination, as
compared to BNP and NT-proBNP. Thus MR-proAM ap-
pears to be a promising biomarker with greater prognostic
value for mortality and morbidity in patients with heart fail-
ure after an acute myocardial infarction than are BNP and
NT-proBNP. The discrepancy between these findings and
those of an earlier study may be due to differences in disease
severity and/or difference between AM and MR-proAM
[15].
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Table 1. Comparison of AM with MR-proAM
AM MR-proAM
Amino acid length 52, proAM[95-146] 48, proAM[45-92]
Molecular weight 6028 5147
Hormonal activity (G )
Clearance in the lung, (+) )
Excretion from the
. ) &)
kidneys
. . unknown, but longer
H 22
alf life min than AM
Plasma levels in 3-10 finol/ml 300 fimol/ml
normal subjects

1.3. Role of Cardiac AM in the Pathophysiology of Acute
Myocardial Infarction

As described above, plasma AM is elevated early after
acute myocardial infarction. Nagaya et al. first showed that
expression of both AM peptide and mRNA was markedly
increased in both infarcted and non-infarcted left ventricles
in a rat model of acute myocardial infarction [16]. Treatment
with an angiotensin converting enzyme (ACE) inhibitor sup-
pressed the overproduction of AM in association with im-
proved hemodynamics.
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Studies have also shown that AM is an antihypertrophic
peptide able to inhibit angiotensin II- and endothelin-1-
induced hypertrophy of cultured neonatal cardiac myocytes
and fibroblasts [17,18]. AM also inhibits collagen production
and proliferation by cardiac fibroblasts, possibly via a
cAMP-dependent mechanism [19]. These findings suggest
AM can function as an anti-remodeling autocrine and/or
paracrine factor in the heart. Consistent with that idea, Na-
kamura ef al. showed that continuous infusion of AM has
beneficial effects on hemodynamics in a rat model of acute
myocardial infarction [20]. They also showed that the infu-
sion of AM improved survival and ameliorated progression
of left ventricular remodeling and heart failure with a reduc-
tion in left ventricular levels of mRNAs encoding ACE, p22-
phox and urinary isoprostane [21]. Thus the beneficial ef-
fects of AM administration after acute myocardial infarction
include improvement of hemodynamics and reduction of left
ventricular remodeling, in part by inhibiting oxidative stress
and ACE expression (Fig. 3).

1.4. Pathophysiological Role of Cardiac AM in Ische-
mia/Reperfusion

In a rat coronary ligation model, AM significantly at-
tenuated myocardial ischemia/reperfusion injury [22]. AM
significantly reduced myocardial infarct size, left ventricular
end-diastolic pressure and myocardial apoptotic death. These
beneficial effects were almost completely abolished by pre-
treatment with wortmannin, suggesting the cardioprotective
effects of AM are mediated via a phosphatidylinositol 3-
kinase (PI3K)/Akt-dependent pathway. Investigators have
also shown the effect of local AM gene delivery into the
heart on the apoptosis induced by acute ische-
mia/reperfusion. AM gene transfer increased phosphoryla-
tion of Akt and glycogen synthase kinase (GSK-3beta), but
reduced GSK-3beta and caspase-3 activities in the heart. The
effects of AM on GSK-3beta and caspase-3 activities were
blocked by CGRP(8-37) and by an adenovirus harboring
dominant-negative Akt [23]. Thus AM may act via the Akt-

Nishikimi et al.

GSK-caspase signaling pathway to protect against cardio-
myocyte apoptosis induced by ischemia/reperfusion injury
(Fig. 3). This cardioprotective effect of AM was confirmed
using a heterozygous AM knockout (AM+/-) mouse model
[24]. Infarcts elicited by 30 min of regional myocardial
ischemia were larger in AM+/- mice than in wild type mice.
Moreover, treatment with exogenous recombinant AM prior
to coronary occlusion rescued the ischemia-reperfusion in-
tolerant phenotype of AM+/- mice in association with aug-
mented phosphorylation of Akt and eNOS. Nishida et al.
[25] recently reported that AM treatment for 10 min before
ischemia significantly reduced infarct size after ische-
mia/reperfusion, as compared to control, and that this infarct
size-limiting effect of AM was abolished by a mitochondrial
Ca’"-activated K" channel blocker or by a protein kinase A
inhibitor (Fig. 3). Interestingly, treatment with AM for the
first 10 min of reperfusion also significantly reduced infarct
size, as compared with control, and this cardioprotective
effect of AM was unaffected by a mitochondrial Ca*-
activated K channel blocker, but was abolished by a PI3K
inhibitor. This suggests the cardioprotective effects of pre-
and post-ischemia treatment with AM in ische-
mia/reperfusion models are mediated via different signaling
pathways. In addition, AM reportedly induces angiogenesis
and inhibits apoptosis. Infusion of AM for 3 days together
with transplantation of bone marrow-derived mononuclear
cells (BMCs) reduced infarct size and improved cardiac
function to a greater degree than AM monotherapy in a rat
model of myocardial infarction [26]. AM infusion plus BMC
transplantation led to greater increases in capillary density
than was obtained with AM or BMCs alone, and AM mark-
edly reduced the numbers of apoptotic cells among the trans-
planted BMCs. Thus the beneficial effect of AM infusion
may be mediated in part by the angiogenic properties of AM
itself and in part by its anti-apoptotic effect on BMCs.

One recent study addressed the mechanism underlying
the beneficial effects of AM in an ischemia/reperfusion
model [27]. It was found that AM stimulated NO synthesis,

Beneficial Effect of AM in Ischemia/Reperfusion
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Fig. (3). Mechanism of effect of AM in ischemia/reperfusion.
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as indicated by increased NO levels in the coronary effluent
throughout reperfusion. AM limited infarct size in associa-
tion with a 2.45-fold increase in myocardial cGMP after 10
min of reperfusion, and the soluble guanylate cyclase inhibi-
tor ODQ abolished the infarct size-limiting effect of AM.
Thus AM may increase the bioavailability of NO in the in-
tact myocardium, and the cytoprotective action of AM
against ischemia-reperfusion injury may be mediated via the
NO/sGC/cGMP pathway.

1.5. Clinical Application of AM in Acute Myocardial In-
farction

The studies summarized above indicate AM reduces in-
farct size and inhibits myocyte apoptosis, suggesting AM
may be a clinically useful peptide. In the first clinical pilot
study of intravenous AM in patients with acute myocardial
infarction, AM was infused for 12 h at a rate of 0.0125-0.025
ug/kgmin [28]. During the infusion, hemodynamics re-
mained stable in all but two patients. Furthermore, at 3
months, the wall motion index in the infarcted area was sig-
nificantly better than at baseline, and infarct size evaluated
by cardiac magnetic resonance was significantly smaller than
the baseline. Thus AM could serve as an adjunct to percuta-
neous coronary intervention, considering the variety of its
potentially protective cardiovascular actions. However, these
data are preliminary and will require confirmation in future
studies.

2. AM IN HEART FAILURE
2.1. Plasma AM and MR-proAM Levels

Plasma AM levels normally range from 3 to 10 pmol/L
(Table 1), depending on the assay used. Although AM pep-
tide and mRNA are strongly expressed in adrenal gland,
heart, kidney and lung, there is normally no step-up in AM
levels between the CS, renal vein or adrenal veins and the
aorta [29]. Therefore, the source of plasma AM is now
thought to be the vasculature, as AM mRNA is strongly ex-
pressed in both endothelial cells and vascular smooth muscle
cells. Plasma AM levels are increased in heart failure in pro-
portion to the severity of the disease [30-33]. We showed
that there is no increase of plasma AM in patients with
NYHA class 1, but the levels are slightly but significantly
elevated in patients with NYHA class II and are increased
even further in NYHA classes III and 1V (Fig. 4). Plasma
AM levels are positively correlated with plasma ANP, BNP
and norepinephrine levels and negatively correlated with left
ventricular ejection fraction [30]. Following treatment in
cases of heart failure, plasma ANP and BNP rapidly decline,
but plasma AM declines more slowly. These results indicate
that plasma AM increases in proportion to disease severity
and that the mechanism of the increase may be related to the
increased plasma volume and/or sympathetic nerve activity.
This finding is consistent with another study, which showed
a good relationship between plasma AM levels and pulmo-
nary capillary wedge pressure [33].

As mentioned above, two molecular forms of AM circu-
late in human plasma, and the major circulating form is the
inactive form AM-Gly [7,34]. Hirayama et al. reported that
both forms of AM are similarly increased in patients with
heart failure [35], making AM a potentially useful biochemi-
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cal marker of the severity of heart failure. In addition,
plasma AM is an independent prognostic indicator of mild to
moderate heart failure [36] and of ischemic heart failure with
left ventricular dysfunction [10]. Thus AM is not only a bio-
chemical marker for evaluating the severity of heart failure,
it is also a prognostic indicator.

Plasma AM Levels in Heart Failure

200

p<001 ——
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Plasma AM Levels (fmol/ml)

0.0

NYHA

Fig. (4). Plasma AM levels in patients with heart failure in NYHA
functional classes I, II, III and IV, and in healthy subjects. In heart
failure patients, plasma AM levels tended to be increased in NYHA
L, not significantly different from that in normal subjects. However,
there was a significant increase of plasma AM levels in patients in
NYHA I, 11 and IV. Thus, graded increase of the plasma levels of
AM were observed in patients with heart failure in NYHA func-
tional class as I, Il to IV.

MR-proAM was recently investigated in the context of
heart failure. Gegenhuber et al. [37] compared the abilities of
MR-proAM and BNP to serve as a prognostic marker in 137
patients with acute destabilized heart failure. ROC curve
analysis showed that the areas under the curve for the predic-
tion of l-year mortality were similar for BNP and MR-
proAM, and Kaplan-Meier curve analyses showed that the
predictive values of BNP and MR-proAM for survival prob-
ability were comparable. In addition, multivariable Cox pro-
portional hazard analysis revealed that elevated BNP and
MR-proAM concentrations were the strongest predictors of
mortality, suggesting the predictive properties of MR-proAM
may be similar to those of BNP in acute destabilized heart
failure. Haehling et al. [38] assessed MR-proAM in 501
congestive heart failure patients and showed that it increased
with NYHA class. Increasing MR-proAM was a predictor of
poor survival at 12 months, and the areas under the ROC
curves for MR-proAM and NT-proBNP were similar. Cox
proportional hazard analysis showed that both NT-proBNP
and MR-proAM added prognostic value to a base model of
left ventricular ejection fraction, age, creatinine and NYHA
class, though adding MR-proAM to the base model gave
stronger prognostic power than adding NT-proBNP. Thus
MR-proAM is an independent predictor of mortality in con-
gestive heart failure patients that adds prognostic information
to NT-proBNP. Maisel et al. [39] assessed the prognostic
value of MR-proAM in a 15-center, international study of
1,641 patients presenting to the emergency department with
dyspnea. Using cut-off values from ROC analyses, the accu-
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racy to predict the 90-day survival of heart failure patients
was 73% for MR-proAM and 62% for BNP. In adjusted
multivariable Cox regression, MR-proAM, but not BNP,
carried independent prognostic value. Thus MR-proAM
identifies patients with high 90-day mortality risk and adds
prognostic value to BNP.

These results suggest that elevated MR-proAM is associ-
ated with an increased risk of mortality and morbidity in
patients with heart failure, independent of BNP or NT-
proBNP. In fact, MR-proAM may outperform all other es-
tablished markers in the identification of patients at highest
risk of death, particularly death within 30 days. It may thus
be useful for AM and/or MR-proAM to be included in the
routine clinical workup of patients with heart failure.

2.2. Cardiac AM System in Cardiac Hypertrophy and the
Failing Heart

Early studies showed that AM immunoreactivity is in-
creased in the failing heart [40] and in a model of heart fail-
ure [41]. AM immunoreactivity is also increased in pressure
overload-induced cardiac hypertrophy, and there is a strong
correlation between the level of AM immunoreactivity and
left ventricular mass [42]. Thus cardiac AM levels are
upregulated in the hypertrophic and failing heart in associa-
tion with an increase in ventricular weight or fetal cardiac
gene expression [43]. CS-aortic step-up of plasma AM is
enhanced in failing hearts, suggesting cardiac AM produc-
tion is increased in patients with heart failure [41].

Two molecular forms of AM, its transcript and its het-
erodimeric receptors (CLR/RAMPs) have been investigated
in relation to cardiac hypertrophy and heart failure. Left ven-
tricular expression of the genes encoding AM and its recep-
tor is significantly higher in hypertrophic and failing hearts
than in healthy hearts [44,45]. Cardiac tissue levels of AM-m
and AM-total are also significantly higher in hypertrophic
and failing hearts than in healthy hearts, and the AM-m/AM-
total ratio is significantly higher in left ventricular tissue than
in plasma. Furthermore, the left ventricular AM-m/AM-total
ratio significantly correlates with the left ventricular
weight/body weight ratio [45,46]. These results suggest that
AM amidating enzyme activity, AM ligand, and its receptor
system are all upregulated in severely affected hypertrophic
and failing hearts; that is, all components of the cardiac AM
system are upregulated in hypertrophic and failing hearts.

To investigate whether the elevated plasma and tissue
AM levels seen in hypertrophic and failing hearts exert car-
dioprotective effects, studies involving adenovirus-mediated
AM gene delivery and chronic administration of AM have
been carried out. Somatic gene delivery using an adenovirus
harboring human AM cDNA under the control of the cy-
tomegalovirus promoter/enhancer significantly reduced left
ventricular weight and cardiomyocyte diameter in severely
hypertensive rats, while also reducing interstitial fibrosis,
extracellular matrix formation and blood pressure [47].
These findings suggest that increasing AM may protect
against cardiac remodeling and renal damage due to hyper-
tension.

To investigate the role of endogenous AM in the transi-
tion from left ventricular hypertrophy to heart failure, the
effects of long-term AM infusion in a rat model of heart fail-
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ure were studied [48]. Long-term infusion of human AM
reduced left ventricular end-diastolic pressure, right ventricu-
lar systolic pressure, right atrial pressure and left ventricular
weight/body weight ratio without significantly affecting
mean arterial pressure. Infusion of human AM significantly
reduced endogenous plasma AM levels in rats, and also re-
duced plasma renin, aldosterone and ANP levels and pro-
longed survival, These results suggest that endogenous AM
plays a compensatory role in heart failure. In addition to
these salutary effects of long-term treatment with AM in
heart failure, long-term AM attenuates left ventricular re-
modeling after acute myocardial infarction, in part by reduc-
ing oxidative stress and inhibiting ACE expression [20]. A
cardioprotective effect of endogenous AM against stress-
induced cardiac hypertrophy was investigated using AM-+/-
mice [49]. Aortic constriction reduced ejection fraction to a
greater degree in AM+/- mice than in wild type mice, sug-
gesting that AM and its receptor play an important role in
preserving cardiac function. It thus appears that up-regulated
cardiac expression of AM and its receptor may be an adap-
tive and protective response to stresses such as cardiac hy-
pertrophy and heart failure. The cardioprotective effects of
AM may be associated with inhibition of the renin-
angiotensin-aldosterone system, reduction of oxidative
stress, and other factors [20,48,50-52].

2.3. Effect of AM Administration in Experimental Heart
Failure

The aforementioned observations indicate that increases
in endogenous plasma and tissue AM exert cardioprotective
effects in cardiac hypertrophy and heart failure. Those find-
ings, together with the observations that AM has vasodila-
tory, diuretic and natriuretic effects, and inhibits aldosterone
secretion, suggest AM administration may be a useful ap-
proach to the treatment of heart failure [53]. Indeed, intrave-
nous infusion of AM reduces calculated peripheral resis-
tance, mean arterial pressure and left atrial pressure, and in-
creases cardiac output in sheep with pacing-induced heart
failure [54]. AM also increases urinary sodium, creatinine
and cAMP excretion as well as creatinine clearance in con-
junction with reduced plasma aldosterone [55]. We also ex-
amined the cardiovascular and renal effects of administering
two intravenous doses of AM to rats with heart failure [55].
Low-dose AM increased urine flow and urinary sodium ex-
cretion without affecting hemodynamic variables. By con-
trast, high-dose AM reduced mean arterial pressure, right
ventricular systolic pressure and right atrial pressure and
significantly increased cardiac output in both healthy rats
and rats with heart failure. High-dose AM also significantly
increased the glomerular filtration rate and renal plasma
flow, as well as urine flow and urinary sodium excretion
[55]. In addition, treatment with AM for 4 days had pro-
nounced and sustained cardiovascular and renal effects in
experimental heart failure, including reductions in cardiac
preload and afterload and increases in cardiac output, sodium
excretion and glomerular filtration [56]. These results imply
that AM is involved in the regulation of blood pressure and
volume in heart failure and raises the possibility of its use in
the disease’s treatment.

Combination therapy with AM plus other drugs such as
an ACE inhibitor, a neutral endopeptidase inhibitor or natri-
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uretic peptide have been studied, and beneficial and com-
plementary effects of AM and other drugs were reported [57-
59].

2.4. Effect of AM Administration to Patients with Heart
Failure

The beneficial effects of AM in experimental heart fail-
ure in animals strongly suggests that AM administration
would be effective in the treatment of human heart failure.
We previously examined the acute effects of intravenous
infusion of AM (0.05 pg/kg/min) for 30 min on hemody-
namic, renal and hormonal responses in patients with heart
failure [60]. We found that AM significantly increased the
cardiac index, while reducing pulmonary capillary wedge
pressure in patients with heart failure and in healthy subjects.
AM significantly reduced mean pulmonary arterial pressure
only in heart failure patients but increased urine volume and
urinary sodium excretion in both groups. Plasma aldosterone
fell significantly during and after AM infusion only in the
patients. These findings indicate that acute intravenous infu-
sion of AM has beneficial hemodynamic, renal and endo-
crine effects in patients with heart failure [60]. Lainchbury et
al. [61] also found that AM infusion significantly reduced
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mean arterial pressure and left ventricular end-systolic vol-
ume and increased cardiac output. Despite the large drop in
blood pressure, urine volume, urinary sodium excretion and
creatinine clearance were not changed. These results suggest
that short-term AM infusion also relieves the symptoms of
heart failure and may be therapeutically useful.

We then tested whether long-term administration of AM
(0.02 pg/kg/min) + recombinant human atrial natriuretic
peptide (hANP) (0.05 pg/kg/min) could be used as a thera-
peutic regimen in patients with acute decompensated heart
failure in a clinical setting [62]. Seven acute decompensated
heart failure patients with dyspnea and pulmonary conges-
tion were studied. AM-+hANP was infused for 12 h, after
which hANP was infused alone for 12 h, and hemodynamic,
renal, hormonal and oxidative stress responses were evalu-
ated. AM+hANP significantly reduced mean arterial pres-
sure, pulmonary arterial pressure, and systemic and pulmo-
nary vascular resistance without affecting heart rate, and
increased cardiac output over baseline at most of the time-
points studied (Fig. 5). In addition, AM+hANP reduced al-
dosterone, BNP, and free radical metabolites to levels below
those seen at baseline. AM+hANP also increased urine vol-
ume and urinary sodium excretion as compared to baseline.

Effects of AM on Hemodynamics in HF
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Fig. (5). Effects of long-term AM+hANP combination therapy and hANP monotherapy on mean arterial pressure (MAP)(A), systemic vas-
cular resistance (SVR)(B), cardiac index (CI)(C), mean pulmonary arterial pressure (PAm)(D), pulmonary arterial resistance (PAR)(E) and
plasma BNP levels (F) in patients with acute decompensated heart failure. Infusion of AM+hANP significantly decreased MAP, SVR, PAm
and PAR and increased CI at most of the time-point compared with the baseline levels. Infusion of AM+hANP also significantly decreased

plasma BNP levels. *P<0.05 vs. time 0.
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After switching to hANP monotherapy, mean arterial pres-
sure and systemic vascular resistance increased while the
cardiac index declined. On the other hand, urine volume and
urinary sodium excretion did not change [62]. Although this
was a small pilot trial, AM+hANP therapy showed beneficial
hemodynamic and hormonal effects in acute decompensated
heart failure. Specifically, prominent beneficial effects on
systemic and pulmonary vascular resistance and cardiac in-
dex were observed. Thus intravenous infusion of AM with
hANP could be a useful approach to treating acute decom-
pensated heart failure. That said, these data are preliminary
and require confirmation in a larger clinical study. Our work-
ing hypothesis for beneficial effects of AM in heart failure is
illustrated in Fig. 6.

3. PULMONARY HYPERTENSION
3.1. Plasma AM Levels in Pulmonary Hypertension

AM and its receptors are strongly expressed in the lung
[1,63], which suggests AM is involved in the regulation of
the pulmonary circulation, most likely in part through dila-
tion of the pulmonary vasculature and reduction of pulmo-
nary vascular resistance [64]. Yoshibayashi et al [65] re-
ported that plasma AM levels are elevated in young patients
with pulmonary hypertension, and that the plasma AM is
higher in the pulmonary artery than in the pulmonary vein,
suggesting extraction of AM from the pulmonary circulation.
We observed that plasma AM is elevated in secondary pul-
monary hypertension related to mitral stenosis, and that there
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are significant relationships between plasma AM levels and
mean pulmonary artery pressure, total pulmonary vascular
resistance, and pulmonary vascular resistance [66]. In addi-
tion, plasma AM levels reportedly correlate with mean right
atrial pressure, stroke volume, total pulmonary resistance,
mean pulmonary arterial pressure and plasma ANP [67], and
increased plasma AM is also seen in systemic sclerosis pa-
tients with secondary pulmonary hypertension [68] and
chronic obstructive lung disease [69]. Although plasma AM
levels were not significantly affected by acute NO inhalation
during long-term follow-up in patients with pulmonary hy-
pertension, they were significantly elevated in association
with increases in total pulmonary resistance [67]. Taken to-
gether, these results indicate that plasma AM levels increase
in proportion to the severity of pulmonary hypertension and
that AM is extracted from the pulmonary circulation, perhaps
in an effort to reduce pulmonary arterial pressure.

These results are consistent with findings from experi-
mental animal studies. Shimokubo ef al. [70] measured AM
levels in plasma and right ventricular tissue from rats with
monocrotaline-induced pulmonary hypertension. Both were
higher than in control rats, which suggests a role for AM in
pulmonary hypertension. In a hypoxia-induced pulmonary
hypertension model, plasma AM was significantly elevated
on day 21 of exposure to a hypobaric hypoxic environment,
and expression of AM mRNA and peptide was increased in
the right ventricle, right atrium and left atrium [71].

Beneficial Effect of AM in Heart Failure.
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Fig. (6). Our working hypothesis of the mechanism of effect of AM therapy in heart failure.
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3.2. Use of AM in the Treatment of Pulmonary Hyperten-
sion

Yoshihara ef al. [72] tested whether chronic infusion of
rat AM would affect monocrotaline-induced pulmonary hy-
pertension and right ventricular hypertrophy. Using an os-
motic minipump, they subcutaneously infused rats with AM
for 21 days, which ameliorated the pulmonary hypertension
and right ventricular hypertrophy with a slight increase in
plasma AM levels. This suggests AM may be useful for the
treatment of pulmonary hypertension. Consistent with that
idea, AM also exerts beneficial effects in hypoxia-induced
pulmonary hypertension [73,74] and endotoxin-induced
pulmonary hypertension models [75]. Matsui et al. [74]
showed that endogenous AM exerts as a prorotective peptide
against hypoxia-induced vascular remodeling, mediated via
suppression of reactive oxygen species using heterozygous
AM-knockout mouse.

The acute effect of AM on the hemodynamics and hor-
monal response in patients with pulmonary hypertension has
also been evaluated. Nagaya ef al. [76] demonstrated that
intravenous infusion of AM (0.05 pg/kg/min) produced a
44% increase in the cardiac index and a 32% decrease in
pulmonary vascular resistance, with a 4% reduction in mean
pulmonary arterial pressure and a reduction in plasma aldos-
terone levels. AM also significantly reduced mean systemic
arterial pressure in this study. To avoid the effect of AM on
systemic blood pressure, repeated inhalation of aerosolized
AM was tested in monocrotaline-induced pulmonary hyper-
tension in rats [77]. Three weeks of AM inhalation signifi-
cantly reduced pulmonary arterial pressure, total pulmonary
resistance and the median wall thickness of peripheral pul-
monary arteries without changing systemic blood pressure or
heart rate. Aerosolized AM therapy was also tested in cases
of human idiopathic pulmonary arterial hypertension [78].
Acute inhalation of aerosolized AM elicited a 13% reduction
in mean pulmonary arterial pressure and a 22% reduction in
pulmonary vascular resistance without changing the systemic
arterial pressure or heart rate. Inhalation of aerosolized AM
also increased exercise capacity.

Recently, AM gene therapy was tested in a pulmonary
hypertension model. Intratracheal transfer of AM gene using
polyplex nanomicelles attenuated monocrotaline-induced
pulmonary hypertension in rats [79]. Hybrid cell-AM gene
therapy was also tested in a pulmonary hypertension model.
Administration of AM gene-transduced endothelial progeni-
tor cells provided significantly greater relief of monocro-
taline-induced pulmonary hypertension in rats than untrans-
duced endothelial progenitor cells [80]. Thus a hybrid cell-
gene therapy based on the phagocytosing action of endothe-
lial progenitor cells may represent a novel therapeutic strat-
egy for the treatment of pulmonary hypertension.

Another recent study showed that an AM derivative ra-
diolabeled with *™Tc can be used as a molecular imaging
agent to visualize the lung circulation [81]. Indeed, **™Tc-
AM could provide a low-molecular-weight alternative to the
#MT¢-macroaggregated albumin particles currently used for
pulmonary embolism diagnosis. Moreover, this radiolabeled
AM derivative may facilitate diagnosis and follow-up of
pulmonary hypertension, as uptake of #mTe-AM by the
lungs is greatly reduced in rats with monocrotaline-induced
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pylmonary hypertension, as compared to control [82]. Thus
Tc-labeled AM derivatives are highly promising new
tools for examining the pulmonary circulation.

This chapter described the role of AM in the pathophysi-
ology of pulmonary hypertension. The therapeutic potential
of AM for the treatment of pulmonary hypertension was also
described. Plasma AM levels are significantly elevated in
both primary and secondary pulmonary hypertension, and
the AM is thought to contribute to a compensatory mecha-
nism. Moreover, exogenous administration of pharmacologi-
cal levels of AM induces further hemodynamic improve-
ment, which suggests AM administration may be useful in
the treatment of patients with pulmonary hypertension. De-
spite recent therapeutic advances, including the use of
prostanoids, endothelin antagonists and phosphodiesterase
inhibitors, among others, pulmonary arterial hypertension
remains a challenging condition with a poor prognosis. In
that context, further investigation of the efficacy of AM in
the treatment of pulmonary arterial hypertension would seem
warranted.

CONCLUSIONS

We described the current understanding of the role of
AM in the pathophysiology of cardiovascular diseases such
as acute myocardial infarction, heart failure and pulmonary
hypertension. Plasma AM levels are increased in proportion
to the severity of these diseases and plasma AM and/or MR-
proAM are good prognostic predictors in these conditions.
Locally increased AM may exert compensatory effects,
which is consistent with exogenous AM’s beneficial effects
in acute myocardial infarction, heart failure and pulmonary
hypertension. Thus AM administration appears to be a prom-
ising new approach to the treatment of cardiovascular dis-
ease. To confirm the beneficial effects of AM in the treat-
ment of cardiovascular disease, further clinical and basic
studies and a larger clinical trial will be required.
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ABBREVIATION LISTS

AM = Adrenomedullin

cAMP = Cyclic adenosine 3',5-monophosphate
AM-Gly =  Glycine-extended AM

MR-proAM = Mid-regional proAM

(O = Coronary sinus

NT-proBNP = N-terminal proBNP
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ROC
ACE
PI3K
GSK
BMCs
cGMP
NO

NYHA =

BNP
hANP

= Receiver-operating characteristic

= Angiotensin converting enzyme

= Phosphatidylinositol 3-kinase

= Glycogen synthase kinase

= Bone marrow-derived mononuclear cells
= Cyclic guanosine 3',5'-monophosphate

= Nitric oxide

New York Heart Association

Brain natriuretic peptide

= Human atrial natriuretic peptide
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Background—The efficacy of pharmacological interventions to prevent sudden arrhythmic death in patients with chronic heart
failure remains limited. Evidence now suggests increased ventricular expression of hyperpolarization-activated cation (HCN)
channels in hypertrophied and failing hearts contributes to their arrythmicity. Still, the role of induced HCN channel expression in
the enhanced arrhythmicity associated with heart failure and the capacity of HCN channel blockade to prevent lethal arrhythmias
remains undetermined.

Methods and Results—We examined the effects of ivabradine, a specific HCN channel blocker, on survival and arrhythmicity
in transgenic mice (dnNRSF-Tg) expressing a cardiac-specific dominant-negative form of neuron-restrictive silencer factor, a
useful mouse model of dilated cardiomyopathy leading to sudden death. Ivabradine (7 mg/kg per day orally) significantly
reduced ventricular tachyarrhythmias and improved survival among dnNRSF-Tg mice while having no significant effect on
heart rate or cardiac structure or function. lvabradine most likely prevented the increase in automaticity otherwise seen
in dnNRSF-Tg ventricular myocytes. Moreover, cardiac-specific overexpression of HCN2 in mice (HCN2-Tg) made hearts
highly susceptible to arrhythmias induced by chronic f-adrenergic stimulation. Indeed, ventricular myocytes isolated from
HCN2-Tg mice were highly susceptible to f-adrenergic stimulation-induced abnormal automaticity, which was inhibited by
ivabradine.

Conclusions—HCN channel blockade by ivabradine reduces lethal arrhythmias associated with dilated cardiomyopathy in mice.
Conversely, cardiac-specific overexpression of HCN2 channels increases arrhythmogenicity of f-adrenergic stimulation. Our
findings demonstrate the contribution of HCN channels to the increased arrhythmicity seen in failing hearts and suggest HCN
channel blockade is a potentially useful approach to preventing sudden death in patients with heart failure. (/ Am Heart Assoc.
2013;2:000150 doi: 10.1161/JAHA.113.000150)

Key Words: arrhythmia  HCN channel e heart failure ¢ ion channels

espite recent progress, the efficacy of available phar- limited. Indeed, as many as 50% of deaths among heart failure
macological interventions aimed at preventing lethal patients are sudden and unexpected, presumably caused by
arrhythmias associated with chronic heart failure remains lethal arrhythmias." Thus, identification of potential therapeu-

tic targets based on knowledge of the molecular mechanism
underlying the enhanced arrhythmicity in failing hearts would
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