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Sakai T, Kusakabe T, Ebihara K, Aotani D, Yamamoto-Kataoka S,
Zhao M, Gumbilai VM, Ebihara C, Aizawa-Abe M, Yamamoto Y,
Noguchi M, Fujikura J, Hosoda K, Inagaki N, Nakao K. Leptin restores
the insulinotropic effect of exenatide in a mouse model of type 2 diabetes
with increased adiposity induced by streptozotocin and high-fat diet. Am J
Physiol Endocrinol Metab 307: E712-E719, 2014. First published August
26, 2014; doi:10.1152/ajpendo.00272.2014—Leptin may reduce pancre-
atic lipid deposition, which increases with progression of obesity and
can impair -cell function. The insulinotropic effect of glucagon-like
peptide-1 (GLP-1) and the efficacy of GLP-1 receptor agonist are
reduced associated with impaired B-cell function. In this study, we
examined whether leptin could restore the efficacy of exenatide, a
GLP-1 receptor agonist, in type 2 diabetes with increased adiposity.
We chronically administered leptin (500 pgkg~!-day™!) and/or ex-
enatide (20 pgkg~l-day™?!) for 2 wk in a mouse model of type 2
diabetes with increased adiposity induced by streptozotocin and high-
fat diet (STZ/HFD mice). The STZ/HFD mice exhibited hyperglyce-
mia, overweight, increased pancreatic triglyceride level, and reduced
glucose-stimulated insulin secretion (GSIS); moreover, the insulino-
tropic effect of exenatide was reduced. However, leptin significantly
reduced pancreatic triglyceride level, and adding leptin to exenatide
(LEP/EX) remarkably enhanced GSIS. These results suggested that
the leptin treatment restored the insulinotropic effect of exenatide in
the mice. In addition, LEP/EX reduced food intake, body weight, and
triglyceride levels in the skeletal muscle and liver, and corrected
hyperglycemia to a greater extent than either monotherapy. The
pair-feeding experiment indicated that the marked reduction of pan-
creatic triglyceride level and enhancement of GSIS by LEP/EX
occurred via mechanisms other than calorie restriction. These results
suggest that leptin treatment may restore the insulinotropic effect of
exenatide associated with the reduction of pancreatic lipid deposition
in type 2 diabetes with increased adiposity. Combination therapy with
leptin and exenatide could be an effective treatment for patients with
type 2 diabetes with increased adiposity.

drug therapy; combination; insulin secretion

LEPTIN, AN ADIPOCYTE-DERIVED hormone, has therapeutic potential
for treating diabetes and obesity (7, 13 19, 27, 32, 34). In our
previous clinical trial in patients with lipodystrophy (6), we
confirmed the therapeutic usefulness of leptin as a glucose-low-
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ering agent, and it was first approved for the treatment of lipo-
dystrophy in Japan in March 2013. Given these glucoregulatory
effects of leptin, we and others have reported the therapeutic
usefulness of leptin for various forms of diabetes, including type
2 diabetes, in rodent models (20, 23, 26, 28, 47). The glucoregu-
latory effects of leptin are associated with the reduction of ectopic
lipid deposition, which increases with progression of obesity (36,
39, 46). The reduction of ectopic lipid deposition in the liver and
skeletal muscle could improve insulin sensitivity (42). In the
pancreas, the reduction of ectopic lipid deposition could improve
B-cell function such as glucose-stimulated insulin secretion
(GSIS) in rodents and humans (22, 39, 46).

On the other hand, glucagon-like peptide-1 (GLP-1), a
hormone released from the L cells of the intestine, improves
glucose metabolism by enhancing GSIS (18). However, in
patients with type 2 diabetes, the insulinotropic effect of
GLP-1 is substantially reduced (15, 29). This reduction may be
a consequence of the diabetic state rather than a contributor to
it (30). Chronic hyperglycemia and hyperlipidemia could re-
duce 3-cell function and could reduce the insulinotropic effect
of GLP-1 (10, 15). The correction of both these abnormalities
may restore 3-cell function and may restore the insulinotropic
effects of GLP-1 (11, 14, 49). Pancreatic lipid deposition can
also reduce B-cell function (41, 45), but its effect on the
insulinotropic effect of GLP-1 remains unknown.

In patients with type 2 diabetes, pancreatic lipid deposition
increases with progression of obesity, and GSIS is reduced (17,
36, 41, 45). Therefore, we speculated that leptin could restore the
insulinotropic effect of GLP-1 associated with the reduction of
pancreatic lipid deposition and enhance the efficacy of GLP-1
receptor agonists. If this hypothesis is confirmed, we might be
able to manage type 2 diabetes more effectively.

In the present study, we examined whether leptin could reduce
pancreatic lipid deposition and enhance the insulinotropic effect
of exenatide, a GLP-1 receptor agonist, in a mouse model of type
2 diabetes with increased adiposity induced by streptozotocin
(STZ) and high-fat diet (HFD) (STZ/HFD mice) (20).

MATERIALS AND METHODS

Animals. Seven-week old male C57BL/6J mice were purchased
from Japan SLC (Shizuoka, Japan). The mice were individually caged
and kept at a constant room temperature (25°C) under a 12:12-h
light-dark cycle with ad libitum access to water and a standard diet

http://www.ajpendo.org
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(SD; NMF, 3.5 kcal/g, and 13% of energy as fat; Oriental Yeast,
Tokyo, Japan). Animal care and all experiments were conducted in
accordance with the Guidelines for Animal Experiments of Kyoto
University and were approved by the Animal Research Committee,
Graduate School of Medicine, Kyoto University.

Generation of the mouse model of type 2 diabetes with increased
adiposity. We generated a mouse model of type 2 diabetes with
increased adiposity, as described previously (20). Eight-week-old
male C57BL/6J mice were intraperitoneally injected one time with
STZ (120 pg/g body wt) to induce partial loss of pancreatic B-cells.
Three weeks after the STZ injection, the mice that exhibited hyper-
glycemia (over 250 mg/dl, ad libitum) were fed with HFD (D12451,
4.7 keal/g, and 45% of energy as fat; Research Diets, New Brunswick,
NIJ) for 5 wk and used for the infusion experiments from 16 wk of age.
The mice continued to receive HFD during the infusion and pair-
feeding (PF) experiments. Age-matched male C57BL/6J mice fed SD
without an STZ injection were used as normal controls (NCs).

Leptin and/or exenatide infusion experiment. The STZ/HFD mice
were divided into four infusion groups [saline alone (SAL), leptin
alone (LEP), exenatide alone (EX), and leptin plus exenatide (LEP/
EX)] to counterbalance their starting body weights and blood glucose
levels. On day 0, all of the mice were implanted with two miniosmotic
pumps subcutaneously in the midscapular region (Alzet model 2002;
Alza, Palo Alto, CA). Each pump chronically delivered either saline,
recombinant mouse leptin (500 pgkg™'-day™!'; Amgen, Thousand
Oaks, CA), or exenatide (20 pgkg™'-day™!; Bachem, Bubendorf,
Switzerland) for 14 days. To examine the insulinotropic effect of
exenatide in NCs, we also chronically administered exenatide (20
pgkg™l.day™!) for 14 days as described above.

Food intake and body weight. The food intake and body weight of
the mice were measured every day between 1500 and 1700 for 14
days.

Indirect calorimetry. The measurement of oxygen consumption
(Vo2) and carbon dioxide production (Vcoz) was performed 48 h
between day 9 and 10 after >72 h of acclimation using an Oxymax
indirect calorimeter (Columbus Instruments, Columbus, OH). The
respiratory exchange ratio [RER, ratio of CO» production to O2
(Vcoa/V0s)] was calculated and averaged across the measurement
session.

Metabolic variables. Right before the infusion experiments, blood
samples were obtained after 4 h of fasting. During the infusion
experiments, ad libitum blood glucose levels were determined after
tail bleeds using a reflectance glucometer by the glucose oxidase
method between 1500 and 1700. At the end of the infusion experi-
ment, blood was obtained from the inferior vena cava after 4 h of
fasting. The plasma levels of insulin, leptin, triglyceride, total choles-
terol, and nonesterified fatty acid (NEFA) were measured as described
previously (20). The plasma exenatide levels were measured using
ELISA kits specific for exenatide (Phoenix Pharmaceuticals, Burlin-
game, CA).

Insulin tolerance test and intraperitoneal glucose tolerance test.
Either an insulin tolerance test (ITT) or intraperitoneal glucose toler-
ance test IPGTT) was performed in each mouse on day 1. For ITTs,
the mice were intraperitoneally injected with 0.4 mU/g human regular
insulin (Humulin R; Eli Lilly Japan, Kobe, Japan) after 4 h of fasting.
For IPGTTs, the mice were intraperitoneally injected with 1.0 mg/g
glucose after overnight fasting. Blood samples were obtained from the
tail vein at the indicated time points after insulin or glucose injection.
GSIS was assessed by dividing the incremental insulin response by
the incremental glucose response from 0 to 15 min [Ainsulin/Aglucose
(0-15 min) (ng/ml + mg/dl X 10%)] during IPGTTs.

Pancreatic, liver, and skeletal muscle triglyceride levels and pan-
creatic insulin level. The pancreas, liver, and gastrocnemius muscles
were isolated at the end of the experiments after 4 h of fasting. Tissue
triglyceride and pancreatic insulin levels were measured as described
previously (20, 28).
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PF experiment. The STZ/HFD mice were randomly divided into
three groups (SAL, LEP/EX, and PF) to counterbalance the starting
body weights and blood glucose levels. The PF group was fed daily
the same amount of HFD as that consumed by the LEP/EX group once
at the end of the light phase for 14 days. Saline, leptin (500
pgkgt-day ™), and exenatide (20 pg-kg™!-day~?!) were chronically
infused in each group as described above for 14 days.

Data analyses. Data were expressed as means = SE. In Figs. 14,
1D, 1E, 1F, 34, 3B, 4C, 4D, and 4L, comparisons were made using
two-way repeated-measure ANOVA models for all the data. For
within-group and between-group comparisons, corresponding con-
trasts were tested within the model. Between-group comparisons were
made at all time points. In Table 1, comparisons were made using
Student’s t-test in each parameter. In the other figures and Table 2,
comparisons were made using one-way ANOVA followed by Tukey’s
multiple-comparison test. A P value <0.05 was considered statisti-
cally significant.

RESULTS

Generation of the mouse model of type 2 diabetes with
increased adiposity. As shown in Table 1, the STZ/HFD mice
manifested hyperphagia and increased body weight. Hypergly-
cemia was exacerbated, although the plasma insulin levels
were similar to those in NCs, suggesting the development of
insulin resistance and impaired $-cell ability to secrete insulin
adequately. In these mice, the plasma cholesterol and tissue
triglyceride levels were also increased. Reduced pancreatic
insulin levels in the STZ/HFD mice suggested substantial loss
of pancreatic B-cells. GSIS was also reduced. These charac-

Table 1. Metabolic characteristics of the mouse model of
type 2 diabetes with increased adiposity

Mouse Group

Variables NC STZ/HFD

Food intake, kcal/wk 82.1 21 98.6 & 3.4%*
Body wt, g 259 *04 28.2 £ 0.5%*
Leptin, ng/ml 24+ 0.1 5.4 & (.3%*
Blood glucose, mg/dl 1249 = 45 407.5 = 30.6%*
Insulin, ng/ml 0.97 = 0.07 1.03 = 0.06
Triglyceride, mg/di 56.4 %24 573 +52
NEFA, meg/l 0.47 = 0.03 0.56 + 0.03
Total cholesterol, mg/dl 437 =38 93.6 =+ 4.3%%*
Muscle triglyceride level,

mg/g tissue 4915 11.1 £22%
Liver triglyceride level,

mg/g tissue 100 £ 1.1 30.7 & 3.3%*
Pancreatic triglyceride level,

mg/g tissue 5710 24,1 = 52%%*
Pancreatic insulin level,

ng/mg tissue 5194 =224 28.4 & 42%%
GSIS [Ainsulin/Aglucose

(0-15 min)], ng/ml + mg/dl X 103 1202 ~0.1 &= 0.2%*
GSIS under exenatide infusion

[Ainsulin/Aglucose (0-15 min)],

ng/ml + mg/dl X 103 32x09 0.4 = 0.5%

Data are reported as means = SE. NC, normal chow; STZ, streptozotocin;
HFD, high-fat diet; NEFA, nonesterified fatty acid. Parameters except for food
intake, tissue triglyceride levels, pancreatic insulin levels, and glucose-stimu-
lated insulin secretion (GSIS) were measured right before the infusion exper-
iment. Food intake was measured during 14 days of the saline infusion and
halved; tissue triglyceride levels and pancreatic insulin levels were measured
after the 14 days of saline infusion (n = 8 mice in each group). GSIS and GSIS
under exenatide infusion were assessed as described in detail in MATERIALS AND
METHODS (n = 5-6 mice in each group). *P < 0.05 and **P < 0.01 vs. NC.
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Table 2. Plasma leptin and exenatide levels in leptin- and/or exenatide-infused STZ/HFD mice

Infusion Group

Variables SAL LEP EX LEP/EX
Leptin, ng/ml 8613 38.5 & 5.p##iT 52*+03 24.0 = 4.4%4F
Exenatide, pmol/l ND ND 286.0 = 78.9 2357 =314

Data are reported as means £ SE; n = 12-14 mice in each group for leptin and n = 4-5 mice in each group for exenatide. SAL, slaine alone; LEP, leptin
alone; EX, exenatide alone. Plasma samples were obtained on day 14 of the infusion experiment. *P < 0.05 and **P < 0.01 vs. SAL. #P < 0.05 vs. LEP.
TP < 0.01 vs. EX. ND, not detected.

teristics were compatible with human type 2 diabetes with lowing this, we performed ITT to evaluate the effects on
increased adiposity. insulin sensitivity, the results of which showed a marked

Effects of leptin and/or exenatide on glucose metabolism in  decrease in blood glucose levels in the LEP/EX group than in
the STZ/HFD mice. Continuous administration of leptin (500 the other groups (Fig. 1D). Next, we performed IPGTT to
pgkgTl-day 1) and exenatide (20 pgkg~!-day!) elevated evaluate the effects on insulin secretion, the results of which
plasma leptin levels to almost 20—30 ng/ml above baseline and  showed significant improvement of glucose tolerance in the
plasma exenatide levels to around 250 pmol/l, respectively, in LEP/EX group than in the other three infusion groups (Fig.
the STZ/HFD mice (Table 2). 1E). The plasma insulin levels in the SAL group at 15 min did

After the infusions, LEP, EX, and LEP/EX significantly not increase from those at 0 min (Fig. 1F), and Ainsulin/
corrected hyperglycemia. Furthermore, LEP/EX corrected hy-  Aglucose (0—15 min) values were severely reduced compared
perglycemia to a greater extent than either monotherapy (Fig.  with those in the NC group (Fig. 1G), indicating reduced GSIS
1, A and B). Plasma insulin levels were not significantly in the STZ/HFD mice (Table 1). In addition, GSIS under
different among each infusion group and the NC group (Fig. exenatide infusion, the Ainsulin/Aglucose (0—15 min) values in
1C), suggesting that factors affecting insulin secretion, such as  the exenatide (20 wg-kg™'-day ~')-infused mice, were mark-
blood glucose and lipid levels, insulin sensitivity, and other edly reduced in the STZ/HFD mice compared with those in the
insulin secretagogues, worked differently in each group. Fol- NC group (Table 1), suggesting a reduced insulinotropic effect
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Fig. 1. Effects of leptin and/or exenatide on glucose metabolism in the streptozotocin (STZ)/high-fat diet (HFD) mice. A: ad libitum blood glucose levels in the
saline alone (SAL, white circles), leptin alone (LEP, black circles), exenatide alone (EX, white squares), LEP/EX (black squares), and normal control (NC, cross
marks) groups for 14 days (n = 14—18 mice in each infusion group; n = 8 mice in NC). B and C: plasma glucose levels (B) and insulin levels (C) on day 14
(n = 14-18 in each group). D: %decrease of initial value of blood glucose levels during the insulin tolerance test (ITT) in the same four infusion groups and
NC group on day 11 (n = 8-10 in each group). E: blood glucose levels during the intraperitoneal glucose tolerance test (IPGTT, n = 8-10 in each group). F:
plasma insulin levels at 0 and 15 min during IPGTT (n = 8-10 in each group). G: Ainsulin/Aglucose (0—15 min) values in IPGTT (n = 8-10 in each group).
Data are reported as means = SE. Between-group significant differences are indicated at each time point. *P < 0.05 and **P < 0.01 vs. SAL. #P < 0.05 and
##P < 0.01 vs. LEP. TP < 0.05 and 7P < 0.01 vs. EX. ¢¢P < 0.01 vs. NC. §P < 0.05 and §§P < 0.01 vs. SAL, LEP, and EX. P < 0.05 and 3P < 0.01
for SAL vs. the others. TP < 0.05 and 7P < 0.01 vs. the value at day 0 or 0 min in the same infusion group.
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Fig. 2. Effects of leptin and/or exenatide on lipid metabolism in the STZ/HFD
mice. A-C: plasma triglyceride (A), nonesterified fatty acid (NEFA, B), and
total cholesterol (C) levels on day 14 (n = 12-14 in each infusion group; n =
8 in NC). D-F" pancreas (n = 7-10 in each group; D), liver (n = 12-14 in each
infusion group; n = 8 in NC; E), and gastrocnemius muscle (n = 8-9 in each
group; F) triglyceride levels on day I4. Data are reported as means * SE.
*P < 0.05 and **P < 0.01 vs. SAL. #P < 0.05 vs. LEP. 1P < 0.05 and
TTP < 0.01 vs. EX. $$P < 0.01 for NC vs. the others.

of exenatide in the STZ/HFD mice. However, LEP/EX signif-
icantly increased plasma insulin levels at 15 min from those at
0 min (Fig. 1F) and markedly augmented the Ainsulin/
Aglucose (0—15 min) values than the other three infusion
groups (Fig. 1G). In IPGTT, at 0 min, the plasma glucose
levels were similar among the LEP, EX, and LEP/EX groups.
These results suggested that adding leptin to exenatide restored
the insulinotropic effect of exenatide in the STZ/HFD mice.

Effects of leptin and/or exenatide on plasma lipid levels and
tissue triglyceride levels in the STZZHFD mice. Because both
plasma lipid levels and lipid deposition in the pancreas affect
GSIS (22, 41, 45, 50), we measured plasma lipid levels and
triglyceride levels in the pancreas.

After the infusion experiment, EX and LEP/EX significantly
reduced plasma triglyceride levels, and LEP also tended to
reduce comparable to that in the EX and LEP/EX groups (Fig.
2A). NEFA and total cholesterol levels remained unchanged
(Fig. 2, B and C). LEP and LEP/EX markedly reduced and
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almost normalized pancreatic triglyceride levels. Pancreatic
triglyceride levels in the LEP/EX group also significantly
reduced compared with those in the EX group (Fig. 2D). In
addition, LEP/EX markedly reduced and almost normalized
and LEP tended to reduce triglyceride levels in the liver and
skeletal muscle (Fig. 2, E and F).

Effects of leptin and/or exenatide on food intake, body
weight, and energy expenditure in the STZ/HFD mice. Body
weight reduction itself may reduce pancreatic triglyceride de-
position and improve f-cell function (22, 39). Thus, we exam-
ined the effects of leptin and/or exenatide on food intake and
body weight in the STZ/HFD mice. Although the body weight
was increased in the SAL group during the experiment period,
LEP and EX significantly reduced food intake and body
weight, and, furthermore, LEP/EX reduced them to a greater
extent than either monotherapy (Fig. 3, A and B). Vo, tended
to increase in the LEP and LEP/EX groups (Fig. 3C). LEP/EX
significantly decreased RER, indicating increased utilization of
fat as a fuel source (Fig. 3D).

PF experiment. Next, we performed a PF experiment to
examine the effects of anorexic and weight-reducing effects by
LEP/EX on pancreatic triglyceride levels and GSIS. In the PF
group, we fed daily the same amount of HFD that was con-
sumed by the LEP/EX group for 14 days to the STZ/HFD mice
(Fig. 4A). The PF group showed a significant reduction in body
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Fig. 3. Effects of leptin and/or exenatide on food intake, body weight, and
energy expenditure in the STZ/HFD mice. A and B: cumulative food intake (A)
and changes in body weight (B8) in the SAL (white circles), LEP (black circles),
EX (white squares), and LEP/EX (black squares) groups for 14 days (n =
14-18 in each group). C and D: oxygen consumption (V02, C) and respiratory
exchange ratio (RER, D) on days 9-10 (n = 4 in each group). Data are reported
as means = SE. Between-group significant differences are indicated at each
time point. *P < 0.05 vs. SAL. #P < 0.05 vs. LEP. 7P < 0.01 vs. EX.
P < 0.05 and £iP < 0.01 for SAL vs. the others. §P < 0.05 and §§P < 0.01
for LEP/EX vs. SAL, LEP, and EX. £P < 0.05 and ££P < 0.01 for EX and
LEP/EX vs. SAL and LEP. 7P < 0.05 and 1P < 0.01 vs. the value at day 0
in the same infusion group.
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weight comparable to that in the LEP/EX group (Fig. 4B).
However, the improvement of blood glucose levels in the PF
group was lower than that in the LEP/EX group (Fig. 4C). In
IPGTT, glucose tolerance did not improve (Fig. 4D), and GSIS
did not improve in the PF group (Fig. 4E). The pancreatic (Fig.
4F), liver (Fig. 4G), and skeletal muscle (Fig. 4H) triglyceride
levels were not reduced; plasma lipid levels were comparable
to those in the LEP/EX group (Fig. 4, I, J, and K), and the
improvement of insulin sensitivity was lower in the PF group
than in the LEP/EX group (Fig. 4L).

DISCUSSION

In the present study, we used the STZ/HFD mice as a mouse
model of type 2 diabetes with increased adiposity. In the mice,
adding leptin to exenatide enhanced GSIS to a greater extent
than either monotherapy, which was associated with the reduc-

tion of pancreatic triglyceride levels. In addition, LEP/EX
reduced tissue triglyceride levels in the liver and skeletal
muscle, improved insulin sensitivity, and corrected hypergly-
cemia to a greater extent than either monotherapy. Further-
more, LEP/EX reduced food intake and body weight to a
greater extent than either monotherapy. However, the PF ex-
periment indicated that mechanisms other than calorie restric-
tion were involved in the reduction of the pancreatic triglyc-
eride level and the enhancement of GSIS by LEP/EX.

The STZ/HFD mice showed defects in the pancreatic B-cell
function (Table 1 and Fig. 1, F and G) and insulin resistance
(Fig. 1D). These characteristics are compatible with type 2
diabetes. In addition, plasma leptin levels in the mice (Table 1)
suggested that they increased body weight to overweight range
because it was reported that twofold increase in plasma leptin
levels correspond to a body mass index in the range of 25-30
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kg/m? in humans (33). Impaired insulin secretion due to STZ
injection would have reduced the effect of HFD to increase
body weight. Adiposity was also increased in the mice. There-
fore, we used the STZ/HFD mice as a mouse model of type 2
diabetes with increased adiposity. Substantially reduced pan-
creatic insulin levels in the mice (Table 1) also suggested that
they were in a late stage of type 2 diabetes. In the mice,
LEP/EX markedly improved glucose metabolism.

In healthy individuals, oral glucose ingestion enhances in-
sulin secretion to a greater extent than intravenous glucose
infusion (24), which is called the “incretin effect.” This effect
is elicited by gut hormones such as GLP-1 and glucose-
dependent insulinotropic polypeptide (GIP) called “incretin,”
which are released from the enteroendocrine cells of the
intestine in response to meal ingestion (5, 18). However, in
patients with type 2 diabetes, the insulinotropic effect of GIP is
largely disappeared, and the insulinotropic effect of GLP-1 is
also reduced (15, 31). Recent studies have indicated that
consequences of the diabetic state, such as reduced P-cell
function and mass, could largely contribute to the reduction of
the incretin effect in type 2 diabetes, whereas genetic defects
(i.e., allelic variation of TCF7L2 and WES1) and reduced
incretin secretion may also contribute (35, 38). Hyperglycemia
and hyperlipidemia, which impair B-cell function, can also
reduce the incretin effect (15, 50). In this context, Hojberg et
al. recently reported that correcting hyperglycemia could re-
store the insulinotropic effect of GLP-1 (11), and Kang et al.
also reported that correcting hyperlipidemia using bezafibrate
could restore the insulinotropic effect of exenatide (14). How-
ever, in the present study, another factor, besides hyperglyce-
mia and hyperlipidemia, was suspected to play a role in the
reduction of the insulinotropic effect of exenatide. Before
IPGTT, the blood glucose levels were similar among the LEP,
EX, and LEP/EX groups (Fig. 1E). Plasma lipid levels were
also similar among the three groups (Fig. 2, A, B, and C).
However, LEP/EX enhanced GSIS to a greater extent than
either monotherapy (Fig. 1G).

Pancreatic lipid deposition, which increases with progres-
sion of obesity, reportedly causes B-cell dysfunction (41, 45).
Improvement of B-cell function associated with the reduction
of pancreatic lipid deposition has been found in rodents and
humans (22, 39, 46). Even in obese patients with normal
glucose tolerance, the pancreatic lipid levels are increased and
the incretin effect is reduced (17, 36). These reports had
suggested that pancreatic lipid deposition could also affect the
incretin effect; however, this has not been confirmed. In the
present study, we reported for the first time the restoration of
the insulinotropic effect of exenatide by the coadministration
of leptin, and this effect was associated with the reduction of
pancreatic triglyceride levels in the STZ/HFD mice. (Figs. 1F,
1G, and 2D).

Leptin itself could not be expected to produce direct insuli-
notropic effects; however, it may improve B-cell functions
such as GSIS associated with the reduction of pancreatic lipid
deposition in rodents (39, 46). This ectopic lipid-lowering
effect of leptin has been reported to be far beyond its effect on
food intake and body weight and was attained by mechanisms
such as sympathetic nerve activation and increasing lipid
oxidation (20, 25, 43). Although a GLP-1 receptor agonist
could also reduce ectopic lipid deposition, a substantial effect
was associated with body weight reduction (3, 40). The results
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of the PF experiment also suggested that the reduction of
pancreatic triglyceride levels by LEP/EX was achieved by
mechanisms other than weight reduction (Fig. 4). Therefore,
the marked reduction of pancreatic triglyceride levels by
LEP/EX (Fig. 2D) could have been achieved by leptin rather
than exenatide, at least during the 2 wk of the experimental
period. The pancreatic lipid-reducing effect of leptin may have
restored P-cell function and the insulinotropic effect of ex-
enatide in the STZ/HFD mice.

There may be some reasons that leptin alone did not restore
GSIS, although it did significantly reduce the pancreatic tri-
glyceride levels (Figs. 1F, 1G, and 2D). First, the intrinsic
incretin levels may have not been high enough to exert the
incretin effect in the LEP group. We performed IPGTT rather
than an oral challenge because it enabled the investigation of
insulin secretion without any confounding effects from intrin-
sic incretins. Therefore, incretin levels should have been low in
the fasting condition of the LEP group during IPGTT. On the
other hand, plasma exenatide levels in the LEP/EX group were
2357 = 31.4 pM (Table 2), which was comparable to the
plasma GLP-1 level reported in obese patients after undergoing
bariatric surgery, and could markedly improve glucose and
energy metabolism (8, 21). In addition, in patients with type 2
diabetes, the physiological concentration of GLP-1 could not
sufficiently induce GSIS, but a supraphysiological dose of a
GLP-1 receptor agonist could; however, compared with
healthy controls, the insulinotropic effect of the supraphysi-
ological dose of GLP-1 was still reduced (15, 31). Thus the
exenatide treatment may have been necessary to produce a
marked restoration of GSIS by LEP/EX in the STZ/HFD mice.
Second, the substantial loss of pancreatic B-cells in the STZ/
HFD mice, suggested by the reduction of pancreatic insulin
levels to less than 1/10th of those of the NC group (Table 1),
may have masked the improvement of B-cell function with
leptin. Hosokawa et al. reported that GSIS and the insulino-
tropic effect of GLP-1 were substantially reduced in diabetic
rats after a 90% pancreatectomy (12). Thus, leptin alone could
not have restored GSIS in the STZ/HFD mice.

Plasma leptin levels in the LEP group (Table 2) were
comparable to the peak plasma leptin levels observed in our
clinical trial of leptin replacement therapy in patients with
lipodystrophy (6), and it could be clinically applicable in
humans.

The anorexic and weight-reducing effects of leptin and
GLP-1 are reduced in obesity (1, 4, 9, 44). However, LEP/EX
enhanced these effects to a greater extent than either mono-
therapy (Fig. 3, A and B). These results were similar to those
recent reports by Williams and others using lean and obese
rodents (27, 48). As for mechanisms, Williams et al. reported
that leptin could potentiate the anorexic effect of GLP-1 via
central nervous system (CNS) mechanisms (48). On the other
hand, the marked reduction of tissue triglyceride levels (Fig. 2,
D, E, and F) and RER (Fig. 3D) by LEP/EX also suggested the
action of leptin being restored because these effects were
expected with leptin rather than exenatide (2, 3). GLP-1 could
also regulate glucose metabolism via CNS mechanisms such as
the arcuate nucleus in the hypothalamus, which plays an
essential role in the glucoregulatory action of leptin (16, 37).
Thus, leptin and exenatide may have interacted to restore each
other’s energy balance regulating and glucoregulatory effects
via CNS mechanisms. This issue may also have a therapeutic
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potential but requires further investigation. Furthermore, the
STZ/HFD mice would not be obese but overweight as men-
tioned above, and the glucose-lowering effect of leptin mono-
therapy was partially preserved in the present study. Whether
LEP/EX could exhibit marked glucose-lowering effect to a
greater extent than either monotherapy even in leptin-resistant
(9) obese type 2 diabetes will deserve specific attention in the
future.

In conclusion, our findings suggest that leptin treatment may
restore the insulinotropic effect of exenatide associated with
the reduction of the pancreatic lipid deposition in type 2
diabetes with increased adiposity. In addition, the coadminis-
tration of leptin and exenatide reduced food intake and body
weight to a greater extent than either monotherapy. Thus,
combination therapy with leptin and exenatide could be an
effective treatment for patients with type 2 diabetes with
increased adiposity.
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Somatic chromosomal translocation
between Ewsrl and Flil loci leads to
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model
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A mouse model that recapitulates the human Ewing’s sarcoma-specific chromosomal translocation was
generated utilizing the Cre/loxP-mediated recombination technique. A cross between Ewsrl-loxP and Flil-
IoxP mice and expression of ubiquitous Cre recombinase induced a specific translocation between Ewsrl
and Flil loci in systemic organs of both adult mice and embryos. As a result EwsrI-Flil fusion transcripts
were expressed, suggesting a functional Ews-Flil protein might be synthesized in vivo. However, by two
years of age, none of the EwsrI-loxP/Flil-loxP/CAG-Cre (EFCC) mice developed any malignancies,
including Ewing-like small round cell sarcoma. Unexpectedly, all the EFCC mice suffered from dilated
cardiomyopathy and died of chronic cardiac failure. Genetic recombination between Ewsrl and Flil was
confirmed in the myocardial tissue and apoptotic cell death of cardiac myocytes was observed at significantly
higher frequency in EFCC mice. Moreover, expression of Ews-Flil in the cultured cardiac myocytes induced
apoptosis. Collectively, these results indicated that ectopic expression of the Ews-Flil oncogene stimulated
apoptotic signals, and suggested an important relationship between oncogenic signals and cellular contextin
the cell-of-origin of Ewing’s sarcoma.

hromosomal translocation is a common feature of malignant neoplasms®. There is growing evidence that
tumor-specific translocations and inversions commonly occur among hematopoietic, mesenchymal and
epithelial tumors. An increasing number of gene fusions resulting from translocation have been observed as
novel technological tools have been applied. Tumor-associated chromosomal translocations include two major
molecular mechanisms. One is an oncogene juxtaposition to the enhancing elements of immunoglobulin or T-cell
receptor associated with lymphoid neoplasms. As a result of the juxtaposition, constitutive expression of onco-
genes such as ¢-MYC, BCL2 or CCNDI induces abnormal cellular functions, including cell cycle progression and
apoptosis suppression'. Another important outcome of translocation in cancer is gene fusion or formation of
chimeric genes. Two major functional aberrations of fusion gene products are constitutive activation of signal
transduction and dysregulation of transcription. Most oncogenic gene fusions in human bone and soft tissue
sarcomas belong to the latter group, and there is a specific relationship between tumor types and each gene fusion?.
To clarify the functional roles of sarcoma-specific chromosomal translocations and gene fusions, it would be
ideal to induce chromosomal translocation in animal models in vivo. In contrast to transgenic expression of
fusion genes, translocation-mediated gene fusion recapitulates gene expression levels equivalent to, and splice
variants similar to those in human tumors. Inducible, site-specific chromosomal translocation has been achieved
using Cre-loxP-mediated recombination in murine ES cells. Using this strategy, translocations between ¢c-myc
and immunoglobulin heavy chain loci, and between Dek and Can loci were successfully induced, though the
efficiencies were not very high®*. Indeed, a mouse model of Cre-loxP-mediated in vivo gene fusion between Ml
and Af9 developed acute myeloid leukemia®. However, it is not known whether solid tumor-related translocation
in vivo can induce malignancies of the anticipated phenotypes.
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The ETS family of transcription factors includes FLI1 and ERG.
They are major fusion partners for the EWSRI gene in human
Ewing’s sarcoma®’. EWS-FLI1 and EWS-ERG function as oncogenic
transcription factors that dysregulate their downstream targets such
as NKX2-2, NROB1 and EZH2®. It is, however, difficult to generate a
good animal model by introduction of EWS-FLII or EWS-ERG into
ES cells or mouse eggs®. Moreover, conditional EWS-FLII expression
in hematopoietic cells induced myeloid and erythroid leukemia in
mice®. Thus, it might be necessary to activate multiple target genes
without activating pro-apoptosis signals for tumorigenic activity of
EWS-ETS. We therefore hypothesized that EWS-ETS translocation
is achieved by chance in human somatic cells of appropriate lineages
and differentiation status, and such in vivo translocation could prop-
erly induce Ewing’s sarcoma.

In an effort to induce Ewing’s sarcoma in a mouse model, we have
succeeded in promoting in vivo Cre-loxP-mediated translocation

tom). Rearranged bands are indicated by arrows.

between Ewsrl and Flil loci on chromosomes 11 and 9, respectively.
Although the EwsrI-Flil fusion was confirmed at both DNA and
RNA levels, no neoplastic lesion was induced in the model.
Unexpectedly, the mice with systemic translocation developed
dilated cardiomyopathy due to degeneration and apoptotic cell death
of cardiac myocytes. The result indicates that ectopic chromosomal
translocation and gene fusion activates apoptotic signals, resulting in
degenerative cardiac disease.

Results

Generation of a mouse model for somatic chromosomal trans-
location between Ewsrl and Flil. To induce locus-specific chro-
mosomal translocation, loxP sequences were introduced into Ewsrl
intron 7 on mouse chromosome 11 and Fli1 intron 5 on chromosome
9 (Fig. 1A), since chromosomal breakpoints in human Ewing’s
sarcoma are most frequently observed in these loci'®. Successful
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translocation in the organs of Rosa26-CreER and Mx1-Cre background detected by nested genomic PCR. Gel image shown is cropped and representative

of gels run under the same experimental conditions.

knock-in of JoxP sequences mediated by homologous recombination
was confirmed for both loci in independent ES cells by Southern
blotting (Fig. 1B). Both Ewsr* and Flil"* mice appeared normal
and healthy at birth. Germline transmission of the targeted alleles
was confirmed. Ewsr ¥+ and FliI** mice were crossed to obtain mice
having both mutations.

Genomic chromosomal translocation between chromosomes 9
and 11 in the Ewsrl*:Flil""*:CAG-Cre (EFCC) mice. The
Ewsrl”* and Flil”* mice were further crossed with CAG-Cre,
Mx1-Cre or Rosa26-CreER mice to induce somatic chromosomal
translocation between chromosomes 9 and 11 (Fig. 2A). Dual color
fluorescence in situ hybridization (FISH) analysis of embryonic
fibroblasts derived from the EFCC mice showed juxtaposition of
the signal on der9 of BAC clone RPCI-23 64E17 from chromo-
some 11 and that of 218031 from chromosome 9 (Fig. 2B). Reci-
procal genomic translocations in systemic organs were examined by

genomic PCR using Ewsrl- and Flil-specific primers, and both
EwsrI-Flil and Flil-Ewsr] translocations were detected in tail skin
of all the mice examined (n = 30). The translocations in systemic
organs were examined in three mice, and both Ewsr1-Flil and Flil-
Ewsrl translocations were detected in all the organs examined
(Fig. 2C). The results indicated that loxP-mediated recombination
was effective at inducing somatic translocation by ubiquitous Cre
recombinase expression. The frequencies of the chromosomal
translocations were 1.5 X 107° at the highest in heart and 1 X
107 in bone marrow as estimated by quantitative genomic PCR
comparing Ewsrl-Fli]l and Tribl signals (Fig. 2D). The estimated
translocation frequencies in the model are higher than those
observed in ES cells described in the previous report’. When Cre
recombinase was inducibly expressed by tamoxifen or polylpolyC
administration in a Rosa26-CreER or MxI-Cre background,
respectively, both Ewsrl-Flil and Flil-Ewsrl translocations were
observed (four mice each) (Fig. 2e). However, the translocations
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were detected only by nested PCR in limited organs, indicating that
recombination was less frequent in these Cre transgenes. In addition,
inducible expression of Cre upon in the MxI-Cre background
resulted in translocations being limited to hematopoietic tissues.

Detection of chimeric Ewsrl-Flil fusion transcripts in EFCC mice.
To confirm that gene fusion between Ewsrl and Flil was accom-
panied by the anticipated transcription, RT-PCR was performed
using RNA samples obtained from systemic organs of both adult
and embryonic mice (three mice each) (Fig. 3A, 3B). The Ewsrl-
Flil fusion was detected in all the embryonic organs examined,
and the expression of the fusion gene was decreased in bone and
liver of the adult mice. Diminished EwsrI-Flil expression in adult
bone and liver might be related to decreased proliferative activity of
osteochondrogenic tissues and disappearance of embryonic hemato-
poietic cells, respectively. No reciprocal Flil-Ewsrl fusion transcript
was detected in any of the organs examined (data not shown). The
cDNA sequence of the EwsrI-Flil fusion transcript was analyzed by
sequencing, and in-frame fusion between Ewsr] exon 7 and Flil exon
6 was confirmed (Fig. 3C). It is expected that the fusion product
included both the EWS Q-rich repeats and the FLI1 ETS DNA
binding domain''. Thus, the data strongly suggested that a func-
tional EWS-FLI1 protein was produced by somatic chromosomal
translocation in the model.

EFCC mice died of chronic cardiac failure due to dilated
cardiomyopathy. No malignant neoplasms, including Ewing’s
sarcoma-like lesions, were observed in EFCC mice (n = 30) for a
two year period after birth. Neither sarcomas nor benign neoplasms
were detect by careful examination of mice irrespective of age.
Instead, most of the EFCC mice showed growth retardation and
decreased motility. All the EFCC mice died by 100 weeks of age
with a mean survival time of only 40 weeks (Fig. 4A). The diseased
mice were carefully examined at autopsy and they showed extensive
dilatation of heart (Fig. 4B). The heart weight/body weight ratio as
well as heart weight itself of EFCC mice was significantly greater than
that of control mice from 31 to 42 weeks (Fig 4C, Table 1). Mice of the
age were selected since the severity of cardiac lesions was significantly
varied in younger EFCC mice. The pathological examination further

revealed the cardiac lesions and subsequent systemic congestive
changes. The hearts of EFCC mice showed extensive dilatation of
both the ventricles and thin ventricular wall without any signs of
cardiac hypertrophy (Fig 4D). The earlier the mice became sick,
the more severe the cardiac lesions were. High power views of
cardiac sections indicated a disorganized arrangement of myocar-
dial fibers with increased collagen fibers between the muscle bundles.
The subendocardial area was severely affected and leukocytic infil-
tration was sometimes present. There was severe chronic congestion
in systemic organs such as lung, liver or spleen accompanied by
ischemic necrosis around the central vein of the liver (Fig. 4E).

Consistent with the pathological findings, echocardiographic ana-
lysis revealed reduced wall thickness, significant fractional shorten-
ing and decreased ejection fraction in EFCC mice (Fig. 5, Table 2). In
contrast, there was no significant difference in blood pressure, heart
rate or diastolic dimension between EFCC and wild-type mice
(Table 2). Collectively, these findings are consistent with those of
dilated cardiomyopathy.

Ewsr1-Flil translocation and Ewsrl-Flil expression induced
myocardial damage. To obtain insights into the mechanisms of
dilated cardiomyopathy in EFCC mice, the cardiac lesion was fur-
ther investigated. Laser microdissection followed by genomic PCR to
detect the Ewsr1-Flil translocation was carried out (Fig. 6A). Ewsrl-
Flil was abundantly observed in the outer area of the ventricular wall,
however, no signal was detected in the subendocardial area where the
myocardial damage was more severe (Fig. 6A, 1 and 3). Severer
damages in the subendocardial area were observed in most of
mice, though the reason for such uneven distribution of cardiac
lesions was unclear. The results suggested degeneration of cardiac
myocytes with translocation and perhaps gradual loss due to the
pathologic effects of Ewsr1-Flil expression. Indeed, a TUNEL assay
using the cardiac sections showed significantly increased apoptosis in
EFCC mice compared to wild-type (Fig. 6B).

The toxic effect of Ewsr1-Flil was directly evaluated by its exogen-
ous expression in cultured cardiac myocytes. The murine neonatal
cardiac myocytes were infected with EwsrI-Flil-lentivirus and the
frequencies of apoptosis were evaluated (Fig. 6C). The TUNEL assay
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Figure 4 | EFCC mice died of chronic cardiac failure. (A) Kaplan-Meier survival curve. Statistical significance was evaluated by the log-rank test.
(B) Cardiac enlargement in the EFCC mouse (right) compared to EF;wild-type (left). (C) Box plot of the heart weight/body weight ratios for EF;wild-type
(n = 6) and EFCC mice (n = 6). (D) Extensive ventricular dilatation of the heart in the EFCC mouse without myocardial hypertrophy (top). High power
view of myocardium with H&E (middle) and Masson’s trichrome staining (bottom). Extensive fibrosis is indicated as blue staining in the EFCC heart.
(E) Chronic congestion of systemic organs in EFCC mice including lung, liver and spleen. Note necrotic changes around the central vein of liver.

showed that apoptosis of cardiac myocytes was significantly
increased when Ewsr1-Flil was expressed in the cardiac myocytes.
The Annexin V/PI flow cytometry analysis showed increases of both
early and late apoptosis as well as necrosis in cardiac myocytes by
Ewsrl1-Flil expression (Fig. 6C). These results indicated that EwsrI-
Flil induced cellular apoptosis in the cardiac tissue, resulting in
cellular damage and eventual dilated cardiomyopathy. In addition,
Ewsrl-Flil expression in human cardiac fibroblasts induced
increased expression of COLIAI (Fig. 6D), suggesting that Ewsrl-
Flil may also play some role in cardiac fibrosis.

A previous study indicated that the high level of expression of Cre
recombinase itself showed cardiac toxicity'>. The expression level of
the Cre protein in the hearts of the EFCC mouse was therefore
compared with high-expressing Cre transgenic mice (Fig. 6E). Cre
expression of EFCC mice was comparable to the low Cre transgenic
mice that did not show cardiac lesions. The results indicated that the
cardiac lesion was caused not by Cre expression but by EwsrI-FIil.

Discussion
Cre/loxP-mediated chromosomal translocations in mouse models
have been reported™>™. In those studies loxP sites were inserted into

the introns of Mll or Af9 genes, and the mice carrying the mutations
were crossed to place loxP sites in both genes. Both ubiquitous and
hematopoietic-specific expression of Cre recombinase induced in
vivo chromosomal translocation and the fusion of Mil and Af9,
resulting in leukemia development. In contrast, leukemia was not
observed in the mice bearing chromosomal translocation between
AMLI and ETO in vivo using a similar protocol'.

In the present study, Ewsr1-Flil fusion was successfully induced
in various organs. Ewing’s sarcoma, however, did not develop in
the mice, suggesting that the cell-of-origin of Ewing’s sarcoma
might constitute a rare cellular population unlike hematopoietic
neoplasms. Supporting this idea, we have recently succeeded in
developing Ewing’s sarcoma-like small round cell tumors by intro-
ducing Ews-Flil or Ews-Erg into eSZ cells that are enriched in
embryonic chondrogenic progenitors'®. Therefore, when chromo-
somal translocation between Ewsrl and Flil is efficiently induced
in eSZ cells, Ewing’s sarcoma can develop in a certain cohort using
the current translocation model. It is likely that ubiquitous Cre
expression affects most cell lineages both in developing and adult
mouse tissues including the true cell-of-origin of Ewing’s sarcoma.
However, the low frequency of chromosomal recombination could
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