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class of deacetylase activity. Sirtinol counteracted the CBF
retention at 2 hours after BCAS (vehicle group, 87.1£3.6%
versus sirtinol group, 66.8+3.3%; Figure 4B). It is notable
that CBF of sirtinol-treated Sirt1-Tg mice was lower than that
of wild-type littermates (74.3%3.2%), indicating that sirtinol
inhibited the endogenous SIRT1 (plus other sirtuins expressed
in cerebral blood vessels). Sham operation did not alter CBF
of sirtinol-treated Sirt]1-Tg mice (Figure IV in the online-only
Data Supplement). Thus, the deacetylating activity of SIRT1
is required for the maintenance of CBF after cerebral hypoper-
fusion in Sirt1-Tg and wild-type mice.

Sirt1-Tg Mice Exhibit a Higher Cerebral
Vasodilatory Response to an eNOS Agonist

A previous in vitro study suggested that the vasodilating activ-
ity of eNOS is potentiated by SIRT1.% To test the possible
involvement of eNOS in the phenotype of Sirt]-Tg mouse, we
measured CBF before and after the exposure with a classical
eNOS agonist acetylcholine. CBF of Sirt]-Tg mice showed
significantly larger response to acetylcholine than that of
wild-type littermates (Sirt1-Tg, 18.843.3% versus wild-type,
8.0+1.8%; Figure 5A and 5C). In vivo vessel imaging with
fluorescein isothiocyanate-dextran corroborated the results

A Wild-type

Sirt1-Tg

with vasodilatory responses to acetylcholine (Sirtl-Tg,
7.01+0.83% versus wild-type, 3.65+0.44%; Figure 5B and
5D). We also used S-Nitroso-N-acetyl-o.-penicillamine, a
nitric oxide (NO) donor, instead of acetylcholine, and deter-
mined whether the whole NOS machinery can be bypassed
to raise CBF in both genotypes. Wild-type and Sirt]-Tg mice
showed similar increase in CBF in response to S-Nitroso-
N-acetyl-oi-penicillamine, which was relatively greater than
the response to acetylcholine (Figure V in the online-only
Data Supplement).

Excess SIRT1 Suppresses eNOS Acetylation

After BCAS

To explore the molecular pathway involved in our in vivo
findings, we conducted biochemical analyses. The levels
of the total eNOS in the brain homogenates did not differ
between wild-type and Sirtl-Tg littermates, both before and
at 2 hours after BCAS. The cerebral protein level of Ser1177-
phosphorylated eNOS increased at 2 hours after BCAS in
wild-type mice, but not in Sirtl-Tg mice, reflecting lack of
vascular endothelial growth factor-mediated compensatory
response after CBF reduction? in Sirtl-Tg mice. To detect
deacetylated eNOS specifically, brain homogenates before
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Figure 5. Sirt1-overexpressing (Sirt1-Tg)
mice exhibited increased vasodilative
response to acetylcholine (ACh). Tempo-
ral changes in cerebral blood flow (CBF)
assessed by laser speckie flowmetry (A)
and in diamteters of leptomeningeal arter-
ies (B) before (left) and after (right) perfu-
sion of ACh on brain surface in wild-type
and Sirt1-Tg mice. Scale bars indicate 1
mm (A) and 50 um (B). Histograms show-
ing % increase of CBF assessed by laser
speckle flowmetry (C) and % increase of
vascular diameter (D) in response to ACh in
wild-type (n=6) and Sirt1-Tg mice (n=6).
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Figure 6. Endothelial nitric oxide synthase (eNOS) was completely deacetylated in Sirt1-overexpressing (Sirt1-Tg) mice at 2 hours after
bilateral common carotid artery stenosis (BCAS). A, Immunobilots of total eNOS, phosphorylated eNOS, acetylated eNOS, and nonac-
etylated eNOS and B-actin of wild-type and Sirt1-Tg mice before and at 2 hours after BCAS. The results of 2 different animals for each
genotype are shown. Similar results were obtained in 2 other animals. B, Histogram showing the ratio of eNOS, phosphorylated eNOS,
acetylated eNOS, and nonacetylated eNOS to p-actin. C, Cerebral blood flow of vehicle-treated Sirt1-Tg mice (n=7) and cavtratin-treated
Sirt1-Tg mice (n=6) before and at 2 hours after BCAS. *P<0.01 vs vehicle.

and at 2 hours after operation were immunoprecipitated
with antibodies against acetylated lysine, and the immuno-
precipitates were probed with antibodies against eNOS to
detect acetylated eNOS. Intriguingly, acetylated eNOS was
undetectable in the both groups before BCAS, whereas it
became detectable only in wild-type mice after BCAS. In the
pooled elution fractions that are expected to contain nonac-
etylated eNOS, brain tissues from Sirtl-Tg mice contained
greater amounts of nonacetylated eNOS compared with those
from wild-type littermates after BCAS, but the amounts of

nonacetylated eNOS before BCAS in both groups were simi-
lar (Figure 6A and 6B).

CBF Retention in Sirt1-Tg Mice After BCAS Is
Abolished by eNOS Inactivation

To verify the requirement of eNOS activation for the CBF
retention in Sirtl-Tg mice after BCAS, we treated them
with an eNOS inhibitor, cavtratin (caveolin-1 scaffolding
domain peptide, 10 mg/kg per day 3x days). Cavtratin sig-
nificantly reduced CBF of Sirtl-Tg mice at 2 hours after
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BCAS (cavtratin, 77.7+4.1% versus vehicle, 97.3%3.9%;
each normalized with the baseline CBF; Figure 6C), offset-
ting the increment of CBF by the overexpression of SIRTI
(cf. Figures 4A and 6C). Sham operation did not alter CBF
of cavtratin-treated Sirtl-Tg mice (Figure VI in the online-
only Data Supplement). These results suggest that the SIRT1-
mediated deacetylation activates eNOS, which counters the
perfusion failure after BCAS.

Discussion

Using Sirtl-overexpressing Tg mice, we found that endothelial
SIRT1 deacetylates and activates eNOS and thus normalizes
CBF after BCAS. These effects were abolished by treatment
with inhibitors of SIRT1 or eNOS in Sirtl-Tg mice, sug-
gesting that SIRT1-eNOS-NO system is responsible for the
CBF-preserving effect after cerebral hypoperfusion. SIRT1
overexpression also significantly attenuated BCAS-induced
blood-brain barrier disruption, glial activation, myelin loss,
and working memory impairment. Furthermore, SIRT1 over-
expression suppressed alterations in the vascular microarchi-
tecture and any neuronal derangement. These results firstly
show that SIRT1 has a robust role in suppressing the con-
sequence of cerebral hypoperfusion by activating a cerebral
NO-dependent mechanism.

Our results are congruent with a previous in vitro study
showing that SIRT1 and eNOS colocalize and coprecipitate
in endothelial cells and that SIRT1 can deacetylate eNOS.?
Therefore, an interaction of SIRT1 with eNOS may mediate
cerebrovascular protection by facilitating NO-dependent vas-
cular relaxation, which has been firstly demonstrated in vivo
in the current study. Oxidative stress is known to trigger acety-
lation of eNOS in endothelial cells, leading to inactivation of
eNOS activity.”® Based on the current finding that the fall in
CBF after BCAS is prevented in Sirt1-Tg mice and our previ-
ous finding that the gradual CBF recovery after BCAS was
markedly inhibited with NOS inhibitor N®-nitro-L-arginine
methyl ester,” cerebral SIRT1-eNOS-NO system may regu-
late physiological energy stability in the brain.

Accumulating evidence suggests that SIRT1 plays an
important role in neurodegenerative diseases through different
pathways.>" Alzheimer disease is one of neurodegenerative
diseases, but vascular pathology contributes to Alzheimer dis-
ease changes to variable degrees.®*** There is an emerging con-
cept of protein elimination failure arteriopathy® where waste
products such as amyloid-f3 accumulate in the brain as a result
of cerebral perfusion failure and evoke disparate brain disorders
because perivascular drainage of waste products are driven by
arterial pulsation.’ Because reduced amyloid-f clearance from
the brain seems to be mainly responsible for the pathogenesis
of sporadic Alzheimer disease,”’ the drainage of extracellular
amyloid-f along the arteries seems to be a significant strat-
egy for removal of amyloid-p from the brain.**** The CBF-
preserving effect of SIRT1 may provide a unified scheme for
treatment of broad spectrum of brain diseases involving both
cerebrovascular and neurodegenerative mechanisms.

In conclusion, our study provides strong evidence for the
role of SIRT1 in protection of the brain after cerebral hypoper-
fusion and ischemic injury by activating the eNOS-NO sys-
tem. The robust effects of SIRT1 overexpression on restoration

of cerebrovascular reserve in mice may explain the positive
effects of SIRT1 reported in animal models of ischemic injury
and neurodegeneration. However, it remains to be determined
whether sirtuin-activating compounds such as resveratrol can
be used as proof of concept agents for novel strategies for the
treatment of disparate brain disorders.
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Supplemental Methods

Generation and Establishment of a Transgenic Mouse Line That Stably Expresses
Mouse SIRT1 in the Brain

To generate a genetic model that chronically overexpress silent information regulator 2
homolog 1 (SIRT1) in the mouse, we constructed a transcription unit by inserting the coding
region of the mouse Sirz/ cDNA into the mouse prion gene promoter-polyA cassette which
drives pan-neural gene expression. We obtained transgenic mice by injecting the linearized
transcription unit into the oocytes of C57BL/6J mice and selected a founder that transmitted
the transgene in Mendelian manner. We backcrossed the founder and the offspring with
wild-type C57BL/6J mice for more than ten generations and established a transgenic line that
gave consistent, pan-neural expression of exogenous SIRT1 in addition to the endogenous
gene products. In this study we consistently analyzed male mice heterozygous for the
transgene (Sirt1-Tg) with their wild-type (non-transgenic) male littermates at the age of 5-9
months old. Sirt1-Tg mice and wild-type littermates did not show recognizable differences in
physical constitution and brain morphology (data not shown). All mice were maintained in
the C57BL/6J background, were housed in a room with a 12-hour light/dark cycle (lights on
at 7:00 a.m.) and were given access to food and water ad libitum. All procedures were
performed in accordance with the guidelines for animal experimentation from the ethical

committee of Kyoto University, and National Cerebral and Cardiovascular Center.

Surgical Procedure of Bilateral Common Carotid Artery Stenosis (BCAS) Operation
Through a midline cervical incision, both common carotid arteries were exposed. Microcoils
with an internal diameter of 0.18 mm (Samini) were applied to the bilateral common carotid
arteries (Supplemental Figure I). Sham-operated mice underwent the same surgical procedure
without using microcoils. Anesthesia was induced with 2% isoflurane and maintained with
1.5% isoflurane in 80% nitrous oxide and 20% oxygen. Rectal temperature was maintained
between 36.5°C and 37.5°C".

Eight-arm Radial Maze Test

As described previously?, after 28 days post-operation, the eight-arm radial maze test was
performed to examine whether spatial working memory was impaired. Each arm (8x35 cm)
radiated from an octagonal central starting platform. Identical food wells were placed at the
distal end of each arm. From one week before pretraining, mice were deprived of food until
their body weight was reduced to 75-85% of the initial level. As the initial pretraining after
deprivation of food, each mouse was placed in the central platform and allowed to explore
and to consume food pellets scattered on the whole maze for a 5-min period (one session per

mouse). Subsequently, these mice received another pretraining to take a pellet from each food

43



well after being placed at the distal end of each arm. This was repeated 8 times, using 8
different arms, for each mouse.

After these pretraining trials, actual maze acquisition trials were performed. All eight
arms were baited with food pellets. Mice were placed on the central platform and allowed to
get all eight pellets within 25 min. A trial was terminated immediately after all 8 pellets were
consumed or 25 min had elapsed. For each trial, the number of revisiting error was recorded.

Histological Evaluation of Sirtl1-Tg Mice and BCAS-operated Mice

To examine where SIRT1 was expressed in the brain, 6-pm-thick paraffin-embedded coronal
sections were subjected to immunohistochemistry for silent information regulator 2 (Sir2;
1:50; Sigma-Aldrich), and cryosections (20-pm thick) were subjected to immunofluorescence
for Sir2 (1:100; Sigma-Aldrich) and double immunofluorescence for Sir2 and CD31
(vascular endothelial cell, 1:500; BD Biosciences).

The brains of Sirt]1-Tg mice and their littermates were dissected out at 28 days after
sham or BCAS operation. Six-um thick paraffin-embedded coronal sections were subjected
to Kliiver-Barrera staining. The severity of the white matter lesions was graded as normal
(Grade 0), disarrangement of the nerve fibers (Grade 1), the formation of marked vacuoles
(Grade 2), and the disappearance of myelinated fibers (Grade 3) in the corpus callosum. For
immunohistochemistry, we used, as first antibodies, a rabbit antiglial fibrillary acidic protein
antibody (a marker of astrocyte, 1:2000; DAKO), a rabbit anti-Ibal antibody (a marker of
microglia, 1:200; Wako), and a rabbit antiglutathione S-transferase-pi antibody (a marker of
oligodendrocyte, 1:100; Millipore). We counted the numerical density of the glial cell nuclei
with immunopositive perikarya (/0.125 mm?) in the white matter.

Transmission Electron Microscopy

Wild-type and Sirt1-Tg mice at 2 h after sham or BCAS operation were examined by
transmission electron microscopy. After mice were perfused transcardially with 0.9% saline
followed by 4% paraformaldehyde and 2% glutaraldehyde in 0.1 mol/L phosphate buffer,
brains were removed and consecutively sectioned at the bregma level at a thickness of 1 mm
using a brain tissue matrix. Then, brain tissues were fixed by immersion in 4%
paraformaldehyde and 2% glutaraldehyde in 0.1 mol/L phosphate buffer for 48 h at 4°C, and
washed in 0.1 mol/L phosphate buffer (5x10 min). Two pieces of brain tissues
(approximately 1.5 mm’ ) were subsequently resected and postfixed with 1% osmium
tetroxide for 2 h. Thereafter, the fixed tissue samples were dehydrated, infiltrated, and
embedded in epoxy-resin (Luveak 812; Nakalai Tesque) for transmission electron microscope
study. Ultrathin sections (80 nm) of selected areas were prepared on an ultramicrotome (EM
UC6; Leica) and collected on 200-mesh cooper grids. These sections were counterstained
with 2% uranyl acetate and lead citrate solution. The vessels were examined throughout the
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sample with a transmission electron microscopy (H-7650; Hitachi).

Measurement of Cerebral Blood Flow (CBF)

Relative CBF was recorded by laser speckle flowmetry (Omegazone; Omegawave) which
obtains high-resolution, two-dimensional imaging and has a linear relationship with absolute
CBF values’. In the day prior to the first CBF measurement, anesthesia was induced with 2%
isoflurane and maintained with 1.5% isoflurane in 80% nitrous oxide and 20% oxygen, and
the scalp was removed by a midline incision so that the skull was exposed throughout the
experiment. During the measurement of CBF, the skull surface was illuminated by 780 nm of
laser light. The scattered light was filtered and detected by a CCD camera positioned over the
head. The filter detected only scattered light that had a perpendicular polarization to the
incident laser light. The raw speckle images were used to compute speckle contrast, which
corresponds to the measured velocity of moving red blood cells, approximating CBF. Signal
processing was performed by the algorithm developed by Forrester et al.*. Color-coded blood
flow images were obtained in high-resolution mode (639 x 480 pixels; 1 image/sec) and the
sample frequency was 60 Hz. One blood flow image was generated by averaging numbers
obtained from 20 consecutive raw speckle images. The recordings were initiated after the
examiner confirmed that CBF did not change over 1 min, and the five recordings of blood
flow image were averaged. In order to prevent the fluctuation of CBF and blood pressure
during the measurement of CBF, anesthesia was induced as stated above. During the
measurement of CBF, mice were held in a small plastic holder on a warming pad and
thermostatically controlled at 36.5°C to 37.5°C in rectal temperature. Blood pressure was
measured by the tail cuff method and confirmed to be kept constant.

Evaluation of Vascular Response to Acetylcholine (ACh) and
S-Nitroso-N-acetyl-DL-penicillamine (SNAP)

To evaluate vascular responses to vasodilatory stimuli, a cranial window preparation was
performed as previously reported with modification™ 6 In brief, a3 mm x 3 mm diameter
craniotomy was performed with dental drill in the right parietal bone and the dura mater was
removed. The endothelium-dependent vasodilator ACh (100 pmol/L; Sigma-Aldrich),
endothelial nitric oxide synthase (eNOS)-agonist, or S-Nitroso-N-acetyl-DL-penicillamine
(SNAP; 500 umol/L; Sigma-Aldrich), nitric oxide donor, were infused into the cranial
window at a rate of 100 pL/min for 5 min. The CBF and the vasodilative changes in response
to ACh or SNAP were evaluated at 5 min after infusion. CBF increase during the 5 min after
infusing was taken as response amplitude using laser speckle flowmetry. The rate of CBF
increase after infusing was calculated as the CBF increase (%) divided by the baseline CBF.
Next, we assessed the vasodilatative responses. For real-time in vivo imaging of the cerebral

vessels, we used fibered fluorescence microscopy (MVX10; Olympus). After intravenous tail
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vein injection of fluorescein isothiocyanate-dextran (2x10° molecular weight, 200 pL of 20
mg/mL; Sigma-Aldrich), the leptomeningeal vessels were visualized. Averaged vessel
diameters across a 25 um longitudinal segment (5 consecutive segments per mouse) of the
dorsal middle cerebral arteries were analyzed as previously described’. Peak vessel diameter
increase during the 5 min was taken as response amplitude. Data were calculated

as %vasodilation vs. baseline vessel diameter. We distinguished penetrating arteries from
bridging (collecting) veins by identifying the location and also by following the direction of

flow from the pial surface.

Western Blot Analysis
The brains of BCAS-operated mice were dissected out before and at 2 h after BCAS and cut
coronally into 5-mm thick slices (bregma -3 to +2 mm) and homogenized
in radiOimmunoprecipitation assay buffer containing a protease and phosphatase inhibitor
mixture (Nakarai Tesque). The amount of proteins applied to each well was 80 pg for
acetylated eNOS, non-acetylated eNOS, 40 pg for eNOS and phosphorylated eNOS, and 20
pg for B-actin. Samples were electrophoresed on SDS-polyacrylamide minigels and the
proteins were transferred to polyvinylidene difluoride membranes (Bio-Rad). Membranes
were incubated with primary antibodies against eNOS (1:2500; BD Biosciences),
phospho-eNOS (Ser1177) (1:1000; Cell Signaling Technology) and B-actin (1:5000;
Sigma-Aldrich). The signal was visualized using horseradish peroxidase-conjugated
secondary antibodies with Luminata Forte Western HRP substrate (Millipore). Immunoblot
membranes were developed using the LAS-4000 Imaging System (Fujifilim). The
densitometric measurement of immunoblots was performed using Image-J (NIH).

Similarly, brain homogenates of cerebral cortex, caudoputamen, midbrain, brainstem,
cerebellum, and spinal cord were immunoblotted using anti-Sir2 antibody (1:500;
Sigma-Aldrich) and anti-GAPDH antibody (1:1000; Cell Signaling Technology).

Analysis of eNOS Acetylation/Non-acetylation

To determine acetylation or non-acetylation status of eNOS, brain homogenates before and at
2 h after BCAS were first immunoprecipitated by anti-acetylated-lysine antibody (1:100; Cell
Signaling Technology) using Immunoprecipitation Kit-Dynabeads Protein A (Life |
technologies). As a result, the brain homogenates were separated into bound and unbound
fractions to the anti-acetylated-lysine antibodies. The bound fraction was eluted with elution
buffer as a fraction that contains total acetylated proteins. The both fractions were then
immnunoblotted with eNOS to detect acetylated and non-acetylated eNOS, respectively,
using the immunoblotting method as stated above.

Exogenous Administration of Sirtinol
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To examine whether sirtinol (Sigma-Aldrich), SIRT1 inhibitor, abolished CBF-preserving
effect of SIRT1, sirtinol was intravenously injected into 10-week-old Sirt1-Tg mice with the
dose of 1 mg/kg (dimethyl sulfoxide 50 pL + saline 100 pL) immediately before sham or
BCAS operation. The CBF estimate was carried out using laser speckle flowmetry as
described above. CBF was expressed as a percentage of baseline flow.

Exogenous Administration of Cavtratin

Caveolin-1 scaffolding domain peptide (ENZO Life Sciences), eNOS inhibitor called
cavtratin, was intraperitoneally injected into 10-week-old Sirt1-Tg mice with the dose of 10
mg/kg/day (dimethyl sulfoxide 60 pL + saline 90 pL) for 3 consecutive days prior to sham or
BCAS operation. Last injection was carried out at 24 h prior to each surgery. The CBF
estimate was carried out using laser speckle flowmetry as described above. CBF was

expressed as a percentage of baseline flow.

Visualization of Cerebral Angioarchitecture

The cerebral angioarchitecture was studied by the postmortem latex perfusion technique. The
root of the ascending aorta was cannulated with flexible plastic tubing (0.65 mm external
diameter). The tubing was connected to a 5 mL syringe, the cannulated aorta, and a mercury
manometer, establishing a closed circuit to monitor perfusion pressure. Immediately after 2
mL saline injection, 4mL white latex compound (Chicago Latex Products) mixed with 50
puL/mL carbon black (Bokusai) diluted 2:1 with saline was injected at a perfusion pressure of
150 mmHg over a 5-min period. After the initiation of infusion, the right atrium of the heart
was incised to allow for venous outflow. In order to harden the latex completely for the brain
removal procedure, the dead animal was soaked in ice-cold water 20 min after the end of
infusion, and the brain was subsequently removed 20 min later. Photographs of dorsal and
ventral surface of the brain were taken using a digital microscope (DinoLite; AnMo
Electronics Corp.) at x80 magnification. The vessel diameter of the circle of Willis was
measured using image analysis software (DinoCapture; AnMo Electronics Corp.). The
diameters of the internal carotid artery, the anterior cerebral artery, the middle cerebral artery
and the posterior communicating artery were averaged across both sides. The diameters of the
internal carotid artery and middle cerebral artery were measured just proximally and distally
to the terminal bifurcation of the internal carotid artery, respectively. The diameter of the
anterior cerebral artery was measured just proximally to the origin of the olfactory artery. The
diameter of the posterior communicating artery was measured at its origin from the internal

carotid artery.

Statistical Analysis
Statistical analysis was conducted using StatView (SAS Institute). All values are expressed as
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means * standard error of the mean in the figures. Data were analyzed by unpaired t-test
unless noted otherwise. Differences with p<0.05 were considered statistically significant in

all analyses.
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Supplemental Figure I: Representative image showing surgical implantation of a
microcoil on the common carotid artery

A microcoil is placed on the left common carotid artery after the vagus nerve is
separated from the carotid artery.
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Supplemental Figure |
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Supplemental Figure II: SIRT1 rescued neuronal injuries after BCAS

Transmission electron microscopic images of BCAS-operated, wild-type (A) or
Sirt1-Tg mice (B), and sham-operated, wild-type (C) or Sirt1-Tg mice (D) at 2 h after
each surgery. (A) Neurons of a wild-type mouse undergo shrinkage of nuclei and
cytoplasm. (B—-D) Neurons appear normal. Scale bars indicate 10 ym (A), and 20 ym
(B-D).
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Supplemental Figure lll: Similar angioarchitecture of wild-type littermates and
Sirt1-Tg mice

(A) Representative images of the dorsal and ventral cerebral angioarchitecture by
postmortem latex perfusion method of the wild-type and Sirt1-Tg mouse.
Abbreviations: ACA, anterior cerebral artery; MCA, middle cerebral artery; ICA,
internal carotid artery; PcomA, posterior communicating artery. (B) Histograms
showing the mean diameters of ACA, MCA, ICA and PcomA of wild-type (n = 6) and
Sirt1-Tg mice (n = 5).
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Supplemental Figure 1V: Sham operation did not alter CBF of sirtinol-treated Sirt1-Tg
mice.

Temporal profiles of CBF of vehicle-treated Sirt1-Tg mice (n = 3) and sirtinol-treated
Sirt1-Tg mice (n = 3) before and at 2 h after sham operation.
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Supplemental Figure V
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Supplemental Figure V. Temporal changes in CBF before and after perfusion of
SNAP on brain surface in wild-type (n = 3) and Sirt1-Tg mice (n = 3)
(A)Representative CBF images assessed by laser speckle flowmetry before (left) and
after (right) perfusion of SNAP. -indicates an inlet of SNAP. (B) Histogram
showing %increase of CBF assessed by laser speckle flowmetry.
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Supplemental Figure VI: Sham operation did not alter CBF of cavtratin-treated
Sirt1-Tg mice.

Temporal profiles of CBF of vehicle-treated Sirt1-Tg mice (n = 3) and cavtratin-treated
Sirt1-Tg mice (n = 3) before and at 2 h after sham operation.
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Abstract

Objective: Brain amyloidosis is a key feature of Alzheimer’s disease (AD). It
also incorporates cerebrovascular amyloid B (AB) in the form of cerebral amy-
loid angiopathy (CAA) involving neurovascular dysfunction. We have recently
shown by retrospective analysis that patients with mild cognitive impairment
receiving a vasoactive drug cilostazol, a selective inhibitor of phosphodiesterase
(PDE) 1II, exhibit significantly reduced cognitive decline. Here, we tested
whether cilostazol protects against the disruption of the neurovascular unit and
facilitates the arterial pulsation-driven perivascular drainage of AP in AD/CAA.
Methods: We explored the expression of PDE III in postmortem human brain
tissue followed by a series of experiments examining the effects of cilostazol on
AP metabolism in transgenic mice (Tg-SwDI mice) as a model of cerebrovascu-
lar B-amyloidosis, as well as cultured neurons. Results: We established that
PDE III is abnormally upregulated in cerebral blood vessels of AD and CAA
subjects and closely correlates with vascular amyloid burden. Furthermore, we
demonstrated that cilostazol treatment maintained cerebral hyperemic and va-
sodilative responses to hypercapnia and acetylcholine, suppressed degeneration
of pericytes and vascular smooth muscle cells, promoted perivascular drainage
of soluble fluorescent AP 49, and rescued cognitive deficits in Tg-SwDI mice.
Although cilostazol decreased endogenous AP production in cultured neurons,
C-terminal fragment of amyloid precursor protein expression was not altered in
cilostazol-treated Tg-SwDI mice. Interpretation: The predominant action of
cilostazol on AP metabolism is likely to facilitate AP clearance due to the
sustained cerebrovascular function in vivo. Our findings mechanistically
demonstrate that cilostazol is a promising therapeutic approach for AD and
CAA.
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