厚生労働科 学研究費補助金 (創薬基盤推進研究事業) 分担研究報告

アポC3をターゲットとした革新的核酸医薬の有効性及び安全性評価 -ApoE ノックアウトマウスを用いた apoC-III アンチセンスの抗動脈硬化作用の評価-

分担研究者 柴田 雅朗 大阪保健医療大学大学院・教授

研究要旨

ApoC-IIIアンチセンスによる動脈硬化に対する治療効果ならびに安全性を評価するため に、病態モデルマウスを用いて、イメージング解析、病理組織学的なアプローチで解析を 行った。【実験1】高脂肪食を1週間自由摂取させたC57BL/6JマウスにapoC-Ⅲを標的とし たBNA搭載型アンチセンス(ASO)を単回皮下投与し、また既存のトリグリセライド低下薬 のFenofibrate (FF)を1回/日経口投与し、投与開始の7日後に剖検し、動物の肝臓および 腎臓について病理組織学的に解析した。また、肝臓についてはさらに0il red染色を施し、 脂肪蓄積の程度について解析した。その結果、病理組織学的検査では、肝細胞に空胞変性 を観察し、0il red染色では肝臓に脂肪の蓄積が亢進している傾向が窺われた。一方、FF投 与群では肝細胞の空胞変性や脂肪の蓄積はほとんど正常程度に改善されていた。その反面、 FF投与群では著しい肝細胞肥大を観察した。また、ASO投与群では肝臓内に泡沫細胞の集簇 像が観察され、ASOが核酸であることを考えると、本所見はクッパー星細胞の変性像である 可能性が示唆された。【実験2】CTを用いた非侵襲的な手法で、内臓脂肪および肝臓の脂肪 蓄積量についての評価を試みた。その結果、CT計測値と生体内の実際の脂肪量は極めて良 い相関を示し、小動物においても、ヒトと同様の側面からのアプローチが可能であること が示された。また、動脈硬化の初期石灰化では病理組織学的解析で検出し得たが、CTや超 音波では検出が困難であった。しかしながら、ある程度の進展した動脈硬化病変の石灰化 ではいずれの手法でも検出が可能であった。CTや超音波によるイメージングは非侵襲的手 法で、動物を屠殺することなく、継時的に同一個体の同一病変を追跡することが可能であ り、治療実験にも応用できる有用な解析手法の一つと考えられた。【実験3】動脈硬化の治 療実験モデルとしてApoE-KOマウスを用いるための基礎的解析を、本年度も継続して行った。 特に免疫組織学的手法を用いて、ヒト動脈硬化病変の発症やその進展に関わる分子(F4/80, TIMP-1, MMP-9, MMP-1/8, sLOX-1, Cxcl16)を解析した。その結果、これら分子はいずれ の病期の動脈硬化病変にも局在しており、高脂肪食を負荷したApoE-KOマウスに誘発された 動脈硬化は、ヒトへの外挿モデルとして、極めて有用であることが示された。

研究協力者

国立循環器病研究センター研究所

病態代謝部

斯波真理子

柴田 映子

和田 郁人

A. 研究目的

本研究では ApoC-III に対する BNA 搭 載アンチセンス医薬の有効性・毒性・安 全性について病理組織学的に評価し、多 角的な情報を提供することを目的として いる。実験1:先行する実験において、 高脂肪食を負荷した C57BL/6J マウスに 対して、ApoC-III を標的とした BNA 搭 載型アンチセンス(ASO)を投与し、脂 質低下作用を検討した。その結果、ASO 投与は、血中および肝臓での ApoC-III mRNA 値を有意に低下させ、血中 TG 値を 低下させた。そこで本年度は、ASO の肝 臓に対する毒性学的影響を病理組織学的 に詳細に検討した。また、先行する上記 の実験では既存の脂質低下剤のフィブラ ート系製剤 (Fenofibrate; FF)群も設けら

れており、同時に FF の肝臓に対する病 理組織学的変化も併せて解析した。実験 2:次の段階を鑑み、基礎研究の成果を ヒトに応用して、疾患予防や治療展開を 行うためには、基礎研究と臨床研究の間 を橋渡しする「トランスレーショナルリ サーチ」が鍵となってくる。そのために は、薬効を評価する小動物での非侵襲的 な動脈硬化解析法の確立が重要である。 昨年度は超音波による動脈硬化病変の評 価を目的として、動脈の内膜-中膜肥厚 (IMT)の測定を実施し、その結果を報告 した。そこで本年度は ApoE-KO 動脈硬 化モデルマウスを用いて、経時的に内臓 脂肪ならびに肝臓脂肪蓄積量の測定、さ らに石灰化を伴う動脈硬化病変の検出を 目指して、X線CT 装置や超音波によるイ メージングを行った。実験3:「動脈硬 化の治療実験モデルとして ApoE-KO マ ウスを用いるための基礎的解析」をテー マとして、本年度も継続して行い、特に 免疫組織学的手法を用いて、ヒトで動脈 硬化病変との関連が指摘されている分子 について解析し、ApoE-KO 動脈硬化モデ ルマウスがヒトへの外挿モデルとして有 用であるか否かを評価した。

B. 研究方法

【実験1】—「ApoC-III アンチセンスの 投与を受けた高脂肪食負荷マウスの安全 性評価のための病理組織学的解析」

高脂肪食(F2WTD, 0.3%コレステロール) を1週間自由摂取させた C57BL/6J マウ スに ApoC- を標的とした BNA 搭載型 アンチセンス(以下 ASO と略す)を単回 皮下投与し、また既存のトリグリセライ ド低下薬の Fenofibrate (FF; 和光純薬工 業株式会社)を 100 mg/kg 用量で 1 回/ 日経口投与し、投与中も高脂肪食は継続 して摂取させ、投与開始の7日後に全動 物を屠殺・剖検した。本年度はそれらの 動物の肝臓および腎臓について病理組織 学的な解析を行った。また、肝臓につい てはさらに Oil red 染色を施して、脂肪蓄 積の程度について解析した。

1.一般病理組織学的検查

10%中性緩衝ホルマリン溶液にて固定 した肝臓および腎臓を切り出し、水洗の後、 脱水系列を経て透徹を行い、パラフィン包 埋した。ミクロトーム (Leica) にて 5 μm に薄切後、カラッチのヘマトキシリン (武 藤化学株式会社)とエオジン (Tissue-Tek) にて H&E 染色し、顕微鏡(model BX53, Olympus)にて観察した。

1.肝臓における脂肪蓄積の解析

前述の 10%中性緩衝ホルマリン溶液に て固定した肝臓を 10%、20%、30%のサ ッカロース (和光純薬工業株式会社)にて 段階的に置換の後、クリオモルド (Tissue-Tek) に静置し、その中に O.C.T Compound (Sakura Finetek)を流し込み、 液体窒素にてすみやかに凍結した。クリオ スタット (Leica) で5 µm に薄切し、Oil red O 染色液(和光純薬工業株式会社)と核染 色に Hematoxylin Gill's Formula (Vector) を用いて染色し、顕微鏡 (model BX53, Olympus)にて観察し、脂肪の蓄積の程度を 評価した。

【実験2】- 「動脈硬化モデルマウスの CTによる病態イメージングとその病理 組織像:脂肪肝と石灰化を伴う動脈硬化 の検出」

メタボリックシンドロームは内臓脂肪型 肥満に加えて、高血糖、高血圧、脂質異常 症が合併してくる病態であるが、動脈硬化 発症のリスクも上昇することから、CTを 用いた非侵襲的なアプローチで、内臓脂肪 および肝臓の脂肪蓄積量の評価を試みた。 また、進展した動脈硬化の複合病変の所見 でもある石灰化の評価を超音波および CT を用いて行い、病理組織学的検査結果と照 合した。

1. CT による内臓脂肪および肝臓内の蓄 積脂肪の解析

(1) CT 装置を用いた内臓脂肪の測定

イソフルラン麻酔下にて、28 週齢 ApoE-KO 雄マウス(普通食 CE2 を自由 摂取。日本クレア)の第 11 胸椎から尾 骨下端までを、小動物用X線 CT 装置 (Latheta, ALOKA)にて 1.0 mm 毎にスラ イスし、撮影した。解析は脂肪を皮下 脂肪と内臓脂肪を分け、体積より重量 を算出し、脂肪重量 / (筋肉重量 + 脂肪 重量) ×100 により脂肪率を算出した。 なお、実験に供したマウスは 5 例で、 体重は 34.4±2.2 gであった。

(2) CT 装置を用いた肝臓の脂肪測定

上記の内臓脂肪測定に用いた 28 週齢 ApoE-KO 雄マウスをイソフルラン麻酔下 で仰臥位にし、第 11 胸椎から第 1 腰椎の 位置を小動物用X線 CT 装置 (Latheta)に て 0.3 mm 毎にスライスし、CT 撮影を行 い、肝臓の平均 CT 値 (Hounsfield unit :HU) / 筋肉の平均 CT 値 (HU)から CT 値比を算出して解析した。

(3)脂肪重量測定

CT 撮影の後、マウスを麻酔下にて、放 血して安楽死させ、腸間膜脂肪、腹腔内脂 肪および生殖器周囲脂肪を摘出し重量を 測定した。

(4)肝臓の病理組織学的検査および脂肪蓄積の解析

上記の CT 検査に用いたマウスより肝 臓を摘出し、10%中性緩衝ホルマリン溶液 にて固定し、前述した方法で H&E 染色を 行った(実験1:一般病理組織学的検査 の項)。また、肝臓の脂肪を証明するため、 摘出した肝臓の一部を O.C.T. Compound (Sakura Finetek)を用いて凍結し、前述の方 法で(実験1: 肝臓における脂肪蓄積の 病理組織学的解析の項)、Oil red O 染色液 (和光純薬工業株式会社)を用いて染色し、 顕微鏡(model BX53, Olympus)にて観察し、 脂肪の蓄積の程度を評価した。

2.大動脈石灰化のイメージング

(1) CT 装置による大動脈石灰化の定量

小動物用X線CT装置(LTC200, ALOKA)を用いて、イソフルラン麻酔下に て、動脈硬化モデルマウス(ApoE-KOマ ウス)の第7頸椎~第2胸椎を心拍同期条 件下で撮影した。25週齢、34週齢および 45週齢の各4例のApoE-KO雌マウスを用 い、普通食(CE2,日本クレア)を自由摂取 させた。また、45週齢のマウスを用いて、 上行大動脈から大動脈弓の位置決定の目 的で、血管造影剤であるイオパミロン注 300(バイエル薬品株式会社)をマウス尾静 脈に注射し、10分後、呼吸同期条件下に てCT撮影を実施した。

(2)動物用超音波装置による大動脈石灰化の観察

上記のCT解析に供した ApoE-KO 雌マ ウスを実験に用いた。超音波断層撮影の前 処置のため、胸部除毛を施し、イソフルラ ン麻酔下にて、超音波高解像度イメージン グシステム Vevo2100 装置(Primetech Corp.)を用いて、40 MHzの探触子で大動 脈のプラークの有無や輝度を観察し、石灰 化様エコー像を観察した。 (3)大動脈の病理組織学的解析

上記の CT ならびに超音波解析に供し たマウスを麻酔下にて、PBS で還流し、放 血し安楽死させ、大動脈弁起始部から総腸 骨動脈分岐部までの下行大動脈を摘出し、 10%中性緩衝ホルマリン溶液にて固定し た。固定後、実体顕微鏡下(model LG-PS2, Olympus あるいは model SZX7, Olympus) で大動脈周囲の脂肪組織を除去し、切り出 し、脱水系列を経て透徹し、パラフィン包 埋を行った。 ミクロトーム(Leica)にて 薄切の後、H&E 染色を行った。また、弾 性線維の染色として Elastica van Gieson (EVG)染色を行った。カルシウム検出法と しては Kossa 反応を行った。これらの染色 標本を顕微鏡(model BX53, Olympus)にて、 動脈硬化病変と石灰化の有無、Kossa反応 陽性部位を観察した。

【実験 3】- 「動脈硬化の治療実験モデ ルとして ApoE-KO マウスを用いるため の基礎的解析」

上記のテーマで本年度も継続して行 い、特に免疫組織学的手法を用いて、ヒ トで動脈硬化発症に関わると指摘されて りる分子について解析し、ApoE-KOマウ スがヒトへの外挿モデルとして有用であ るか否かを評価した。

1.動脈硬化モデルマウスの作成

18 例の ApoE-KO マウス雄に 6 週齢か ら 16 週間、高脂肪食(1.25%コレステロ ール含有。F2HFD1:オリエンタル酵母工 業)を自由摂取させ、動脈硬化モデルを 作製した。対照としては、普通食(CE-2 日 本クレア)を自由摂取させた C57BL/6J 雄 マウス(日本 SLC)20 例を用いた。これ らの動物は昨年度の動脈病変解析に用い られた。本年度はこれらのパラフィン包埋 標本を用いて行った。

2.動脈硬化病変の免疫組織学的解析

大動脈組織が包埋されているパラフィ ンブロックをミクロトーム(Leica)にて 5 µm に薄切し、シランコートスライドグ ラス(DAKO)に貼付して標本を作製し、 従来より動脈硬化との関連が指摘されて いる分子や網羅的解析で選ばれた分子に ついて免疫組織学的染色を施した。スラ イド標本を110、15分間の熱処理により 抗原賦活化を行い、非特異的染色を阻害す るためのブロッキング処置を行い(Dako Real Antibody Diluent (Dako)、内因性ペル オキシダーゼを不活化するため 3% H₂O₂ を反応させた後、1次抗体を反応させ、洗 浄の後、それぞれの1次抗体に対応する2 次抗体を反応させ(1次抗体の免疫動物が マウス、ウサギ、ヤギである場合はDako のLSAB kitを用いた)DABで発色させ、 次いでヘマトキシリンにて核染色を行い、 封入した。染色標本を顕微鏡(model BX53)で観察し、代表的な部位を撮影し、 デジタル画像を保存した。

免疫組織化学的染色を行った分子はヒ トで動脈硬化との関連が報告されている 分子と昨年度の網羅的解析で上昇を示し た2分子(TIMP-1 および Cxcl16)である。 本実験によりヒトと ApoE-KO マウスの動 脈硬化病変の類似性をみた。用いた1次抗 体は次の通りである。抗 F4/80 ウサギ抗体 (Santa Cruz)、抗 TIMP-1 ラット抗体 (Abcam)、 抗 MMP-9 ヤギ抗体 (Santa Cruz)、 抗 MMP-1/8 ウサギ抗体 (Santa Cruz)、 抗 sLOX-1 ウサギ抗体 (Bioss). 抗 Cxcl16 ウサギ抗体 (Abnova)であった。

C. 研究結果

【実験1】—「ApoC-III アンチセンスの投

与を受けた高脂肪食負荷マウスの安全性 評価のための病理組織学的解析」

1.一般病理組織学的検查

病理組織学的検査の結果を表1に示す。 肝臓では、溶媒対照群(Corn oil)におい て、肝細胞の空胞変性が軽度~強度に渡り 全例(4例)に観察され(図1A)、フィブ ラート系のFF(溶媒としてCorn oil)投与 群では、空胞変性は正常範囲内の痕跡程度 にしか示されなかった(図1B)。また、FF 投与群では好酸性顆粒を含む肝細胞肥大 (図1B)を全例(4例)に観察したが、 溶媒対照群では全く観察されなかった(図 1A)。

次に溶媒として生理食塩水を投与した 溶媒対照群では、軽度な肝細胞の空胞変性 を全例(4例)に観察した(図1C)。一方、 ASO 投与群では軽度~中等度に肝細胞の 空胞変性が殆どの動物(3例)に見られた (図1D)。また、ASO 投与群で肝細胞肥 大が1例に観察された(図1D)。さらに ASO 投与群では肝臓において泡沫細胞の 集簇が4例中の2例に観察された(図1E)。

なお、腎臓では投与に起因すると考え られる所見は観察されなかった。

2.肝臓における脂肪蓄積の解析

肝臓に Oil red 染色を施し、肝細胞内に 蓄積している脂肪を可視化し、顕微鏡下で 観察した。その結果を表1に示す。溶媒対 照群(Corn oil)では軽度~強度の脂肪蓄 積が観察されたが(図2A) FF 群では痕 跡程度しか示されなかった(図2B)。 溶 媒対照群(生理食塩水)では軽度~中等度 の脂肪蓄積であったが(図2C) ASO 群 では軽度~強度であった(図2D)。ASO 群では、脂肪蓄積量が若干、増加している 傾向が窺われた。

【実験2】- 「動脈硬化モデルマウスのC Tによる病態イメージングとその病理組 織像:脂肪肝と石灰化を伴う動脈硬化の検 出」

1. CT による内臓脂肪および肝臓内の蓄 積脂肪の解析

(1) CT 装置を用いた内臓脂肪の測定

CT 装置による内臓脂肪の脂肪率は、脂肪摘出重量と良い相関であった(図 3A-C)。

(2) CT 装置を用いた肝臓の脂肪測定

ApoE-KO マウスにおいて肝臓の CT 値 比 (CT 値比 = 肝臓の平均 CT 値/筋肉の 平均 CT 値) と肝臓の脂肪染色 (Oil Red 染色)との比較で、CT 値が低いほど Oil red に強く染まり、CT 値比と組織像とは相関 していた。図 4A に示すように CT 値比が 最も低値である IH63 (CT 値比 0.26)と高値 である IH64 (CT 値比 0.71)の H&E 染色像 (図 4B)および Oil red による脂肪染色像 を示す(図 4C)。IH63 は IH64 より強く染 まっており、CT 値比と逆相関していた。 因みに、ヒトにおいても CT 値比が低いほ ど肝臓に脂肪が沈着していると診断され ている。

2.大動脈石灰化のイメージング

(1) CT、超音波および病理組織学的検査に よる大動脈石灰化の評価

まず始めに 45 週齢 ApoE-KO マウスを 用い、イオパミロン血管造影剤の静脈投与 後の CT 像にて、大動脈を認識し、石灰化 様の CT 像を認めた(図 5A-C)。CT、超音 波および病理組織学的検査の結果を表 2 に示す。25 週齢の ApoE-KO マウス 4 例を 用いた検査で、大動脈の石灰化様の所見を CT で 1 例に、超音波では石灰化の疑いを 1 例に認め、病理組織学的検査では 3 例に 観察した。34 週齢および45 週齢の各4例 のApoE-KOマウスを用いた検査では、CT、 超音波、病理組織学的検査のいずれにおい ても全例に石灰化を検出し得た。病理組織 学的に観察された石灰化所見は(図6A)、 別動物であるが、Kossa反応陽性を示し、 HE染色で観察された石灰化所見は、カル シウム沈着であることを確認している(図 6B)。

【実験 3】- 「動脈硬化の治療実験モデ ルとして ApoE-KO マウスを用いるため の基礎的解析」

1.動脈硬化病変の免疫組織学的解析

(1) F4/80

抗 F4/80 抗体はマクロファージを認識 する抗体である。初期病変(図7B)進行 性病変(図7C) 複合病変(図7D)の各 病変に泡沫細胞の集簇が見られ、これらは F4/80 陽性を示すマクロファージであるこ とが確認された。なお、Wild typeマウス の動脈には陽性細胞は観察されなかった (図7A)。

(2) TIMP-1

TIMP-1 は昨年度の研究で抗体アレイ

を用いた分子生物学的な網羅的解析で顕 著な上昇をみた分子である。TIMP(Tissue Inhibitor of Matrix metalloproteinase)は内因 性の MMP (Matrix metalloproteinase)活性 阻害因子で、TIMP-1 はマクロファージが 分泌し、MMP-9 を分解する。TIMP-1 は初 期病変で既に発現しており(図8B)いず れのステージの病期の動脈硬化病変にも 発現していた(図8C)。なお、Wild type マウスの正常な動脈では発現は全く観察 されなかった((図8A)。

(3)MMP-9

MMP-9 はマクロファージが分泌する 蛋白質分解酵素の1つである。動脈硬化病 変のない Wild type マウスの正常な動脈で は陽性所見は全く観察されなかった(図 9A)。一方、動脈硬化病変では進展の程度 に関わらず、病変部に一致して陽性を示し た(図9B~D)。詳細に観察すると、病変 部では泡沫細胞(マクロファージ)の細胞 質に陽性を示し、その他、線維被膜下や病 変部の間質に陽性を示した(図9B~D)。

(4) MMP-1/8

MMP-9 と同様にマクロファージが分 泌する蛋白質分解酵素の1つである。動脈 硬化病変のない Wild type マウスの正常な 動脈では陽性部位は全く観察されなかっ た(図 10A)。一方、動脈硬化病変では、 MMP-9 と同じように進展の程度に関わら ず、病変部に限局して陽性を示した(図 10B~D)。詳細に見ると、病変部では泡沫 細胞(マクロファージ)の細胞質に陽性を 認めるが、病変部の間質により強く陽性を 示した点は MMP-9 と異なっていた(図 10B~D)。

(5)sLOX-1

sLOX-1 はごく初期の病変から発現を 示し、以降、進展してゆく過程に渡り、発 現が継続して観察された(図 11B~D)。 末期の複合病変でも依然、発現しているが、 その発現強度はむしろ減弱しているよう に思われた(図 11D)。この点に関しては さらに詳細な解析が必要である。なお、 Wild type では発現は全く観察されなかっ た(図 11A)。

(6) Cxcl16

Cxcl16 は昨年度の研究で Primer array を用いた分子生物学的な網羅的解析で顕 著な上昇をみた分子である。Wild type マ ウスの正常な動脈では全く Cxcl16 の発現 は認められなかったが(図 12A)、ApoE-KO マウスでは、動脈硬化病変の進展の程度に 関わらず、いずれの病変でも発現が観察さ れた(図 12B~D)。

D. 考察

【実験1】 先行する実験において、ASO 投与により血中および肝臓での apoCmRNA 値を有意に低下させ、血中 TG 値 を低下させたことが明らかとなっている。 本年度の病理組織学的検査では、肝細胞に 空胞変性を観察し、Oil red 染色では肝臓 に脂肪の蓄積が亢進している傾向が窺わ れた。一方、既存の脂質低下製剤である FF 投与群では肝細胞の空胞変性や脂肪の 蓄積はほとんど正常程度に改善されてい た。その反面、FF 投与群では著しい肝細 胞肥大を観察し、細胞質内には好酸性顆粒 を多数含んでおり、増生したペルオキシソ ームと思われるが、同定するにはカタラー ゼを証明する必要がある。また、ASO 投 与群では肝臓内に泡沫細胞の集簇が観察 され、クッパー星細胞の変性像であると推 測される。検索例数が各群4例と少数であ り、統計処理も出来ず、明言出来ないが、 ASO は肝臓の蓄積脂肪の亢進と恐らくク ッパー星細胞を標的とするのではないか と推察される。ASO が核酸であることを 考えるとマクロファージであるクッパー 星細胞が応答するのは自然な事象である かもしれない。

【実験2】メタボリックシンドロームは内 臓脂肪型肥満という共通の要因に加えて、 高血糖、高血圧、脂質異常症が合併してく る病態で、動脈硬化発症のリスクも上昇す る。今回の実験では CT を用いた非侵襲的 な手法で、内臓脂肪および肝臓の脂肪蓄積 量の評価を試みた。その結果、CT 計測値 と生体内に存在する実際の脂肪量は極め て良い相関を示し、小動物においても、ヒ トと同様の側面からのアプローチが可能 であることが示された。また、動脈硬化の 初期石灰化では病理組織学的解析では検 出し得たが、CT や超音波では検出が困難 であった。しかしながら、ある程度の進展 した動脈硬化病変の石灰化はいずれの手 法でも検出が可能であった。CT や超音波 によるイメージングは非侵襲的手法であ ることから、継時的に同一個体の同一病変 を追跡することが可能であり、貴重なモデ ル動物を屠殺する必要もなく、動物愛護の 観点からも好ましい。治療実験にも応用で きる極めて有用な解析手法の一つと考え られた。

【実験 3】ApoE-KO マウスに高脂肪食を 負荷して作製した動脈硬化病変はヒトと 類似の進展形態を示し、ヒト同様の病理組 織学的な分類も可能であった。また、本モ デルマウスの動硬化病変における分子生 物学的な網羅的解析により、Cxcl16 や TIMP-1 を著明に上昇した分子として見出 した。これらの分子は、ヒトにおいても動 脈硬化の発症との関連が示唆されている 重要な因子として注目されている。そこで 今回は、ヒト動脈硬化病変の発症やその進 展に関わる分子 (F4/80, TIMP-1, MMP-9, MMP-1/8, sLOX-1, Cxcl16)を免疫組織学 的に解析した。その結果、これら分子はい ずれも動脈硬化病変に局在しており、高脂 肪食負荷の ApoE-KO マウスに誘発された 動脈硬化はヒトへの外挿モデルとして、極 めて有用であることが示された。プラーク は線維性被膜で被われており、線維性被膜 の崩壊こそがプラーク破綻であり、急性血 栓性閉塞のトリガーとなる。血管壁に侵入 したマクロファージは蛋白質分解酵素の MMP を分泌し、線維性被膜を脆弱化させ る。今回の実験で、これらのいずれの分子 も ApoE-KO マウスの動脈硬化モデルで観 察されており、治療モデルとしての有用性 が高いことも新たに示唆している。

E. 結論

- (1) 今回用いられた ASO 配列は血中お よび肝臓での ApoC-III mRNA 値を 有意に低下させ、血中 TG 値を低下 させたが、長期投与に及んだ場合、 肝細胞に対する傷害作用を発揮する 可能性が示唆された。
- (2) 非侵襲的手法である CT や超音波に

よるイメージングは、生体内の脂肪 の計測や進展した動脈硬化の石灰化 を検出することができ、継時的に同 一個体の同一病変を追跡することが 可能であり、治療実験にも応用でき る有用な解析手法の一つと考えられ た。

(3) ApoE-KO マウスに高脂肪食を負荷 して誘発した動脈硬化病変はヒトと 類似の進展形態と同様の分子を発現 し、ヒトの動脈硬化モデルとしての 有用性が示され、治療実験や発症機 序解析に相応しい病態モデルである ことが示された。

F. 健康危険情報

本研究では現在のところ健康に危険を及 ぼす可能性はない。

G. 研究発表

原著論文

(欧文)

なし

(邦文)

 <u>柴田雅朗</u>,日下部守昭,森本純司,柴 田映子,斯波真理子,的場吉信,土佐 秀樹,飯沼宗和:テネイシン抗体とα-マンゴスチンとの複合投与による乳 癌転移抑制の試み.乳癌基礎研究,22: 9-14,2013 (2014年度掲載).

2. 学会発表

- 1) 圓見純一郎,柴田映子,<u>柴田雅朗</u>,森 本めぐむ,福田肇,橋川美子,河嶋秀 和,堀美香,斯波真理子,飯田秀博: Gadofluorine M によるマウスの動脈 硬化プラークイメージング.第9回 日本分子イメージング学会総会・学術 集会,2014年5月22~23日,大阪
- 2) 柴田映子, <u>柴田雅朗</u>, 斯波真理子:動 脈硬化の治療実験モデルとして ApoE-K0 マウスを用いるための基礎 的解析.第46回日本動脈硬化学会総 会・学術集会, 2014年7月10~11日, 東京
- <u>柴田雅朗</u>,柴田映子,森本純司,斯 波真理子: Vegf-c siRNA 発現ベクタ ーではマウス乳癌転移を抑制したが、 Vegf-d siRNA ではその作用は発揮さ れなかった.第23回乳癌基礎研究会, 2014年7月26~27日,つくば
- <u>柴田雅朗</u>,柴田映子,斯波真理子:高 脂肪食で誘発した ApoE-KO マウスの 動脈硬化病変の病理・分子生物学的解 析.第31回日本毒性病理学会総会・ 学術集会,2015年1月29~30日,東 京
- <u>柴田雅朗</u>,柴田映子,斯波真理子:ヒ ト動脈硬化モデル ApoE-KO マウスの 動脈硬化病変の病理組織学的解析.

第 120 回日本解剖学会総会·全国学術 集会, 2014 年 3 月 28~30 日,神戸論 文

			Oil red stain			
		Liver Kidne			Kidney	Liver
Group	Animal No.	Cytoplasmic vacuolation	Hypertrophy of hepatocyte	Other		Oil red-positive levels
FF	A1	±	+		N	±
	A2	±	+		N	±
	A3	±	+		N	±
	A4	±	+		N	±
Control (Corn oil)	B1	1+	_		N	1+
	B2	1+	-		N	3+
	B3	2 +	-		N	1+
	B4	3 +	_		N	3+
Control (Saline)	C1	1+	_		N	1+
	C2	1+	_		N	1+
	C3	1+	_		N	2 +
	C4	1+	_		N	2+
ASO	D1	2 +	+	Formycell acumulations	N	3+
	D2	±	_		N	1+
	D3	1+	_		Lymphocytic accumulations	2+
	D4	2 +	_	Formycell acumulations	N	3+

表 1. ApoC-III アンチセンスの投与を受けた高脂肪食負荷マウスの安全性評価のための病理組織学的解析

ASO 投与群では肝細胞に空胞変性を観察し、Oil red 染色では肝臓に脂肪の蓄積が亢進している傾向が観察された。一方、FF 投与群では肝細胞の空胞変性や脂肪の蓄積(Oil red 染色)はほとんど正常程度に改善されていた。その反面、FF 投与群では著しい肝細胞肥大を観察した。また、ASO 投与群では肝臓内に泡沫細胞の集簇像が観察された。

表1

表2

遇數 (w)	動物番号	CT 石灰化 mg/cm^3	超音波 石灰化	病理組織 石灰化
	ApoCT-5	0	無	有
25.4	ApoCT-6	0	集	無
25%	ApoCT-7	200	疑い	有
	ApoCT-8	0	集	有
	ApoCT-9	238	有	有
2.4 \	ApoCT-10	246	有	有
54W	ApoCT-11	166	有	有
	ApoCT-12	254	有	有
	ApoCT-1	348	有	有
45.00	ApoCT-2	453	有	有
40W	ApoCT-3	305	有	有
	ApoCT-4	272	有	有

"0"は検出限界を意味する。

表 2. ApoE-K0 マウスの週齢別 CT、超音波断層像および病理組織学的大動脈の石灰化 像の比較

25 週齢において、CT および超音波断層撮影の群で、2 例が石灰化検出が出来なかった が、34 週齢とおよび 45 週齢の全ての例において検出でき、病理組織学的検査結果と 一致した。

図1. ApoC-III アンチセンス (ASO)を投与した肝臓の病理組織学的所見

- A: 対照群 (Corn oil) B: Fenofirate (FF) 投与群、C: 対照群 (生理食塩水)
- D: ASO 投与群、E: ASO 投与群、A~E: X200, H&E 染色

- 図2. ApoC-III アンチセンス(ASO)を投与した肝臓における脂肪蓄積の評価
 - A: 対照群 (Corn oil) B: Fenofirate (FF)投与群、C: 対照群 (生理食塩水)
 - D: ASO 投与群、A~D: X200、 0il red 染色

図3. 小動物用X線CT装置による内臓脂肪の測定

A: CT 測定による内臓脂肪率 {脂肪率 = 脂肪重量 / (筋肉重量 + 脂肪重量) X 100}

B: 生殖器周囲脂肪、腹腔内脂肪および腸管膜脂肪の重量測定値

C: CT による脂肪率 と脂肪重量の相関性

28 週齢の ApoE-KO マウス 5 例の腹部 CT より算出した内臓脂肪率と摘出した脂肪重量はよい相関を示した。

A: CT による肝臓の CT 値比、B: 肝臓の H&E 染色、C: 肝臓の 0il red 脂肪染色 病理組織学的に CT 値比が高値 (下段 0.71)は、低値 (上段 0.26)に比べて脂肪の蓄積が 強い。

図 5. イオパミロン静脈投与 10 分後の血管造影像 A: 大動脈弓上部 B: 大動脈弓 C: 大動脈起始部付近 A~Cの位置において 血管内に白い石灰化像が見られた。

В

図 6. 石灰化を伴う動脈硬化病変 A: H&E 染色、 B: Kossa 反応 ApoE-KO マウスの動脈硬化病変部に、Kossa 反応陽性部位が観察され、H&E 染色での 所見との関連付けが出来た。

図 7. 動脈硬化病変の F4/80 陽性を示すマクロファージ A: Wild type マウス、 B~D: ApoE-KO マウス、 X200、 F4/80 免疫組織学的染色

図 8. 動脈硬化病変の TIMP-1 発現 A: Wild type マウス、 B~D: ApoE-KO マウス、X200、TIMP-1 免疫組織学的染色

図 9. 動脈硬化病変の MMP-9 発現 A: Wild type マウス、 B~D: ApoE-KO マウス、 X200、 MMP-9 免疫組織学的染色

図 10. 動脈硬化病変の MMP-1/8 発現 A: Wild type マウス、B~D: ApoE-KO マウス、X200, MMP-1/8 免疫組織学的染色

図 11. 動脈硬化病変の sL0X-1 発現

A: Wild type マウス、 B~D: ApoE-KO マウス、X200,、sLOX-1 免疫組織学的染色

図 12. 動脈硬化病変の Cxcl16 発現 A: Wild type マウス、B~D: ApoE-KO マウス、X200、Cxcl16 免疫組織学的染色