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spheroid culture and Matrigel overlay culture systems to promote
hepatocyte maturation of the hepatocyte-like cells.

The hepatocyte-like cells generated from hESCs/hiPSCs are ex-
pected to be used in drug development. To the best of our knowl-
edge, however, few studies have tried to predict widespread drug-
induced cytotoxicity in vitro using the hepatocyte-like cells. To
precisely determine the applicability of the hepatocyte-like cells to
drug screening, it is necessary to investigate the responses of these
hepatocyte-like cells to many kinds of hepatotoxic drugs.

In this study, 3D spheroid and Matrigel overlay cultures of the
hepatocyte-like cells were performed to promote hepatocyte
maturation. The gene expression analysis of cytochrome P450
(CYP) enzymes, conjugating enzymes, hepatic transporters, and
hepatic nuclear receptors in the 3D spheroid-cultured hESC- or
hiPSC-derived hepatocyte-like cells (3D ES-hepa or 3D iPS-
hepa), were analyzed. In addition, CYP induction potency and
drug metabolism capacity were estimated in the 3D ES/iPS-hepa.
To determine the suitability of these cells for drug screening, we
examined whether the drug-induced cytotoxicity is induced by
treatment of various kinds of hepatotoxic drugs in 3D ES/iPS-
hepa.

2. Materials and methods
2.1. hESCs and hiPSCs culture

A hESC line, H1 and H9 (WiCell Research Institute), was maintained on a feeder
layer of mitomycin C-treated mouse embryonic fibroblasts (Millipore) with Repro
Stem medium (Repro CELL) supplemented with 5 ng/ml fibroblast growth factor 2
(FGF2) (Sigma). Both H1 and H9 were used following the Guidelines for Derivation
and Utilization of Human Embryonic Stem Cells of the Ministry of Education,
Culture, Sports, Science and Technology of Japan and furthermore, and the study was
approved by Independent Ethics Committee.

Three human iPSC lines were provided from the JCRB Cell Bank (Tic, JCRB
Number: JCRB1331; Dotcom, JCRB Number: JCRB1327; Toe, JCRB Number: JCRB1338)
[14,15]. These human iPSC lines were maintained on a feeder layer of mitomycin C-
treated mouse embryonic fibroblasts with iPSellon (Cardio) supplemented with
10 ng/ml FGF2. Other three human iPSC lines, 201B6, 201B7 and 253G1 were kindly
provided by Dr. S. Yamanaka (Kyoto University) [2]. These human iPSC lines were
maintained on a feeder layer of mitomycin C-treated mouse embryonic fibroblasts
with Repro Stem supplemented with 5 ng/ml FGF2.

2.2. Invitro differentiation

Before the initiation of cellular differentiation, the medium of hESCs was
exchanged into a defined serum-free medium, hESF9, and cultured as previously
reported [16]. The differentiation protocol for the induction of definitive endoderm
cells, hepatoblasts, and hepatocytes was based on our previous reports with some
modifications [3-5,17]. Briefly, in mesendoderm differentiation, hESCs were
dissociated into single cells by using Accutase (Millipore) and cultured for 2 days
on Matrigel (BD Biosciences) in differentiation hESF-DIF medium which contains
100 ng/ml Activin A (R&D Systems) and 10 ng/ml bFGF (hESF-DIF medium was
purchased from Cell Science & Technology Institute; differentiation hESF-DIF
medium was supplemented with 10 pg/ml human recombinant insulin, 5 pg/ml
human apotransferrin, 10 um 2-mercaptoethanol, 10 um ethanolamine, 10 um
sodium selenite, and 0.5 mg/ml bovine fatty acid free serum albumin [all from
sigmal). To generate definitive endoderm cells, the mesendoderm cells were
transduced with 3000 vector particle (VP)/cell of Ad-FOXA2 for 1.5 h on day 2 and
cultured until day 6 on Matrigel in differentiation hESF-DIF medium supplemented
with 100 ng/ml Activin A and 10 ng/ml bFGF. For induction of hepatoblasts, the DE
cells were transduced with each 1500 VP/cell of Ad-FOXA2 and Ad-HNF1a for 1.5 h
on day 6 and cultured for 3 days on Matrigel in hepatocyte culture medium (HCM)
(Lonza) supplemented with 30 ng/m! bone morphogenetic protein 4 (BMP4) (R&D
Systems) and 20 ng/ml FGF4 (R&D Systems). In hepatic expansion, the hepatoblasts
were transduced with each 1500 VP/cell of Ad-FOXA2 and Ad-HNFle for 1.5 h on
day 9 and cultured for 3 days on Matrigel in HCM supplemented with 10 ng/ml
hepatocyte growth factor (HGF), 10 ng/ml FGF1, 10 ng/ml FGF4, and 10 ng/ml FGF10
(all from R&D Systems). To perform hepatocyte maturation on Nanopillar Plate (a
prototype multi-well culturing plate for spheroid culture developed and prepared
by Hitachi High-Technologies Corporation) shown in Fig. 1B, the cells were seeded
at 2.5 x 10° cellsjem? (Fig. S1) in hepatocyte culture medium (Fig. S2) supple-
mented with 10 ng/ml HGF, 10 ng/ml FGF1, 10 ng/ml FGF4, and 10 ng/ml FGF10 on
day 11. In the first stage of hepatocyte maturation (from day 12 to day 25), the cells
were cultured for 13 days on Matrigel in HCM supplemented with 20 ng/ml HGF,

20 ng/ml oncostatin M (OsM), 10 ng/m! FGF4, and 10~% M dexamethasone (DEX). In
the second stage of hepatocyte maturation (from day 25 to day 35), Matrigel was
overlaid on the hepatocyte-like cells. Matrigel were diluted to a final concentration
of 0.25 mg/ml with William’s E medium (Invitrogen) containing 4 mm L-glutamine,
50 ug/ml gentamycin sulfate, 1 x ITS (BD Biosciences), 20 ng/ml OsM, and 10~% M
DEX. The culture medium was aspirated, and then the Matrigel solution (described
above) was overlaid on the hepatocyte-like cells. The cells were incubated over-
night, and the medium was replaced with HCM supplemented with 20 ng/ml OsM
and 107 M DEX.

2.3. Adenovirus (Ad) vectors

Ad vectors were constructed by an improved in vitro ligation method [18,19]. The
human EF-1a promoter-driven LacZ-, FOXA2-, or HNFla-expressing Ad vectors (Ad-
LacZ, Ad-FOXA2, or Ad-HNF1a, respectively) were constructed previously [3,4,20].
All of Ad vectors contain a stretch of lysine residue (K7) peptides in the C-terminal
region of the fiber knob for more efficient transduction of hESCs, hiPSCs, and DE
cells, in which transfection efficiency was almost 100%, and purified as described
previously [3--5]. The vector particle (VP) titer was determined by using a spectro-
photometric method [21].

24. Flow cytometry

Single-cell suspensions of hESC/hiPSC-derived cells were fixed with 2% para-
formaldehyde (PFA) at 4°C for 20 min, and then incubated with the primary anti-
body (described in Table S1), followed by the secondary antibody (described in
Table S1). Flow cytometry analysis was performed using a FACS LSR Fortessa flow
cytometer (BD Biosciences).

2.5. RNA isolation and reverse transcription-polymerase chain reaction (RT-PCR)

Total RNA was isolated from hESCs or hiPSCs and their derivatives using 1SO-
GENE (Nippon Gene). cDNA was synthesized using 500 ng of total RNA with
a Superscript VILO ¢DNA synthesis kit (Invitrogen). Real-time RT-PCR was performed
with Tagman gene expression assays (Applied Biosystems) or SYBR Premix Ex Taq
(TaKaRa) using an ABI PRISM 7000 Sequence Detector (Applied Biosystems). Relative
quantification was performed against a standard curve and the values were
normalized against the input determined for the housekeeping gene, glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH). The primer sequences used in this
study are described in Table S2.

2.6. Immunohistochemistry

The cells were fixed with 4% PFA. After incubation with 1% Triton X-100, blocking
with Blocking One (Nakalai tesque), the cells were incubated with primary antibody
(describe in Table S1) at 4°C for over night, followed by incubation with a secondary
antibody (described in Table S1) at room temperature for 1 h.

2.7. ELISA

The hESCs or hiPSCs were differentiated into hepatocytes as described in Fig. 1A.
The culture supernatants, which were incubated for 24 h after fresh medium was
added, were collected and analyzed for the amount of ALB secretion by ELISA. ELISA
kits for ALB were purchased from Bethyl. ELISA was performed according to the
manufacturer's instructions. The amount of ALB secretion was calculated according
to each standard followed by normalization to the protein content per well.

2.8. Urea secretion

The hESCs or hiPSCs were differentiated into hepatocytes as described in Fig. 1A.
The culture supernatants, which were incubated for 24 h after fresh medium was
added, were collected and analyzed for the amount of urea secretion. Urea
measurement kits were purchased from BioAssay Systems. The experiment was
performed according to the manufacturer’s instructions. The amount of urea
secretion was calculated according to each standard followed by normalization to
the protein content per well.

2.9. Canalicular secretory assay

At cellular differentiation, the hepatocyte-like cell spheroids were treated with
5 mm choly-lysyl-fluorescein (CLF) (BD Biosciences) for 30 min. The cells were
washed with culture medium, and then observed by fluorescence microscope. To
inhibit the function of BSEP, the cells were pretreated with Cyclosporin A 24 h before
of the CLF treatment.

2.10. Assay for CYP activity and CYP induction

To measure the cytochrome P450 2C9 and 3A4 activity of the cells, we per-
formed lytic assays by using a P450-GloTM CYP2C9 (catalog number; V8791) and
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Fig. 1. Hepatocyte-like cells were differentiated from hESCs/hiPSCs by using Nanopillar Plate. (A) The procedure for differentiation of hESCs into 3D ES/iPS-hepa via mesendoderm
cells, definitive endoderm cells, and hepatoblasts is presented schematically. In the differentiation, not only the addition of growth factors but also stage-specific transient
transduction of both FOXA2- and HNF1¢-expressing Ad vector (Ad-FOXA2 and Ad-HNF1o, respectively) was performed. The cellular differentiation procedure is described in detail
in the materials and methods section. (B) Photograph display of a 24-well format Nanopillar Plate and its microstructural appearances of the hole and pillar structure, (C) Phase-
contrast micrographs of the hESC-hepa spheroids on the Nanopillar Plate are shown. Scale bar represents 100 pm.

3A4 (catalog number; V9001) Assay Kit (Promega), respectively. We measured the
fluorescence activity with a luminometer (Lumat LB 9507; Berthold) according to
the manufacturer’s instructions. The CYP activity was normalized with the protein
content per well.

To measure CYP2C9 and 3A4 induction potency, the CYP activity was measured
by using a P450-GloTM CYP2C9 and 3A4 Assay Kit, respectively. The cells were
treated with rifampicin, which is known to induce both CYP2C9 and 3A4, at a final
concentration of 10 um for 48 h. The cells were also treated with Ketoconazole
(Sigma) or Sulfaphenazole (Sigma), which are inhibitors for CYP3A4 or 2C9, at a final
concentration of 1 um or 2 pm, respectively, for 48 h. Controls were treated with
DMSO (final concentration 0.1%). Inducer compounds were replaced daily.

2.11. Cell viability tests

Cell viability was assessed by the WST-8 assay kit (Dojindo) in Fig. 2D. After
treatment with test compounds, such as Acetaminophen (Wako), Allopurinol
(Wako), Amiodaron (Sigma), Benzbromarone (Sigma), Clozapine (Wako), Cyclizine
(MP bio), Dantrolene (Wako), Desipramine (Wake), Disufliram (Wako), Erythro-
mycin (Wako), Felbamate (Sigma), Flutamide (Wako), Isoniazid (Sigma), Labetalol
(Sigma), Lefunomide (Sigma), Maprotiline (Sigma), Nefazodone (Sigma), Nitro-
furantoin (Sigma), Sulindac (Wako), Tacrine (Sigma), Tebinafine (Wako), Tolcapone
(TRC), Troglitazone (Wako), and Zafirlukast (Cayman) for 24 h, the cell viability was
measured. The cell viability of the 3D iPSC-hepa were assessed by WST-8 assay after
24 h exposure to different concentrations of Aflatoxin B1 (Sigma) and Benz-
bromarone in the presence or absence of the CYP3A4 or 2C9 inhibitor, Ketoconazole
(1 pm) or Sulfaphenazole (10 um), respectively. The control refers to incubations in
the absence of test compounds and was considered as 100% viability value. Controls
were treated with DMSO (final concentration 0.1%). ATP assay (BioAssay Systems),
Alamar Blue assay (Invitrogen), and Crystal Violet (Wako) staining assay were per-
formed according to the manufacturer’s instructions.

2.12. Primary human hepatocytes
Three lots of cryopreserved human hepatocytes (lot Hu8072 [CellzDirect], HC2-

14, and HC10-101 [Xenotech]) were used. These three lots of crypreserved human
hepatocytes were cultured according to our previous report [5].

2.13. Statistical analysis

Statistical analysis was performed using the unpaired two-tailed Student’s t-
test. All data are represented as means =+ SD (n = 3).

3. Results

The 3D ES/iPS-hepa were generated from hESCs/hiPSCs as shown
in Fig. 1A. Hepatocyte differentiation of hESCs/hiPSCs was efficiently
promoted by stage-specific transient transduction of FOXA2 and
HNF1a in addition to the treatment with appropriate soluble factors
(growth factors and cytokines) [6]. On day 11, the hESC-derived cells
were seeded at 2.5 x 10° cells/cm? (Fig. S1) on Nanopillar Plate
(Fig. 1B), in hepatocyte culture medium (Fig. S2) to promote hepa-
tocyte maturation. In addition, Matrigel was overlaid on the 3D ES-
hepa to promote further hepatocyte maturation. The 3D ES-hepa
with compact morphology that were adhesive to the substratum
and had an optimal size (approximately 100 pm in diameter) were
formed by using the Nanopillar Plate (Fig. 1C). The spheroids seem to
be stable because they could be cultured for more than 20 days. We
have confirmed that more than 90% of the cells that constitute the
spheroids were alive, indicating that the necrotic centers are absent.

To investigate whether or not a 3D spheroid culture could
promote hepatocyte maturation of the hepatocyte-like cells,
various hepatocyte characteristics of the 3D ES/iPS-hepa were
compared with those of the monolayer-cultured hESC- or hiPSC-
derived hepatocyte-like cells (mono ES-hepa or mono iPS-hepa).
The gene expression level of ALB peaked on day 20 in the mono
ES-hepa, and then it was dramatically decreased after day 25
(Fig. 2A). In contrast, the gene expression level of ALB was
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Fig. 2. Hepatocyte functions in hESC-derived hepatocyte-like cells were enhanced by using Nanopillar Plate. (A) The gene expression levels of ALB were measured by real-time RT-
PCR on day 15, 20, 25, 30, and 35. On the y axis, the gene expression levels in PHs (three lots of PHs were used in all studies), which were cultured for 48 h after plating (PHs-48hr),
were taken as 1.0. (B, C) The amount of ALB (B) and urea (C) secretion were examined in the mono ES-hepa (day 20), the 3D ES-hepa (day 35), and PHs-48hr. (D—H) The gene
expression levels of CYP enzymes (D), conjugating enzymes (E), hepatic transporters (F), hepatic nuclear receptors (G), and bile canaliculi transporters (H) were examined by real-
time RT-PCR in the mono ES-hepa, the 3D ES-hepa, and PHs-48hr. On the y axis, the expression levels in PHs-48hr were taken as 1.0. (I) The ability of bile acid uptake and efflux was
examined in the mono ES-hepa and 3D ES-hepa. Choly-lysyl-fluorescein (CLF) (5 um) was used for the observation of bile canaliculi uptake and efflux. To inhibit transportation by
BSEP, the cells were pretreated with 1 um Cyclosporin A. *P < 0.05; **P < 0.01.
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moderately increased in the 3D ES-hepa until day 35 (Fig. 2A).
These results suggest that the hepatocyte functions of the 3D ES-
hepa are sustained for more than 2 weeks on the Nanopillar
Plate, although those of the mono ES-hepa are rapidly devitalized
(Fig. 2A and Fig. S4). Other hepatocyte characteristics, such as
ability of ALB and urea secretion and gene expression levels of
hepatocyte-related markers in the 3D ES-hepa were compared with
those of the mono ES-hepa (Fig. 2B—H). Because the gene expres-
sion level of ALB in the 3D ES-hepa was the highest on day 35 and
that in mono ES-hepa was the highest on day 20, various hepato-
cyte characteristics were compared on day 35 or day 20, respec-
tively. The amount of ALB (Fig. 2B) and urea (Fig. 2C) secretion in
the 3D ES-hepa was higher than those of the mono ES-hepa. The
gene expression levels of CYP enzymes (Fig. 2D), conjugating
enzymes (Fig. 2E), hepatic transporters (Fig. 2F), hepatic nuclear
receptors (Fig. 2G), and hepatic transcription factors (Fig. S5) in the
3D ES-hepa were higher than those in the mono ES-hepa. The
expression levels of most of the genes in the 3D ES-hepa were
higher than those in the mono ES-hepa. Because the previous study
[11] showed that hepatocyte spheroids expressed hepatocyte
transporters similar to those of the bile canaliculi in native liver
tissue, the gene expression levels of bile canaliculi transporters
(Fig. 2H), as well as the ability of bile acid uptake and efflux, (Fig. 2I)
were examined in the 3D ES-hepa. The gene expression levels of
bile canaliculi transporters were increased in the 3D ES-hepa
compared with those of mono ES-hepa and PHs (Fig. 2H). The
bile canaliculi formation was visualized by BSEP fluorescent
substrate: Cholyl-lysyl-fluorescein (CLF), which is inhibited by BSEP
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Fig. 3. Comparison of the hepatic differentiation capacities of various hESC and hiPSC
lines hESCs (H1 and H9) and hiPSCs (201B6, 201B7, 253G1, Dotcom, Tic, and Toe) were
differentiated into the 3D ES/iPS-hepa as described in Fig. 1A. (A) On day 20, the gene
expression level of ALB was examined by real-time RT-PCR. On the y axis, the gene
expression level of ALB in PHs-48hr was taken as 1.0. (B) On day 20, the amount of ALB
secretion was examined by ELISA. The amount of ALB secretion was calculated
according to each standard followed by normalization to the protein content per well.
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Fig. 4. Drug metabolism capacity and CYP induction potency were examined in the 3D
iPS-hepa. (A) The 3D iPS-hepa (day 35) were subjected to immunostaining with anti-
ALB (green) or CYP3A4 (red) antibodies. Nuclei were counterstained with DAPI (blue).
Scale bar represents 100 pm. (B) The CYP activity was measured in the mono iPS-hepa
(day 20), the 3D iPS-hepa (day 35), and PHs-48hr. On the y axis, the CYP activity in
PHs-48hr was taken as 1.0. (C) Induction of CYP2C9 (left) or CYP3A4 (right) by DMSO
(solvent only; white bar), Rifampicin (gray bar), or rifampicin and CYP inhibitor (Sul-
faphenazole or Ketoconazole, black bar) in the mono iPS-hepa, the 3D iPS-hepa, and
PHs-48hr. On the y axis, the CYP activity of the cells that have been cultured in DMSO-
containing medium was taken as 1.0. *P < 0.05; **P < 0.01.
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inhibitor Cyclosporin A {22,23]. More CLF was accumulated in the
3D ES-hepa than in the mono ES-hepa (Fig. 21 upper panel). More-
over, CLF accumulation was inhibited by Cyclosporin A treatment
only in the 3D ES-hepa (Fig. 21 lower panel), demonstrating that the
functionality of BSEP transporter in 3D ES-hepa was greater than
that in mono ES-hepa. These results suggested that hepatocyte
maturation was promoted by the culture on the Nanopillar Plate. It
is likely that, compared to the monolayer culture condition, the 3D
spheroid-culture condition is more similar to the in vivo condition.

It is important to select an hESC/hiPSC line that has a strong
ability to differentiate into hepatocyte-like cells in the case of
medical applications such as drug screening. In this study, two hESC
lines and six hiPSC lines were differentiated into the hepatocyte-
like cells, and then their gene expression levels of ALB (Fig. 3A)
and ALB secretion levels (Fig. 3B) were compared. These results
suggest that the iPSC line, Dotcom, was the suitable cell line for
hepatocyte maturation. Therefore, the iPSC line, Dotcom, was used
to examine the possibility of the 3D iPS-hepa for drug screening.
The drug metabolism capacity and the CYP induction potency of the
3D iPS-hepa were compared with those of the mono iPS-hepa. We
confirmed the expression of ALB and CYP3A4 protein in the 3D ES-
hepa (Fig. 4A). The activity levels of CYP enzymes in the 3D iPS-
hepa were measured according to the metabolism of the CYP2C9
or CYP3A4 substrates (Fig. 4B); the levels were higher than those of
the mono iPS-hepa (Fig. 4B). We further tested the induction of
CYP2C9 and CYP3A4 by chemical stimulation (rifampicin was used
as a CYP2(C9 or CYP3A4 inducer). Compared with mono iPS-hepa,
the 3D iPS-hepa produced more metabolites in response to
chemical stimulation (Fig. 4C). In addition, the CYP induction was
inhibited by using CYP2C9 or CYP3A4 inhibitor (Sulfaphenazole or
Ketoconazole, respectively). These results indicated that drug
metabolism capacity and CYP induction potency in 3D iPS-hepa
were higher than those in mono iPS-hepa.

Many researchers have tried to predict the drug-induced cyto-
toxicity in vitro using hepatocarcinoma-derived cells such as HepG2
cells [24,25]. HepG2 cells are less expensive than PHs and the
reproducible experiments are easier to perform than they are with
PHs, although 30% of the compounds were incorrectly classified as
nontoxic [24,25]. To overcome these problems, hESC/hiPSC-derived
hepatocyte-like cells are expected to be used to predict drug-
induced cytotoxicity. To examine its applicability to drug
screening, the 3D iPS-hepa were treated with various drugs, that
cause hepatotoxicity. WST-8 assay was performed to evaluate cell
viability (Fig. S6). The susceptibility of the 3D iPS-hepa to most of
the hepatotoxic drugs was higher than that of the mono iPS-hepa
(Fig. S7). Compared to the mono iPS-hepa, the 3D iPS-hepa were
more suitable tools for drug screening. Next, the susceptibility of
the 3D iPS-hepa to the hepatotoxic drugs was compared with that
of the 3D spheroid cultured HepG2 cells (3D HepG2; the hepatocyte
functions of 3D HepG2 cells are higher than those of monolayer
cultured HepG2 cells [Fig. S8]). With most of the drugs, the cell
viability of the 3D iPS-hepa was lower than that of the 3D HepG2
(Fig. 5A). These results indicated that the 3D iPS-hepa are more
valuable tools for drug screening than the 3D HepG2. However, the
susceptibility of the 3D iPS-hepa to Acetaminophen and Troglita-
zone was lower than that of the PHs which were cultured for 48 h
after the cells were plated (Fig. 5B). These results might be due to
the lower activity levels of CYPs in 3D iPS-hepa as compared as
those in PHs. Taken together, 3D iPS-hepa are more valuable tools
for drug screening than the 3D HepG2, although further maturation

of 3D iPS-hepa is still required for 3D iPS-hepa to be an alternative
cell source of PHs in the drug screening.

To examine whether drug-induced cytotoxicity is caused by CYP
metabolites in 3D iPS-hepa, Aflatoxin B1 (mainly metabolized by
CYP3A4 [26]) and Benzbromarone (mainly metabolized by CYP2C9
[27]) were treated in the presence or absence of a CYP3A4 and a 2C9
inhibitor, Ketoconazole and Sulfaphenazole, respectively (Fig. 6).
The cell viability of 3D iPS-hepa was partially rescued by treatment
with the CYP inhibitor. These results indicated that drug-induced
cytotoxicity was caused by CYP metabolites of Aflatoxin B1 and
Benzbromarone.

4. Discussion

Recently, it has been expected that human pluripotent stem cells
and their derivatives, including hepatocyte-like cells, will be
utilized in applications for the safety assessment of drugs. We have
previously reported that combinational overexpression of SOX17,
HEX, and HNF4¢, or combinational overexpression of FOXA2 and
HNF1a could promote hepatocyte differentiation [5,6]. However,
the drug metabolism capacity of the hepatocyte-like cells gener-
ated by our previous protocol was still lower than that of primary
human hepatocytes [6]. To generate more matured hepatocyte-like
cells as compared with our previous protocol, we established
a hepatocyte differentiation method employing not only stage-
specific transient overexpression of hepatocyte-related transcrip-
tion factors but also a 3D culture systems using a Nanopillar Plate,
was established. Although the use of hepatocyte-like cells gener-
ated from hESCs/hiPSCs in application for drug toxicity testing has
begun to be focused, to the best of our knowledge, there have been
few studies that have investigated whether hepatocyte-like cells
could predict many kinds of drug-induced toxicity.

3D culture spheroids were generated from hESCs/hiPSCs by using
a Nanopillar Plate. The diameter of the spheroids was approximately
100 pm on day 35 of differentiation (Fig. 1C). Because it is known that
the no-oxygen limitation would take place in spheroids up to 100 pm
in diameter [28], the size of the spheroid might be important to
generate spheroids with high viability. A Nanopillar Plate has
a potential to regulate the spheroid diameter simply by culturing
under optimized seeding condition, on its suitably designed pillarand
hole structure [11]. Therefore, a Nanopillar Plate would be a suitable
environment for the generation of 3D ES/iPS-hepa that show high
viability and possess high level of hepatocellular functions.

The levels of many hepatocyte functions, such as ALB secretion
ability (Fig. 2B), urea secretion ability (Fig. 2C), hepatocyte-related
gene expressions (Fig. 2D—H), drug metabolism capacity (Fig. 4B),
and CYP induction potency (Fig. 4C), of 3D ES/iPS-hepa were higher
than those of mono ES/iPS-hepa. This might have been because the
structural and functional polarity, which can be seen in the naive
environment of hepatocytes, of the hepatocyte-like cells was
configured by a 3D culturing condition. Previous studies have
shown that a 3D culture condition is suitable to maintain the
hepatic characteristics of the isolated hepatocytes because this
condition mimic in vivo environment [29,30]. These facts indicated
that the 3D culture condition is a more suitable condition for the
hepatocyte-like cells than the monolayer culture condition.

Two hES cell lines and six hiPS cell lines were differentiated into
the hepatocyte-like cells in this study. The hiPS cell line, Dotcom,
seemed to be a suitable cell line for hepatic differentiation (Fig. 3).
Because the hepatic differentiation propensity differs among the

Fig. 5. The possibility of applying 3D iPS-hepa to drug testing was examined. (A) The cell viability of the 3D HepG2 (black) and 3D iPSC-hepa (red) were assessed by WST-8 assay
after 24 h exposure to different concentrations of 22 test compounds. (B) The cell viability of the 3D HepG2 (black), 3D iPSC-hepa (red), and PHs-48hr (green) were assessed by WST-
8 assay after 24 h exposure to different concentrations of Acetaminophen and Troglitazone. Cell viability is expressed as a percentage of cells treated with solvent only. *P < 0.05;

**P < 0.01.
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Fig. 6. Drug-induced cytotoxicity in the 3D iPS-hepa is mediated by cytochrome P450.
(A, B) The cell viability of the 3D iPSC-hepa was assessed by WST-8 assay after 24 h
exposure to different concentrations of (A) Aflatoxin B1 and (B) Benzbromarone in the
presence or absence of the CYP3A4 or 2C9 inhibitor, Ketoconazole or Sulfaphenazole,
respectively. Cell viability was expressed as the percentage of cells treated with solvent
only. *P < 0.05; **P < 0.01.

hES/hiPS cell lines, it would be important to select an appropriate
cell line for medical applications such as drug screening. However,
the dominant reason for this hepatic differentiation propensity is
not been well known. It would be interesting study to elucidate the
mechanism of this propensity.

Although the drug metabolism capacity and CYP induction
potency of 3D iPS-hepa were higher than those of mono iPS-hepa
(Fig. 4B and C), they were still lower than those of primary
human hepatocytes. The hepatic nuclear factors are known to be
key molecules in the CYP induction of hepatocytes [30]. Therefore,
overexpression of hepatic nuclear factors, which are not abun-
dantly expressed in the hepatocyte-like cells (such as PXR), might
upregulate the CYP induction potency of the hepatocyte-like cells.

3D iPS-hepa were more sensitive for detection of the drug-
induced cytotoxicity than HepG2 cells that are widely used to
predict hepatotoxicity [31,32] (Fig. 5). In addition, the decrease of
cell viability, which was caused by hepatotoxic drugs, of 3D iPS-
hepa was partially rescued by treatment with a CYP inhibitor
(Fig. 6). These data suggest that the hepatocyte-like cells could
detect the toxicity of the reactive metabolites that were generated
by drug metabolizing enzymes such as CYP enzymes. Because in
many cases, drug-induced hepatotoxicity is caused by the reactive

metabolites produced by drug metabolizing enzymes [33], our
finding that the hepatocyte-like cells could detect the toxicity of
reactive metabolites should be of great potential for toxicological
screening. Moreover, it might be possible to predict idiosyncratic
liver toxicity by using hepatocyte-like cells generated from hiPSCs
that were established from a patient with a rare CYP poly-
morphism. However, some compounds did not show any cytotox-
icity (such as Cyclizine, Felbamate, and Sulindac) (Fig. 5). To apply
the hepatocyte-like cells for wide-spread drug screening, genera-
tion of the hepatocyte-like cells are required to detect hepatotoxity
in more sensitive manner. Previous studies showed that the
depletion of conjugating enzymes [32] or knockdown of Nrf2 [34]
expression are useful to upregulate the sensitivity to hepatotoxic
drugs. Therefore, these approaches would be useful to generate
more sensitive hepatocytes to toxic drugs.

5. Conclusions

In this study, we established the efficient hepatocyte differen-
tiation method which employs not only stage-specific transient
overexpression of hepatocyte-related transcription factors but also
3D spheroid culture systems by using Nanopillar Plate. To the best
of our knowledge, this is the first study in which the hepatocyte-
like cells, having enough hepatocyte functions, mediate drug-
induced cytotoxicity against many compounds. Our hepatocyte-
like cells differentiated from hESCs or hiPSCs have potential to be
applied in drug toxicity testing.
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Background & Aims: Hepatocyte-like cells differentiated from
human embryonic stem cells (hESCs) and induced pluripotent
stem cells (hiPSCs) can be utilized as a tool for screening for hep-
atotoxicity in the early phase of pharmaceutical development.
We have recently reported that hepatic differentiation is pro-
moted by sequential transduction of SOX17, HEX, and HNF4o
into hESC- or hiPSC-derived cells, but further maturation of hepa-
tocyte-like cells is required for widespread use of drug screening.
Methods: To screen for hepatic differentiation-promoting factors,
we tested the seven candidate genes related to liver
development.

Results: The combination of two transcription factors, FOXA2 and
HNF1a, promoted efficient hepatic differentiation from hESCs
and hiPSCs. The expression profile of hepatocyte-related genes
(such as genes encoding cytochrome P450 enzymes, conjugating
enzymes, hepatic transporters, and hepatic nuclear receptors)
achieved with FOXA2 and HNF1a transduction was comparable
to that obtained in primary human hepatocytes. The hepato-
cyte-like cells generated by FOXA2 and HNFla transduction
exerted various hepatocyte functions including albumin and urea
secretion, and the uptake of indocyanine green and low density
lipoprotein. Moreover, these cells had the capacity to metabolize
all nine tested drugs and were successfully employed to evaluate
drug-induced cytotoxicity.

Conclusions: Our method employing the transduction of FOXA2
and HNF1o represents a useful tool for the efficient generation
of metabolically functional hepatocytes from hESCs and hiPSCs,
and the screening of drug-induced cytotoxicity.
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Drug metabolism; hESCs; hiPSCs.
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Introduction

Hepatocyte-like cells differentiated from human embryonic stem
cells (hESCs) [1] or human induced pluripotent stem cells
(hiPSCs) [2] have more advantages than primary human hepato-
cytes (PHs) for drug screening. While application of PHs in drug
screening has been hindered by lack of cellular growth, loss of
function, and de-differentiation in vitro [3], hESC- or hiPSC-
derived hepatocyte-like cells (hESC-hepa or hiPSC-hepa, respec-
tively) have potential to solve these problems.

Hepatic differentiation from hESCs and hiPSCs can be divided
into four stages: definitive endoderm (DE) differentiation, hepatic
commitment, hepatic expansion, and hepatic maturation. Various
growth factors are required to mimic liver development [4] and
to promote hepatic differentiation. Previously, we showed that
transduction of transcription factors in addition to treatment
with optimal growth factors was effective to enhance hepatic dif-
ferentiation [5-7]. An almost homogeneous hepatocyte popula-
tion was obtained by sequential transduction of SOX17, HEX,
and HNF4o into hESC- or hiPSCs-derived cells [7]. However, fur-
ther maturation of the hESC-hepa and hiPSC-hepa is required for
widespread use of drug screening because the drug metabolism
capacity of these cells was not sufficient.

In some previous reports, hESC-hepa and hiPSC-hepa have
been characterized for their hepatocyte functions in numerous
ways, including functional assessment such as glycogen storage
and low density lipoprotein (LDL) uptake [7]. To make a more
precise judgment as to whether hESC-hepa and hiPSC-hepa can
be applied to drug screening, it is more important to assess cyto-
chrome P450 (CYP) induction potency and drug metabolism
capacity rather than general hepatocyte function. Although Duan
et al. have examined the drug metabolism capacity of hESC-hepa,
drug metabolites were measured at 24 or 48 h [8]. To precisely
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estimate the drug metabolism capacity, the amount of metabo-
lites must be measured during the time when production of
metabolites is linearly detected (generally before 24 h). To the
best of our knowledge, there have been few reports that have
examined various drugs metabolism capacity of hESC-hepa and
hiPSC-hepa in detail.

In the present study, seven candidate genes (FOXA2, HEX,
HNF1o,, HNF1p, HNF4a, HNF6, and SOX17) were transduced into
each stage of hepatic differentiation from hESCs by using an ade-
novirus (Ad) vector to screen for hepatic differentiation-promot-
ing factors. Then, hepatocyte-related gene expression profiles and
hepatocyte functions in hESC-hepa and hiPSC-hepa generated by
the optimized protocol, were examined to investigate whether
these cells have PHs characteristics. We used nine drugs, which
are metabolized by various CYP enzymes and UDP-glu-
curonosyltransferases (UGTs), to determine whether the hESC-
hepa and hiPSC-hepa have drug metabolism capacity. Further-
more, hESC-hepa and hiPSC-hepa were examined to determine
whether these cells may be applied to evaluate drug-induced
cytotoxicity.

Materials and methods
In vitro differentiation

Before the initiation of cellular differentiation, the medium of hESCs and hiPSCs
was exchanged for a defined serum-free medium, hESF9, and cultured as previ-
ously reported [9]. The differentiation protocol for the induction of DE cells,
hepatoblasts, and hepatocytes was based on our previous report with some mod-
ifications [5,6]. Briefly, in mesendoderm differentiation, hESCs and hiPSCs were
dissociated into single cells by using Accutase (Millipore) and cultured for 2 days
on Matrigel (BD biosciences) in differentiation hESF-DIF medium which contains
100 ng/ml Activin A (R&D Systems) and 10 ng/ml bFGF (hESF-DIF medium, Cell
Science & Technology Institute; differentiation hESF-DIF medium was supple-
mented with 10 ug/ml human recombinant insulin, 5 pg/ml human apotransfer-
rin, 10 uM 2-mercaptoethanol, 10 pM ethanolamine, 10 pM sodium selenite, and
0.5 mg/ml bovine serum albumin, all from Sigma). To generate DE cells, mesendo-
derm cells were transduced with 3000 VP/cell of Ad-FOXAZ2 for 1.5 h on day 2 and
cultured until day 6 on Matrigel in differentiation hESF-DIF medium supple-
mented with 100 ng/ml Activin A and 10 ng/ml bFGF. For induction of hepato-
blasts, the DE cells were transduced with each 1500 VP/cell of Ad-FOXA2 and
Ad-HNF1a for 1.5 h on day 6 and cultured for 3 days on Matrigel in hepatocyte
culture medium (HCM, Lonza) supplemented with 30 ng/ml bone morphogenetic
protein 4 (BMP4, R&D Systems) and 20 ng/ml FGF4 (R&D Systems). In hepatic
expansion, the hepatoblasts were transduced with each 1500 VP/cell of Ad-
FOXA2 and Ad-HNF1a for 1.5 h on day 9 and cultured for 3 days on Matrigel in
HCM supplemented with 10 ng/ml hepatocyte growth factor (HGF), 10 ng/ml
FGF1, 10 ng/ml FGF4, and 10 ng/ml FGF10 (all from R&D Systems). In hepatic mat-
uration, cells were cultured for 8 days on Matrigel in L15 medium (Invitrogen)
supplemented with 8.3% tryptose phosphate broth (BD biosciences), 10% FBS
(Vita), 10 pM hydrocortisone 21-hemisuccinate (Sigma), 1 uM insulin, 25 mM
NaHCOs; (Wako), 20 ng/ml HGF, 20 ng/ml Oncostatin M (OsM, R&D systems),
and 10~% M Dexamethasone (DEX, Sigma).

Results

Recently, we showed that the sequential transduction of SOX17,
HEX, and HNF4o into hESC-derived mesendoderm, DE, and
hepatoblasts, respectively, leads to efficient generation of the
hESC-hepa [5-7]. In the present study, to further improve the dif-
ferentiation efficiency towards hepatocytes, we screened for
hepatic differentiation-promoting transcription factors. Seven
candidate genes involved in liver development were selected.
We then examined the function of the hESC-hepa and hiPSC-hepa
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generated by the optimized protocol for pharmaceutical use in
detail.

Efficient hepatic differentiation by Ad-FOXA2 and Ad-HNF1a
transduction

To perform efficient DE differentiation, T-positive hESC-derived
mesendoderm cells (day 2) (Supplementary Fig. 1) were trans-
duced with Ad vector expressing various transcription factors
(Ad-FOXA2, Ad-HEX, Ad-HNFlo, Ad-HNF1B, Ad-HNF4q, Ad-
HNF6, and Ad-SOX17 were used in this study). We ascertained
the expression of FOXA2, HEX, HNF1a, HNF1p, HNF4o, HNF6, or
SOX17 in Ad-FOXA2-, Ad-HEX-, Ad-HNFlo-, Ad-HNF1pB-, Ad-
HNF4a-, Ad-HNF6-, or Ad-SOX17-transduced cells, respectively
(Supplementary Fig. 2). We also verified that there was no cyto-
toxicity of the cells transduced with Ad vector until the total
amount of Ad vector reached 12,000 VP/cell (Supplementary
Fig. 3). Each transcription factor was expressed in hESC-derived
mesendoderm cells on day 2 by using Ad vector, and the effi-
ciency of DE differentiation was examined (Fig. 1A). The DE dif-
ferentiation efficiency based on CXCR4-positive cells was the
highest when Ad-SOX17 or Ad-FOXA2 were transduced
(Fig. 1B). To investigate the difference between Ad-FOXA2-trans-
duced cells and Ad-SOX17-transduced cells, gene expression lev-
els of markers of undifferentiated cells, mesendoderm cells, DE
cells, and extraembryonic endoderm cells were examined
(Fig. 1C). The expression levels of extraembryonic endoderm
markers of Ad-SOX17-transduced cells were higher than those
of Ad-FOXA2-transduced cells. Therefore, we concluded that
FOXA2 transduction is suitable for use in selective DE
differentiation.

To promote hepatic commitment, various transcription fac-
tors were transduced into DE cells and the resulting phenotypes
were examined on day 9 (Fig. 1D). Nearly 100% of the population
of Ad-FOXA2-transduced cells and Ad-HNFla-transduced cells
was o-fetoprotein (AFP)-positive (Fig. 1E). We expected that
hepatic commitment would be further accelerated by combining
FOXA2 and HNF1a transduction. The DE cells were transduced
with both Ad-FOXA2 and Ad-HNF1a, and then the gene expres-
sion levels of CYP3A7 [10], which is a marker of fetal hepatocytes,
were evaluated (Fig. 1F). When both Ad-FOXA2 and Ad-HNFl1a
were transduced into DE cells, the promotion of hepatic commit-
ment was greater than in Ad-FOXA2-transduced cells or Ad-
HNF1o-transduced cells.

To promote hepatic expansion and maturation, we transduced
various transcription factors into hepatoblasts on day 9 and 12
and the resulting phenotypes were examined on day 20
(Fig. 1G). We ascertained that the hepatoblast population was
efficiently expanded by addition of HGF, FGF1, FGF4, and FGF10
(Supplementary Fig. 4). The hepatic differentiation efficiency
based on asialoglycoprotein receptor 1 (ASGR1)-positive cells
was measured on day 20, demonstrating that FOXA2, HNF1a,
and HNF4q transduction could promote efficient hepatic matura-
tion (Fig. 1H). To investigate the phenotypic difference between
Ad-FOXA2-, Ad-HNF10-, and Ad-HNF4o-transduced cells, gene
expression levels of early hepatic markers, mature hepatic mark-
ers, and biliary markers were examined (Fig. 11). Gene expression
levels of mature hepatic markers were up-regulated by FOXA2,
HNF1la, or HNF4oq transduction. FOXA2 transduction strongly
upregulated gene expression levels of both early hepatic markers
and mature hepatic markers, while HNFlo or HNF4o transduc-
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Fig. 1. Efficient hepatic differentiation from hESCs by FOXA2 and HNF1a transduction. (A) The schematic protocol describes the strategy for DE differentiation from
hESCs (H9). Mesendoderm cells (day 2) were transduced with 3000 VP/cell of transcription factor (TF)-expressing Ad vector (Ad-TF) for 1.5 h and cultured as described in
Fig. 2A. (B) On day 5, the efficiency of DE differentiation was measured by estimating the percentage of CXCR4-positive cells using FACS analysis. (C) The gene expression
profiles were examined on day 5. (D) Schematic protocol describing the strategy for hepatoblast differentiation from DE. DE cells (day 6) were transduced with 3000 VP/cell
of Ad-TF for 1.5 h and cultured as described in Fig. 2A. (E) On day 9, the efficiency of hepatoblast differentiation was measured by estimating the percentage of AFP-positive
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Fig. 2. Hepatic differentiation of hESCs and hiPSCs by FOXA2 and HNF1a transduction. (A) The differentiation procedure of hESCs and hiPSCs into hepatocytes via DE
cells and hepatoblasts is schematically shown. Details of the hepatic differentiation procedure are described in Materials and methods. (B) Sequential morphological
changes (day 0-20) of hESCs (H9) differentiated into hepatocytes are shown. (C) The expression of the hepatocyte markers (ALB, CYP2D6, AT, CYP3A4, and CYP7A1, all
green) was examined by immunohistochemistry on day 0 and 20. Nuclei were counterstained with DAPI (blue).

tion did not up-regulate the gene expression levels of early hepa- bination of Ad-FOXA2 and Ad-HNF4a transduction result in the
tic markers. Next, multiple transduction of transcription factors most efficient hepatic maturation, judged from the gene expres-
was performed to promote further hepatic maturation. The com- sion levels of CYP2C19 (Fig. 1]). This may happen because the
bination of Ad-FOXA2 and Ad-HNF1a transduction and the com- mixture of immature hepatocytes and mature hepatocytes coor-

L

cells using FACS analysis. (F) The gene expression level of CYP3A7 was measured by real-time RT-PCR on day 9. On the y axis, the gene expression level of CYP3A7 in hESCs
(day 0) was taken as 1.0. (G) The schematic protocol describes the strategy for hepatic differentiation from hepatoblasts. Hepatoblasts (day 9) were transduced with 3000
VP/cell of Ad-TF for 1.5 h and cultured as described in Fig. 2A. (H) On day 20, the efficiency of hepatic differentiation was measured by estimating the percentage of ASGR1-
positive cells using FACS analysis. The detail results of FACS analysis are shown in Supplementary Table 1. (I) Gene expression profiles were examined on day 20. (])
Hepatoblasts (day 9) were transduced with 3000 VP/cell of Ad-TFs (in the case of combination transduction of two types of Ad vector, 1500 VP/cell of each Ad-TF was
transduced) for 1.5 h and cultured. Gene expression levels of CYP2C19 were measured by real-time RT-PCR on day 20. On the y axis, the gene expression level of CYP2C19 in
PHs, which were cultured for 48 h after the cells were plated, was taken as 1.0. All data are represented as mean  SD (n = 3).
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Fig. 3. The hepatic characterization of hiPSC-hepa. hESCs (H1 and H9) and hiPSCs (201B7, 253G1, Dotcom, Tic, and Toe) were differentiated into hepatocyte-like cells as
described in Fig. 2A. (A) On day 20, the gene expression level of ALB was examined by real-time RT-PCR. On the y axis, the gene expression level of ALB in PHs, which were
cultured for 48 h after cells were plated, was taken as 1.0. (B-1) hiPSCs (Dotcom) were differentiated into hepatocyte-like cells as described in Fig. 2A. (B) The amount of ALB
secretion was examined by ELISA in hiPSCs, hiPSC-hepa, and PHs. (C) hiPSCs, hiPSC-hepa, and PHs were subjected to immunostaining with anti-ALB antibodies, and then the
percentage of ALB-positive cells was examined by flow cytometry. (D-G) The gene expression levels of CYP enzymes (D), conjugating enzymes (E), hepatic transporters (F),
and hepatic nuclear receptors (G) were examined by real-time RT-PCR in hiPSCs, hiPSC-hepa, and PHs. On the y axis, the expression level of PHs is indicated. (H) The amount
of urea secretion was examined in hiPSCs, hiPSC-hepa, and PHs. (1) Induction of CYP1AZ2, 2B6, or 3A4 by DMSO or inducer (bNF, PB, or RIF) of hiPSC-hepa and PHs, cultured for
48 h after the cells were plated, was examined. On the y axis, the gene expression levels of CYPIAZ, 2B6, or 3A4 in DMSO-treated cells, which were cultured for 48 h, were

taken as 1.0. All data are represented as mean + SD (n = 3).

dinately works to induce hepatocyte functions. Taken together,
efficient hepatic differentiation could be promoted by using the
combination of FOXA2 and HNFlo transduction at the optimal
stage of differentiation (Fig. 2A). At the stage of hepatic expansion
and maturation, Ad-HNF4o can be substituted for Ad-HNFlo
(Fig. 1]). Interestingly, cell growth was delayed by FOXA2 and

632

HNF4o transduction (Supplementary Fig. 5). This delay in cell
proliferation might be due to promoted maturation by FOXA2
and HNF1a transduction. As the hepatic differentiation proceeds,
the morphology of hESCs gradually changed into a typical hepa-
tocyte morphology, with distinct round nuclei and a polygonal
shape (Fig. 2B), and the expression levels of hepatic markers
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(ALB, CYP2DG6, alpha-1-antitrypsin [0AT], CYP3A4, and CYP7A1)
increased (Fig. 2C). Hepatic gene expression levels (Supplemen-
tary Fig. 6A), amount of ALB secretion (Supplementary Fig. 6B),
and CYP2C9 activity level (Supplementary Fig. 6C) of Ad-FOXA2-
and Ad-HNFlo-transduced cells were significantly higher than
those of Ad-SOX17-, Ad-HEX-, and Ad-HNF4a-transduced cells.
These results indicated that FOXA2 and HNF1a transduction pro-
motes more efficiently hepatic differentiation than SOX17, HEX,
and HNF4q transduction.

Characterization of the hESC-hepa/hiPSC-hepa

As we have previously reported [6], hepatic differentiation effi-
ciency differs among hESC/hiPSC lines. Therefore, it is necessary
to select a hESC/hiPSC line that is suitable for hepatic maturation
in the case of medical applications such as drug screening. In the
present study, two hESC lines and five hiPSCs lines were differen-
tiated into hepatocyte-like cells, and then their gene expression
levels of ALB (Fig. 3A) and CYP3A4 (Supplementary Fig. 7A), and
their CYP3A4 activities (Supplementary Fig. 7B) were compared.
These data suggest that the iPSC line, Dotcom [11,12], was the
most suitable for hepatocyte maturation. To examine whether
the iPSC (Dotcom)-hepa has enough hepatic functions as
compared with PHs, the amount of albumin (ALB) secretion
(Fig. 3B) and the percentage of ALB-positive cells (Fig. 3C) were
measured on day 20. The amount of ALB secretion in hiPSC-hepa
was similar to that in PHs and the percentage of ALB-positive
cells was approximately 90% in iPSC-hepa. We also confirmed
that the gene expression levels of CYP enzymes (Fig. 3D), conju-
gating enzymes (Fig. 3E), hepatic transporters (Fig. 3F), and hepa-
tic nuclear receptors (Fig. 3G) in hiPSC-hepa were similar to those
of PHs, although some of them were still lower than those of PHs.
Because the gene expression level of the fetal CYP isoform,
CYP3A7, in hiPSC-hepa was higher than that of PHs, mature hepa-
tocytes and hepatic precursors were still mixed. We have previ-
ously confirmed that Ad vector-mediated gene expression in
the hepatoblasts (day 9) continued until day 14 and almost disap-
peared on day 18 [7]. Therefore, the hepatocyte-related genes
expressed in hiPSC-hepa are not directly regulated by exogenous
FOXA2 or HNFlo. Taken together, endogenous hepatocyte-
related genes in hiPSC-hepa should have been upregulated by
FOXA2 and HNFla transduction.

To further confirm that hiPSC-hepa have sufficient levels of
hepatocyte functions, we evaluated the ability of urea secretion
(Fig. 3H) and glycogen storage (Supplementary Fig. 8). The
amount of urea secretion in hiPSC-hepa was about half of that
in PHs. HiPSC-hepa exhibited abundant storage of glycogen.
Because CYP1AZ, 2B6, and 3A4 are involved in the metabolism
of a significant proportion of the currently available commercial
drugs, we tested the induction of CYP1A2, 2B6, and 3A4 by chem-
ical stimulation (Fig. 31). CYP1A2, 2B6, and 3A4 are induced by B-
naphthoflavone [bNF], phenobarbital [PB], or rifampicin [RIF],
respectively. Although undifferentiated hiPSCs did not respond
to either bNF, PB, or RIF (data not shown), hiPSC-hepa produced

more metabolites in response to chemical stimulation, suggesting
that inducible CYP enzymes were detectable in hiPSC-hepa
(Fig. 31). However, the induction potency of CYP1A2, 2B6, and
3A4 in hiPSC-hepa were lower than that in PHs.

Drug metabolism capacity and hepatic transporter activity of hiPSC-
hepa

Because metabolism and detoxification in the liver are mainly
executed by CYP enzymes, conjugating enzymes, and hepatic
transporters, it is important to assess the function of these
enzymes and transporters in hiPSC-hepa. Among the various
enzymes in liver, CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6 and 3A4,
UGT are the important phase 1 and Il enzymes responsible for
metabolism. Nine substrates, Phenacetin, Bupropion, Paclitazel,
Tolbtamide, S-mephenytoin, Bufuralol, Midazolam, Testosterone,
and Hydroxy!l coumarin, which are the substrates of CYP1A2, 2B6,
2C8, 209, 2C19, 2D6, 3A4, 3A4 (Fig. 4A), and UGT (Fig. 4B), respec-
tively, were used to estimate the drug metabolism capacity of
hiPSC-hepa compared with that of PHs. To precisely estimate
the drug metabolism capacity, the amounts of metabolites were
measured during the phase when production of metabolites
was linear (Supplementary Fig. 9). These results indicated that
our hiPSC-hepa have the capacity to metabolize these nine sub-
strates, although the activity levels were lower than those of
PHs. The hepatic functions of hiPSC-hepa were further evaluated
by examining the ability to uptake Indocyanine Green (ICG) and
LDL (Fig. 4C and D, respectively). In addition to PHs, hiPSC-hepa
had the ability to uptake ICG and to excrete ICG in a culture with-
out ICG for 6 h (Fig. 4C), and to uptake LDL (Fig. 4D). These results
suggest that hiPSC-hepa have enough CYP enzyme activity, con-
jugating enzyme activity, and hepatic transporter activity to
metabolize various drugs.

To examine whether our hiPSC-hepa could be used to predict
metabolism-mediated toxicity, hiPSC-hepa were incubated with
Benzbromarone, which is known to generate toxic metabolites,
and then cell viability was measured (Fig. 4E). Cell viability of
hiPSC-hepa was decreased depending on the concentration of
Benzbromarone. However, cell viability of hiPSC-hepa was much
higher than that of PHs. To detect drug-induced cytotoxicity with
high sensitivity in hiPSC-hepa, these cells were treated with
Buthionine-SR-sulfoximine (BSO), which depletes cellular GST,
and result in a decrease of cell viability of hiPSC-hepa as com-
pared with that of non-treated cells (Fig. 4E). These results indi-
cated that hiPSC-hepa would be more useful in drug screening
under a condition of knockdown of conjugating enzyme activity.

Discussion

The establishment of an efficient hepatic differentiation technol-
ogy from hESCs and hiPSCs would be important for the applica-
tion of hESC-hepa and hiPSC-hepa to drug toxicity screening.
Although we have previously reported that sequential transduc-

G
<

The cell viability of hiPSCs, hiPSC-hepa, PHs, and their BSO-treated cells (0.4 mM BSO was pre-treated for 24 h) was assessed by Alamar Blue assay after 48-hr exposure to
differe2nt concentrations of benzbromarone. The cell viability is expressed as a percentage of that in cells treated only with solvent. All data are represented as mean + SD

(n=3).
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tion of SOX17, HEX, and HNF4a into hESC-derived cells could
promote efficient hepatic differentiation [7], further hepatic mat-
uration of the hESC-hepa and hiPSC-hepa was needed for this
application. To further improve the differentiation efficiency of
every step of hepatic differentiation (hESC to DE cells, DE cells
to hepatoblasts, and hepatoblasts to hESC-hepa), we initially per-
formed a screening of transcription factors. In the stage of DE dif-
ferentiation, FOXA2 transduction could promote the most
efficient DE differentiation (Fig. 1C). In the stage of hepatic com-
mitment, expansion, and maturation, the combination of FOXA2
and HNF1a transduction strongly promoted hepatic commitment
and maturation (Fig. 1F and J), although in the stage of hepatic
expansion and maturation, HNF4a transduction was as efficient
as that of HNF1o (Fig. 1]). Since HNF1a is one of the target genes
of HNF4q [13], the signaling through HNF4a to HNF1a would be
important for efficient hepatic expansion and maturation. Con-
sidering these results together, we ascertained a pair of two tran-
scription factors, FOXA2 and HNF1q, that could promote efficient
hepatic differentiation from hESCs. In embryogenesis, the expres-
sion of FOXA2 and HNFla is initially detected in DE or hepato-
blasts, respectively and the expression levels of both FOXA2
and HNF1o are elevated as the liver develops [14,15]. Therefore,
our hepatic differentiation technology, which employs FOXA2
and HNF1la transduction, might mimic the gene expression pat-
tern during embryogenesis.

We found that the gene expression levels of CYP enzymes,
conjugating enzymes, hepatic transporters, and hepatic nuclear
receptors were upregulated by FOXA2 and HNFla transduction
(Fig. 3D-G). In contrast to the high expression levels of hepato-
cyte-related genes, CYP induction potency and the drug metab-
olism capacity of our hiPSC-hepa were lower than those of PHs
(Figs. 31 and 4A and B). One of the possible reasons for the dif-
ference between gene expression levels of CYP enzymes and
CYP induction activity might be that there were insufficient
expression levels of hepatic nuclear receptors (such as PXR,
SHR, and FXR) in hiPSC-hepa (Fig. 3G). Because many CYPs
require high expression levels of hepatic nuclear receptor for
efficient drug metabolism [16], transduction of these hepatic
nuclear receptor genes in hiPSC-hepa or development of a dif-
ferentiation method that induces high expression of these
nuclear receptors might improve the drug metabolic capacity.
Another explanation for the low CYP activities in hiPSC-hepa,
maybe that hiPSCs were established from an individual with
low CYP activities; infact, it is known that large individual dif-
ferences in CYP activities are observed among individuals. It
might be important to use a hiPSC line established from a per-
son with high CYP activities. It is essential to investigate the
reasons behind this significant discordance, an issue that our
group is currently planning to study.

In summary, our method, consisting of sequential FOXA2 and
HNF1a transduction along with the addition of adequate soluble
factors at each step of differentiation, is a valuable tool for the effi-
cient generation of functional hepatocytes derived from hESCs and
hiPSCs. The hiPSC-hepa exhibited a number of hepatocyte func-
tions (such as ALB secretion, uptake of LDL or ICG, glycogen stor-
age, and drug metabolism capacity). In addition, the hiPSC-hepa
were successfully applied to the evaluation of drug-induced cyto-
toxicity. Therefore, the hESC-hepa and hiPSC-hepa might be used
for drug screening in early phases of pharmaceutical development.
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1. Introduction

ABSTRACT

Hepatocyte-like cells differentiated from human embryonic stem cells (hESCs) or human induced
pluripotent stem cells (hiPSCs) are known to be a useful cell source for drug screening. We recently
developed an efficient hepatic differentiation method from hESCs and hiPSCs by sequential transduction
of FOXA2 and HNF1¢. It is known that the combination of three-dimensional (3D) culture and co-culture,
namely 3D co-culture, can maintain the functions of primary hepatocytes. However, hepatic maturation
of hESC- or hiPSC-derived hepatocyte-like cells (hEHs or hiPHs, respectively) by 3D co-culture systems
has not been examined. Therefore, we utilized a cell sheet engineering technology to promote hepatic
maturation. The gene expression levels of hepatocyte-related markers (such as cytochrome P450
enzymes and conjugating enzymes) and the amount of albumin secretion in the hEHs or hiPHs, which
were 3D co-cultured with the Swiss 3T3 cell sheet, were significantly up-regulated in comparison with
those in the hEHs or hiPHs cultured in a monolayer. Furthermore, we found that type I collagen
synthesized in Swiss 3T3 cells plays an important role in hepatic maturation. The hEHs or hiPHs that
were 3D co-cultured with the Swiss 3T3 cell sheet would be powerful tools for medical applications, such
as drug screening.

© 2012 Elsevier Ltd. All rights reserved.

from batch to batch, and de-differentiation. Because hESC- or
hiPSC-derived hepatocyte-like cells (hEHs or hiPHs, respectively)

Several studies have recently shown the ability of human
embryonic stem cells (hESCs) [1] and human induced pluripotent
stem cells (hiPSCs) [2] to differentiate into hepatocyte-like cells
[3—6]. Although primary human hepatocytes are generally
employed for drug toxicity screening in the early phase of phar-
maceutical development, these cells have some drawbacks, such as
their limited range of sources, difference in variability and functions
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have potential to resolve these problems, they are expected to be
applied to drug screening. The hepatic differentiation processes
from hESCs and hiPSCs are divided into three-stages, differentiation
into definitive endoderm (DE) cells, hepatoblasts, and mature
hepatocytes. Hepatic differentiation methods based on the treat-
ment of growth factors have been widely used to generate
hepatocyte-like cells from hESCs or hiPSCs [5—9]. However, the
hepatic differentiation efficiency is not high enough for medical
applications such as drug screening [10]. To promote the efficiency
of hepatic differentiation and hepatic maturation, we have devel-
oped hepatic differentiation methods that combine the trans-
duction of transcription factor genes involved in liver development
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with stimulation by growth factors [11—-13]. The hepatocyte-like
cells generated by our protocols have levels of expression of
hepatocyte-related genes similar to the levels in (cryopreserved)
primary human hepatocytes cultured for 48 h after plating [12].
Moreover, we have recently established more efficient and simple
methods for hepatic differentiation from hESCs and hiPSCs by
sequential transduction of forkhead box A2 (FOXA2) and hepato-
cyte nuclear factor 1 homeobox A (HNF1a) (in submitted). In that
recent study, we showed that the hEHs or hiPHs expressed the
genes of hepatocyte-related markers at levels similar to those in
primary human hepatocytes and could metabolize various types of
drugs.

It is known that cell—cell interactions between hepatocytes and
their surrounding cells are essential for liver development and
maintenance of liver functions [14-17]. Although primary human
hepatocytes rapidly lose their functions under a monolayer culture
condition, they could retain their functions, such as albumin
secretion and urea synthesis, in three-dimensional (3D) culture and
co-culture [18—21}. Moreover, it has been reported that the primary
hepatocytes maintain their functions for a long time by the
combination of 3D culture and co-culture, namely 3D co-culture
[22—24]. In particular, the functions of primary rat hepatocytes
cultured in a 3D co-culture, were shown to be more efficiently
preserved than the functions of primary rat hepatocytes cultured in
monolayer a co-culture [24]. Recently, Kim et al. reported that
primary rat hepatocytes are able to maintain their functions in 3D
co-culture with an endothelial cell sheet [25]. To perform 3D co-
culture with a cell sheet, they employed cell sheet engineering
technology using temperature-responsive culture dishes
grafted with a temperature-responsive polymer, poly(N-iso-
propylacrylamide). This cell sheet engineering technology make it
possible to manipulate a monolayer cell sheet with the extracellular
matrices (ECMs) synthesized from the cells [26]. Although 3D
culture or co-culture methods have been individually applied to
promote hepatic differentiation from ESCs or iPSCs [27—29], few
studies have investigated the hepatic differentiation from hESCS or
hiPSCs using a 3D co-culture method.

In this study, we examined whether 3D co-culture, which uses
the cell sheet engineering technology, could promote hepatic
differentiation, and particularly the differentiation into mature
hepatocyte-like cells, from hESCs and hiPSCs. Because Swiss 3T3
cells are widely used for co-culture with primary hepatocytes
[18—20], we employed Swiss 3T3 cells for 3D co-culture with the
hEHs or hiPHs. After hEHs and hiPHs were 3D co-cultured with
a Swiss 3T3 cell sheet, we examined the expression levels of
hepatocyte-related genes. Moreover, we investigated a Swiss 3T3
cell-derived factor that can promote hepatic maturation from
hESCs and hiPSCs.

2. Materials and methods
2.1. hESC and hiPSC culture

A hESC line, H9 (WiCell Research Institute), was maintained on a feeder layer of
mitornycin C (MMC)-treated mouse embryonic fibroblasts (MEF, Millipore) with
ReproStem (ReproCELL) supplemented with 5 ng/ml fibroblast growth factor 2
(FGF2) (Sigma). hESCs were dissociated with 0.1 mg/ml dispase (Roche Diagnostics)
into small clumps and were then subcultured every 4 or 5 days. H9 cells were was
used following the Guidelines for Derivation and Utilization of Human Embryonic
Stem Cells of the Ministry of Education, Culture, Sports, Science and Technology of
Japan. One hiPSC line generated from the human embryonic lung fibroblast cell line
MCRS5 was provided from the JCRB Cell Bank (Tic, JCRB Number: JCRB1331). Another
hiPSC line, 201B7, generated from human dermal fibroblasts was kindly provided by
Dr. S. Yamanaka (KyotoUniversity). These hiPSC lines were maintained on a feeder
layer of MMC-treated MEF with iPSellon (for Tic, Cardio) or ReproStem (for 201B7,
ReproCELL) supplemented with 10 ng/ml (for Tic) or 5 ng/ml (for 201B7)
FGF2.hiPSCs were dissociated with 0.1 mg/ml dispase (Roche Diagnostics) into small
clumps and were then subcultured every 5 or 6 days.

2.2, Swiss 373 cell culture

A mouse fibroblast line, Swiss 313, was maintained with RPMI-1640 medium
(Sigma) supplemented with fetal bovine serum (10%) (FBS), streptomycin (120 pg/
mi), and penicillin (200 pg/ml).

2.3. Ad vectors

The human eukaryotic translation elongation factor 1 alpha 1 (EF-1¢) promoter-
driven HNFla- and FOXAZ2-expressing Ad vectors (Ad-HNFle. and Ad-FOXA2,
respectively) were constructed previously (in submitted). All of Ad vectors contain
astretch of lysine residue (K7) peptides in the C-terminal region of the fiber knob for
more efficient transduction of hESCs, hiPSCs, and DE cells, in which transduction
efficiency was almost 100%, and purified as described previously [11,12,30]. The
vector particle (VP) titer was determined by using a spectrophotometric method [31].

24. Invitro differentiation

Before the initiation of cellular differentiation, the medium of hESCs and hiPSCs
was exchanged for a defined serum-free medium, hESF9, and hESCs and hiPSCs were
cuitured as previously reported {32]. The differentiation protocol for the induction of
DE cells, hepatoblasts, and hepatocytes was based on our previous report with some
modifications (in submitted). Briefly, in mesendoderm differentiation, hESCs and
hiPSCs were dissociated into single cells by using Accutase (Millipore) and cultured
for 2 days on Matrigel (BD Biosciences) in hESF-DIF medium (Cell Science & Tech-
nology Institute) supplemented with 10 ug/ml human recombinant insulin, 5 pg/ml
human apotransferrin, 10 M 2-mercaptoethanol, 10 pM ethanolamine, 10 uM
sodium selenite, and 0.5 mg/ml bovine serum albumin (BSA) (all from Sigma)
(differentiation hESF-DIF medium) containing 100 ng/ml Activin A (R&D Systems)
and 10 ng/ml FGF2. To generate DE cells, hESC- or hiPSC-derived mesendoderm cells
were transduced with 3000 VP/cell of Ad-FOXA2 for 1.5 h on day 2 and cultured until
day 6 on Matrigel in differentiation hESF-DIF medium supplemented with 100 ng/ml
Activin A and 10 ng/ml FGF2. For induction of the hepatoblasts, the hESC- or hiPSC-
derived DE cells were transduced with each 1500 VP/cell of Ad-FOXA2 and Ad-
HNF1e for 1.5 h on day 6 and cultured for 3 days on Matrigel in hepatocyte culture
medium (HCM) (Lonza) supplemented with 30 ng/ml bone morphogenetic protein 4
(BMP4) and 20 ng/ml FGF4 (all from R&D Systems). To expand the hepatoblasts, the
hepatoblasts were transduced with each 1500 VP/cell of Ad-FOXA2 and Ad-HNFla,
for 1.5 h on day 9 and cultured for 3 days on Matrigel in HCM supplemented with
10 ng/m! hepatocyte growth factor (HGF), 10 ng/ml FGF1, 10 ng/ml FGF4, and 10 ng/
ml FGF10 (all from R&D Systems).To induce hepatic maturation, the cells were
cultured for 2 days on Matrigel in L15 medium (Invitrogen) supplemented with 8.3%
tryptose phosphate broth (BD Biosciences), 10% FBS (Vita), 10 uM hydrocortisone 21-
hemisuccinate (Sigma), 1 M insulin, and 25 mM NaHCO3 (Wako) (differentiation
L15 medium) containing 20 ng/ml hepatocyte growth factor (HGF), 20 ng/ml
Oncostatin M (OsM) (R&D Systems), and 10~% M Dexamethasone (DEX) (Sigma). As
described below, the Swiss 3T3 cell sheet was stratified onto hepatocyte-like cells on
day 14 and cultured in differentiation L15 medium supplemented with 20 ng/ml
HGF, 20 ng/ml OsM, and 10~® M DEX until day 15. On day 15, Matrigel was stratified
onto the cells and cultured in differentiation L15 medium supplemented with 20 ng/
ml HGF, 20 ng/ml OsM, and 105 M DEX until day 25.

2.5. Cell sheet harvesting and stratifying procedure utilizing a gelatin-coated
manipulator

The stratifying protocol was performed as previously described with some
modifications [25,33]. Briefly, Swiss 3T3 cells were seeded on a 24-well
temperature-responsive culture plate (TRCP) (Cell Seed Inc, Tokyo) on day 12. Two
days after seeding (day 14), Swiss 3T3 cells were grown to confluence. On the same
day (day 14), a gelatin-coated cell sheet manipulator was placed on the Swiss 3T3
cells, and the culture temperature was reduced to 20 °C for 60 min. By removing the
manipulator, cultured Swiss 3T3 cells were harvested as a contiguous cell sheet that
attached on the gelatin. The Swiss 3T3 cell sheet was then stratified on the hEHs or
hiPHs. The culture plate with the manipulator was incubated at room temperature
for 60 min to induce adherence between the hEHs or hiPHs and Swiss 3T3 cell sheet.
To dissolve the gelatin, the culture plate was incubated at 37 °C for 60 min, and this
was followed by several washing steps.

2.6. RNA isolation and reverse transcription-PCR

Total RNA was isolated from the hESC- or hiPSC-derived cells using ISOGENE
(Nippon Gene) according to the manufacturer's instructions. cDNA was synthesized
using 500 ng of total RNA with a Superscript VILO ¢cDNA synthesis kit (Invitrogen).
Real-time RT-PCR was performed with Tagman gene expression assays or Fast SYBR
Green Master Mix using an ABI Step One Plus (all from Applied Biosystems). Relative
quantification was performed against a standard curve and the values were
normalized against the input determined for the housekeeping gene, glyceraldehyde
3-phosphate dehydrogenase (GAPDH). The primer sequences used in this study are
described in Supplementary Tables 1 and 2.
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2.7. Preparation of verticalsection

On day 15, the hEHs cultured with or without the Swiss 3T3 cell sheet were
frozen in Tissue-Tek O.C.T. Compound (Sakura Finetek), then vertically sectioned and
fixed with 4% paraformaldehyde. These sections were monitored by a phase contrast
microscope (Olympus).

2.8. ELISA

hESCs or hiPSCs were differentiated into the hepatocyte-like cells as described in
Fig. 1A. The culture supernatants, which were incubated for 24 h after fresh medium
was added, were collected and analyzed to determine the amount of ALB secretion
by ELISA. ELISA kits for ALB were purchased from Bethyl Laboratories. ELISA was
performed according to the manufacturer’s instructions. The amount of ALB secre-
tion was calculated according to each standard.

2.9. Co-culture and culture in a cell culture insert system (insert-culture)

hESCs were differentiated into the hepatocyte-like cells as described in Fig. 1A
until day 14, and then the hESC-derived cells were harvested and seeded onto a 6-
well culture plate (Falcon) with Swiss 3T3 (1:1) in a co-culture system. In a insert-
culture system, hESC-derived hepatocyte-like cells were harvested and seeded
onto a 6-well culture plate alone, and Swiss 3T3 cells were plated in cell culture
inserts (membrane pore size 1.0 pm; Falcon), and placed in a well of the culture
palate containing hESC-derived hepatocyte-like cells. These cells were cultured in
differentiation L15 medium supplemented with 20 ng/ml HGF, 20 ng/ml OsM, and
10~% M DEX until day 25.

2.10. Stratification of type I collagen gel

A type I collagen gel solution was prepared as suggested by Nitta Gelatin: 7 parts
of solubilized collagen in HC1 (pH 3.0) 2 parts of 5x concentrated RPMI-1640
medium, and 2 parts of reconstitution buffer (0.2 M HEPES, 0.08 M NaOH) to
neutralize the collagen gel, were mixed gently but rapidly at 4 °C. Next, the hESC-
derived cells were cultured in a type I collagen gel solution for 3h, and then the
medium waschanged and the cells were cultured in differentiation L15 medium
supplemented with 20 ng/ml HGF, 20 ng/m! OsM, and 10~® M DEX until day 25.

2.11. Inhibition of collagen synthesis

hESCs were differentiated into the hepatocyte-like cells as described in Fig. 1A
until stratification of the Swiss 3T3 cell sheet. After stratification of the Swiss 3T3 cell
sheet, the cells were cultured in differentiation L15 medium supplemented with
20 ng/ml HGF, 20 ng/ml OsM, 10~® M DEX, and 25 uM 2,2/-Bipyridyl (Wako), an
inhibitor of collagen synthesis, until day 25.

2.12. Western blotting analysis

Swiss 3T3 cells were cultured with 25 uM 2,2’-Bipyridyl or solvent (0.1% DMSO)
for 3 days, and these cells were then homogenized with lysis buffer (1% Nonidet P-
40,1 mM EDTA, 25 mM Tris-HCl, 5 mM NafF, and 150 mM NacCl) containing protease
inhibitor mixture (Sigma-Aldrich). After being frozen and thawed, the homogenates
were centrifuged at 15,000x g at 4 °C for 10 min, and the supernatants were
collected. The lysates were subjected to SDS-PAGE on 7.5% polyacrylamide gel and
were then transferred onto polyvinylidene fluoride membranes (Millipore). After
the reaction was blocked with 1% skim milk in TBS containing 0.1% Tween 20 at room
temperature for 1 h, the membranes were incubated with goat anti-collal Ab
(diluted 1/200; Santa Cruz Biotechnology) or mouse anti-B-actin Ab (diluted 1/
5000; Sigma) at 4 °C overnight, followed by reaction with horseradish peroxidase-
conjugated anti-goat IgG (Chemicon) or anti-mouse 1gG (Cell Signaling Technology)
at room temperature for 1 h. The band was visualized by ECL Plus Western blotting
detection reagents (GE Healthcare) and the signals were read using a LAS-3000
imaging system (FUJI Film).

2.13. Statistical analysis

Statistical analysis was performed using the unpaired two-tailed Student’s t-test.
3. Results

3.1. Efficient hepatic maturation by stratification of the Swiss 3T3
cell sheet

The hEHs, which were generated by the transduction of HNF1a
and FOXA2 genes, were 3D co-cultured with the Swiss 3T3 cell sheet
to promote hepatic differentiation and to generate mature hepa-
tocytes from hESCs and hiPSCs. Our differentiation strategy using

the stratification of the Swiss 3T3 cell sheet is illustrated in Fig. 1A.
The stratifying procedure was performed on day 14 as described in
Fig. 1B. The day after stratifying the Swiss 3T3 cell sheet on the
hEHs, vertical sections of the monolayer hEHs (hEHs-mono) and
the hEHs stratified with the Swiss 3T3 cell sheet (hEHs-Swiss) were
prepared (Fig. 1C). We found that Swiss 3T3 cells were successfully
harvested and overlaid onto the hEHs as a monolayer cell sheet
(Fig. 1C). Moreover, the hEHs seemed to be larger than the Swiss
3T3 cells. The space between the hEHs cells and Swiss 3T3 cells
suggests the formation of ECMs (Fig. 1C).

To investigate whether stratification of the Swiss 3T3 cell sheet
could promote hepatic maturation of the hEHs, hESCs (H9) were
differentiated into the hepatocyte-like cells according to the
protocol described in Fig. 1A, and then the gene expression levels of
hepatocyte-related markers and the amount of albumin (ALB)
secretion in the hEHs-Swiss were measured on day 25 (Fig. 2). By
3D co-culturing of the hepatocyte-like cells with the Swiss 3T3 cell
sheet for 10 days (days 15—25), the gene expression levels of
hepatocyte-related markers, such as ALB (Fig. 2A), hepatocyte
nuclear factor 4 alpha (HNF4A) (Fig. 2B), cytochrome P450 (CYP)
enzymes (CYP2C9, CYP7A1, CYP1A2, and CYP3A5) (Fig. 2D—G), and
conjugating enzymes (glutathione S-transferase alpha 1 [GSTA1],
GSTA2, and UDP glucuronosyltransferase [UGT1A1]) (Fig. 2H—]) were
significantly increased as compared with those in hEHs-mono.
Moreover, the amount of ALB secretion in hEHs-Swiss was also
up-regulated as compared with that in hEHs-mono (Fig. 2K).
Because it is known that hepatoblasts can differentiate into hepa-
tocytes and cholangiocytes [34,35], we examined the gene
expression level of cytokeratin 7 (CK7), a cholangiocyte-related
marker, in hEHs-Swiss and hEHs-mono. In 3D co-culture with the
Swiss 3T3 cell sheet, the gene expression level of CK7 was down-
regulated in the hEHs-Swiss relative to the hEHs-mono (Fig. 2C).
These results clearly showed that stratification of the Swiss 3T3 cell
sheet could promote the hepatic maturation of the hEHs and, in
turn, suppress the cholangiocyte differentiation.

In order to investigate whether stratification of the Swiss 3T3
cell sheet promotes maturation of hiPHs as well as hEHs, the hiPSCs
(Tic and 201B7) were differentiated into the hepatocyte-like cells
according to the protocol described in Fig. 1A. The results showed
that the gene expression levels of ALB, CYP2(C9, CYP3A5, CYP1A2, and
GSTA1 in the hiPHs stratified with the Swiss 3T3 cell sheet (hiPHs-
Swiss) were up-regulated in comparison with those in the mono-
layer hiPHs (hiPHs-mono) (Fig. 3A—E). Moreover, the gene
expression level of CK7 was markedly decreased in hiPHs-Swiss
(Fig. 3F). The gene expression level of ALB in the hiPHs-Swiss
differentiated from Tic was higher than that in the hiPHs-Swiss
differentiated from 201B7, while the gene expression levels of
CYP enzymes in the hiPHs-Swiss differentiated from Tic were lower
than those in the hiPHs-Swiss differentiated from 201B7
(Fig. 3A—D). These results showed that stratification of the Swiss
3T3 cell sheet promoted hepatic maturation of both hEHs and
hiPHs.

3.2. Identification of maturation factors synthesized from Swiss 3T3
cells

The data described above indicate that hepatic maturation
factors were produced in Swiss 3T3 cells. To elucidate the Swiss 3T3
cell-derived hepatic maturation factors, the hEHs were cultured in
cell culture-insert systems (insert-cultured), in which the hEHs
were co-cultured with Swiss 3T3 cells without physical contacts, or
co-cultured with Swiss 3T3 cells. Quantitative PCR analysis
revealed that the gene expression levels of ALB and CYP2C9 in the
insert-cultured hEHs were increased in comparison with the hEHs-
mono, while the expression levels of these genes were lower than



