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remarkably decreased at P30. These results are consistent with
those obtained from the sagittal sections (Fig. 1), showing the
population of activated microglia that accumulated within the
SVZ during the early postnatal period.

We therefore examined the specific roles of these microglia in
the early postnatal SVZ. At early postnatal ages, both neurogen-
esis and gliogenesis are active in the SVZ (Gould et al., 1999;
Wagner et al., 1999; Doetsch and Scharff, 2001; Zerlin et al., 2004;
Marshall et al., 2008). To suppress the activation of microglia, we
used minocycline, a tetracycline antibiotic, long used to suppress
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(Figure legend continued.) were examined by Western blotting. Minocycline significantly de-
creased the number of Ki67 * proliferating cells and decreased the level of nestin. The number
of cells positive for Dex was significantly reduced. Minocycline decreased the numbers of cells
positive for 01 and MBP, whereas the expression level of PDGFR« tended to increase. *p <
0.05,**p < 0.01 (Student's ttest).n = 6 mice/group. Data are mean == SEM. B, Theratio of the
Ki67 * cellsalso positive for respective differentiation markers did not change in the absence or
presence of minocycline (left graph). Typicalimages of the cells positive for Ki67 and Nestin, and
the cells positive for Ki67 and Dox in the control group are shown (right panels). We confirmed
the same results in three independent experiments.
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The activated microglia raised the cytokine levels in the SVZ. 4, A subpopulation of the microglia express 1GF-1in the
early postnatal SVZ, but IGF-1 is not involved in the action of activated microglia during this period. Sagittal sections were
immunostained with anti-CD11b (green: microglia) and anti IGF-1 (red) antibodies. Right panel, Magnified image of the square in
the left. A subpopulation of microglia is positive for IGF-1 (arrowheads). The percentage of (D11b TIGF-1  was 43.42 =+ 6.72%
in(D11b * cells. B, Minocycline did not affect the amount of IGF-1 in the early postnatal SVZ. Minocycline was administered by
intraperitoneal injection for 3 d beginning at P2 (30 mg/kg/d, P2-P4, n = 6/group), and the amount of IGF-1 in the SVZ was
quantified by ELISA. €, Minocycline decreased the amount of inflammatory cytokines in the SVZ. IL-1ey, IL-183, IL-2, IL-4, IL-6,
1L-10, GM-CSF, IFN~y, and TNF-cx levels in the SVZ tissue lysate were measured by BioPlex cytokine detection assay system. *p <
0.05 (Student's ttest). n = 6 rats/group. Data are mean = SEM. Similar results were obtained in two independent experiments.
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microglial activation (Tikka et al., 2001;
Zhao et al., 2007). We first verified the
effects of minocycline on the activation of
microglia. Minocycline was administered
by intraperitoneal injection for 3 d begin-
ning at P2 (30 mg/kg/d, P2-P4, n =
6/group), and sagittal sections of
minocycline-treated rat forebrains were
immunostained for Ibal, CD11b, and
CD68. Minocycline did not change the
numbers of Ibal-positive microglia in the
VZ/SVZ (Fig. 3A, top), but it dramatically
changed their shape from amoeboid to
more ramified (Fig. 3A, bottom). The
number of CD11b ™ cells was significantly
decreased (Fig. 3Bb1, top and graph), and
the decrease in CD11Db levels in the SVZ
was confirmed by Western blotting (Fig.
3Bb2, top graph and photo). The number
of CD68 ™ cells and the level of CD68 were
also decreased (Fig. 3B, bottom data).
These results indicate that our adminis-
tration of minocycline suppresses the ac-
tivation of SVZ microglia.

We then investigated the effects of
minocycline on early postnatal differentia-
tion. After the administration of minocy-
cline, sagittal sections were immunostained
with differentiation markers: Ki67 (prolif-
erating cells), nestin (stem cells), Dcx
(neuronal progenitors), PDGFRa (oli-
godendrocyte progenitors [polydendro-
cytes]), O1 (oligodendrocyte progenitors
[premyelinating oligodendrocytes]), MBP
(mature oligodendrocyte [premyelinat-
ing and myelinating oligodendrocytes]
(Nishiyama et al., 2009), ALDHI1L1 (as-
trocyte progenitors), and S1008 ™ (astro-
cytes) (Fig. 4A). The numbers of cells
positive for Ki67, Dcx, O1, and MBP were
counted, whereas the levels of nestin,
PDGFa, ALDHI1LI, and S10083 were ex-
amined by Western blotting because it
was hard to discriminate the cell morphologies by these signals.
Minocycline significantly decreased the number of Ki67 * cells
and slightly decreased the level of nestin. The number of cells
positive for Dex was also significantly reduced. Furthermore, mi-
nocycline decreased the numbers of cells positive for O1 and
MBP, whereas the numbers of PDGFRa ™ cells rather tended to
increase. The levels of ALDHIL1 and S1008 did not change.
These results suggest that activated microglia in the early postna-
tal SVZ enhance neurogenesis and oligodendrogenesis, and ac-
tivated microglia affect oligodendrocyte progenitors at rather
later stage of differentiation. We also performed the double
staining of Ki67 with the respective differentiation markers
(Fig. 4B). Although the total number of Ki67 * cells was de-
creased by minocycline, consistent with Figure 4A, the per-
centage of Ki67™* cells also positive for the respective
differentiation markers did not change in the absence or pres-
ence of minocycline (Fig. 4B, left graph), suggesting that mi-
nocycline did not affect the proliferation of progenitors of the
specific cell types. Typical images of the SVZ cells positive for
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Ki67 and Nestin, and the cells positive
* for Ki67 and Dcx in the control group
are shown (Fig. 4B, right panels).

Butovsky et al. (2006a) have reported
that IGF-1 released from activated micro-
glia promoted neurogenesis and oligoden-
drogenesis from adult stem/progenitor
cells. We examined whether microglia in
the early postnatal SVZ produce IGE-1
(Fig. 5A). Microglia did contain IGF-1
protein, but the percentage of CD11b™"
cells also positive for IGF-1" was 43.42 &
6.72%. Furthermore, the amount of
IGE-1 in the SVZ tissue lysates was not
decreased by minocycline (Fig. 5B). These
results suggest that, although a fraction of
activated microglia in the early postnatal
SVZ did produce IGF-1, the effects of ac-
tivated microglia on neurogenesis and oli-
godendrogenesis obtained in our study
were independent of IGF-1. Activated
microglia release a number of cytokines.
In some cases other than pathological
conditions, cytokines also have physiolog-
ical roles (Schifers and Sorkin, 2008;
Spedding and Gressens, 2008; Camacho-
Arroyo et al., 2009; Miller et al., 2009;
Spooren et al., 2011). We therefore inves-
tigated whether the SVZ microglia cause
the increase in cytokine concentrations in
the early postnatal SVZ (Fig. 5C). We ex-
amined the effects of minocycline on the
levels of IL-1e, IL-13, IL-2, IL-4, IL-6, IL-
10, GM-CSF, IFN-vy, and TNF-a. To mea-
sure multiple cytokines in a small volume
of tissue samples simultaneously, we used
the BioPlex cytokine detection assay sys-
tem (Bio-Rad). The levels of IL-183, IL-6,
and TNF-a were significantly decreased
by the 3-day intraperitoneal administra-
tion of minocycline (Fig. 5C). Although
the difference was not significant, the level
of IFN-vy also tended to be decreased.

To examine more directly whether
these cytokines affected neurogenesis and
oligodendrogenesis, we performed in vitro
experiments, coculturing neural stem cells
with activated microglia. Microglia cul-
tured independently of neurospheres on
transwells were activated by LPS (10 ng/
ml, 30 min) in the presence or absence of
minocycline (10 pm). The microglia were
carefully washed to remove residual LPS
and minocycline, and then the transwell
on which microglia were cultured was set
onto the neurosphere cultures in prodif-
ferentiation conditions. The activated mi-
croglia significantly increased the number
of B3-tubulin * and 04 ™ cells but had no
effects on GFAP " cells in neurospheres
(Fig. 6A,B). Minocycline almost com-
pletely suppressed the effects of activated
microglia on the numbers of cells positive
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Figure 6.  The reproduction of the enhancement of neurogenesis and oligodendrogenesis by activated microglia in vitro. Mi-

croglia cultured independently of neurosphere on transwells were activated by LPS (10 ng/ml, 30 min) in the presence or absence
of minocycline (10 pum), washed carefully, and the transwells were set onto the neurospheres or dissociated cells from neurosphere
in prodifferentiation conditions. After differentiation periods suitable for neurons (7 d) or oligodendrocytes (11 d), neurospheres
were stained for 83-tubulin (green), PDGFR« {green), 04 (green), GFAP (red), and TOTO3 (cyan). To check the effects of minocy-
cline alone, dissociated cells were incubated in the presence of minocycline (10 ) for 7 d. A, Quantification of the numbers of
neurons, oligodendrocyte progenitors, or astrocytes differentiated from neurospheres cocultured with activated microglia in the
presence or absence of minocycline. ***p < 0.001 (Tukey's test by ANOVA). n = 12 neurospheres/group. Data are mean = SEM.
B, Representative immunostained images of neurospheres cocultured with activated microgtia in the presence or absence of
minocycline. €, The effects of activated microglia on differentiation of single cells dissociated from neurospheres in the presence or
absence of minocydiine. The effects of minocycline alone were also shown (mino-cont in each graph). *p < 0.05, **p < 0.01,
**%p <0.001. (Tukey's test by ANOVA).n = 12 neurospheres/group. Data are mean = SEM. D, Images of cells immunostained for
differentiation markers. Arrowheads indicate the representative cells positive for the differentiation markers.
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The in vitro enhancement of neurogenesis and oligodendrogenesis by activated microglia was suppressed by the mixture of function-blocking antibodies (anti-IL-183, anti-IL-6,

anti-TNF-c, and anti-IFN-y). 4, The release of IL-183, IL-6, TNF-cx, or IFN- from activated microglia was suppressed by minocycline. Cultured microglia were activated by LPS (10 ng/ml, 30 min)
in the absence and presence of minocycline (10 wum). The concentration of each cytokine in the supernatant was measured by ELISA 24 h after. *p < 0.05 (Student’s  test). Data are mean == SEM.
B, Effects of function-blocking antibodies to IL-1/3, IL-6, TNF-cx, and IFN--y on enhanced neurogenesis and oligodendrogenesis by the activated microglia. The neurospheres were differentiated in
the absence or presence of functional blocking antibodies (goat anti-rat IL-1/3 antibody, goat anti-rat IL-6 antibody, TNF-cv antibody, or goat anti-mouse/rat IFN-y antibody) (1 ug/ml for each) and
a mixture of all of these antibodies. After a differentiation period suitable for neurons (7 d) or oligodendrocytes (11 d), neurospheres were stained for 33-tubulin (green), 04 (green), and TOT03
(cyan). The data of single function blocking antibodies were compared with the controls, which include the same concentration of isotype-matched control IgGs (1 1eg/mi for each). The data of the
mixture of function blocking antibodies were compared with the controls, which include the same concentrations of isotype-matched control IgGs (i.e., 3 p.g/ml of normal goat IgG control and 1
g/l of rabbit lgG control). *p << 0.05. **p < 0.01, versus isotype-matched control IgG group (Tukey's test by ANOVA). Data are mean = SEM. (, Representative immunostained images of
neurospheres cocultured with activated microglia in the absence or presence of the mixture of the function-blocking antibodies. We confirmed the same results in three independent experiments,

for B3-tubulin or O4. We further confirmed these results using a
differentiation assay with cells dissociated from neurospheres
(Fig. 6C,D). With this protocol, the morphology of each cell
could be discriminated more clearly. Consistent with the results
described above, an increase in the numbers of cells positive for
B3-tubulin and O4 was induced by activated microglia (Fig.
6C,D). Of note, PDGFRa * cells were decreased by activated mi-

croglia, whereas O4 ¥ cells were increased by activated microglia.
Minocycline suppressed both of these effects, suggesting that ac-
tivated microglia affect the later stage of oligodendrogenesis,
thereby reducing the size of PDGFa ™ progenitor pool. In this
experiment, we also checked the effects of minocycline alone (10
M) on neurogenesis and oligodendrogenesis (Fig. 6C, “mino-
cont” in each graph). Minocycline did not affect the numbers of
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The effect of each cytokine on neurogenesis and oligodendrogenesis. Neurospheres were incubated for differentiation period suitable for neurons (7 d) or oligodendrocytes (11 d) in the

presence of each single cytokine (riL-13, rlL-6, ITNF-cx, or rIFN-y) at 1-10 ng/ml. Neurospheres were stained for 33-tubulin (green), 04 (green), followed by TOTO3 (cyan). 4, Quantification of the
effects of cytokines on neurogenesis and oligodendrogenesis. {L-1/3 and IFN--y significantly enhanced neurogenesis at 1 ng/ml. IL-1(3 and IL-6 enhanced oligodendrogenesis at 10 ng/ml. *p << 0.05
versus control (Tukey's test by ANOVA). **p <C 0.01 versus control (Tukey's test by ANOVA). n = 8 neurospheres/group. Data are mean == SEM. B, Representative images of neurospheres
immunostained for 33-tubulin and 04 after differentiation in the presence of the cytokine. C, The effect of each cytokine (10 ng/ml) on cell viability. They did not affect cell viability at 10 ng/ml. The

same results were obtained in two independent experiments.

cells positive for B3-tubulin, O4, PDGFRa, or GFAP, indicating
that minocycline itself had little direct effects on neurogenesis
and oligodendrogenesis. Together, these results demonstrated
that we could reproduce the in vivo data in an in vitro coculture
experiment. We further confirmed that activated microglia en-
hanced neurogenesis and oligodendrogenesis, and minocycline
specifically suppressed the effects of microglia. We therefore ex-
amined the effects of minocycline on the release of IL-1, IL-6,
TNEF-a, and IFN-vy from activated microglia i1 vitro. In the pres-
ence of minocycline, the release of all of these cytokines was sig-
nificantly suppressed (Fig. 7A), consistent with in vivo data (Fig.
5C). To examine the extent of the contribution of each cytokine
to the enhancement of neurogenesis and oligodendrogenesis, we
applied function-blocking antibodies to IL-13, IL-6, TNF-«, and
IFN-7y (1 pg/ml) to cocultures of activated microglia and neuro-
spheres (Fig. 7B). The same concentration of isotype-matched
control IgG (both of goat and rabbit) (1 ug/ml) did not have any
effects on either neurogenesis or oligodendrogenesis. Unexpect-
edly, any single function-blocking antibody to IL-18, IL-6,
TNF-q, or IFN-vy did not change the effects of activated microglia
on neurogenesis and oligodendrogenesis (Fig. 7B). We then tried
a mixture of all of these function-blocking antibodies (goat anti-
rat IL-1B antibody, goat anti-rat IL-6 antibody, TNF-« antibody,
and goat anti-mouse/rat IFN-vy antibody, 1 pg/ml for each).

When compared with the control which included the same con-
centrations of isotype-matched control IgGs (i.e., 3 pg/ml of nor-
mal goat IgG control and 1 pg/ml of rabbit IgG control), the
effects of activated microglia were significantly suppressed by a
mixture of all of these function-blocking antibodies (Fig. 7B, Anti
Mix in the right graphs in 83-tubulin and O4, respectively). The
representative images of the expression of 83-tubulin (left) or O4
(right) in neurospheres cocultured with activated microglia in
the presence of the mixture of function-blocking antibodies are
shown in Figure 7C. We also examined the direct effects of each
single cytokine on neurogenesis and oligodendrogenesis sepa-
rately (Fig. 8). IL-183 and IFN-vy enhanced neurogenesis at 1 ng/
ml, although the effects became weaker at 10 ng/ml (Fig. 8A).
IL-1B and IL-6 enhanced oligodendrogenesis at 10 ng/ml (Fig.
8A). IFN-vy suppressed oligodendrogenesis. These results suggest
that 1L-1B and IFN-y are important for neurogenesis, whereas
1L-1B and IL-6 are important for oligodendrogenesis, and the
combinations and concentrations optimal for neurogenesis and
oligodendrogenesis are different. Representative data of the neu-
rospheres treated with the cytokines are shown in Figure 8B. We
confirmed that each single cytokine did not affect cell viability at
10 ng/ml in our experimental protocol (Fig. 8C). These in vitro
data indicate that activated microglia regulate neurogenesis and
oligodendrogenesis through released cytokines, and the cyto-
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kines produce their effects in a synergistic manner. It also appears
that the combinations and concentrations optimal for neurogen-
esis and oligodendrogenesis are different.

Discussion

In the postnatal mammalian brain, neural stem cells (NSCs) are
mainly localized in two areas: the forebrain SVZ (Doetsch and
Scharft, 2001) and the subgranular zone of the dentate gyrus
(Zerlin et al., 2004) of the hippocampus (Gould et al., 1999; Lie et
al., 2004). The microenvironments that are permissive for neu-
rogenesis and gliogenesis are composed of a variety of cell types,
such as stem cells, progenitor cells, astrocyte cells, and microglial
cells. Increasing evidence indicates the importance of the sur-
rounding glial cells in neurogenesis (Doetsch et al., 1999; Temple,
2001). Goings et al. (2006) have shown that microglia in the adult
SVZ are semiactivated, but microglial contribution to neurogen-
esis is complex. So far, the role of microglia in neurogenesis has
been examined mainly in pathological conditions (Ekdahl et al.,
2003; Monje et al., 2003). Activated microglia in inflammatory
settings, such as intraperitoneal administration of LPS, inhibited
neurogenesis (Ekdahl et al., 2003; Monje et al., 2003; Cacci et al.,
2008). However, a growing number of studies have suggested that
activated microglia are beneficial for neurogenesis (Aarum et al.,
2003; Butovsky et al., 2005, 2006a; Walton et al.,, 2006; Ziv et al.,
2006; Hanisch and Kettenmann, 2007; Ekdahl et al., 2009; Bach-
stetter et al., 2011; Ekdahl, 2012; Vukovic et al.,, 2012), even in
pathological conditions, such as an animal model of multiple
sclerosis (Butovsky et al., 2006b), ischemia (Thored et al., 2009;
Deierborg et al., 2010), and epilepsy (Bonde et al., 2006). Such
variability concerning the effects of microglia on neurogenesis
may reflect the different polarization of microglia and/or the pre-
cise status of NSCs/neuronal progenitor cells (NPCs) (Cacci et
al., 2008; Li et al., 2010; Ekdahl, 2012; Ortega et al., 2013), and
crosstalk between them (Mosher et al., 2012).

Concerning the origin of microglia, various data have been
reported. In vivo lineage tracing studies have established that mi-
croglia differentiate from primitive myeloid progenitors that
arise before embryonic day 8 and are identified in the CNS pa-
renchyma even before definitive hematopoiesis (Ginhoux et al,,
2010), although it has been shown that microglia migrate from
lateral ventricle into brain via SVZ in the postnatal brain (Mohri
et al., 2003). Microglia in the embryonic SVZ limit the produc-
tion of cortical neurons by phagocytosing neural precursor cells
(Cunningham et al., 2013). Even in the adult brain, microglia
appear densely populated in neurogenic niches, such as the SVZ
(Mosher et al., 2012), and appear more activated in the adult SVZ
than in non-neurogenic zones (Goings et al., 2006). Although
these data strongly suggest that microglia play important roles in
CNS development and an increasing number of studies have elu-
cidated various roles of microglia during developmental periods
(Wu et al., 1993; Pont-Lezica et al., 2011; Tremblay et al., 2011),
the detailed dynamics of microglia in the SVZ from early postna-
tal stages to a young adult stage remain to be elucidated. Further-
more, few studies have examined the role of microglia in normal
developmental processes during this period. In this study, we
found that activated microglia first accumulated in the SVZ and
then dispersed to white matter, where they became more rami-
fied. In addition, the number of activated microglia was largest in
the medial SVZ throughout the studied period (P30). We here
elucidated that activated microglia in the early postnatal SVZ
enhance neurogenesis and oligodendrogenesis through the
mechanisms described below. Our present data and the previous
reports concerning developmental changes in the distribution
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suggest that the developmental roles of microglia in the SVZ are
not transient but more general throughout life.

Using a combination of in vivo and in vitro approaches, we
demonstrated that these activated microglia in the early postnatal
SVZ enhanced neurogenesis and oligodendrogenesis through re-
leasing cytokines. Butovsky et al. (2006a) reported that the
beneficial effects of microglia on adult neurogenesis/oligoden-
drogenesis was achieved by IGF-1 after [L-4 and IFN-vy release
from activated microglia. In our study, although the activated
microglia in the early postnatal SVZ did produce IGF-1, the ef-
fects of activated microglia on neurogenesis and oligodendrogen-
esis observed here were independent of IGF-1. We clarified that
the SVZ microglia facilitate neurogenesis and oligodendrogenesis
via production of cytokines. Interestingly, in in vitro coculture
experiments, the enhancement of neurogenesis and oligodendro-
genesis was suppressed by a mixture of function-blocking anti-
bodies (anti-IL-1p, anti-IL-6, anti-TNF-q, anti-IFN-v), but not
by a single function-blocking antibody. These results suggest that
microglial cytokines enhance neurogenesis and oligodendrogen-
esis in combinations. In support of this, among the cytokines we
examined, only IL-18 and IFN-y enhanced neurogenesis,
whereas only IL-18 and IL-6 showed potentials of enhancing
oligodendrogenesis. Previous reports have shown that NPCs ex-
press IL-183, IL-1RI and IL-1RII, and IL-1f3 regulates the prolif-
eration and differentiation of NPCs (Wang et al., 2007). It has
been shown that IL-18 promotes proliferation and differentia-
tion of oligodendrocyte progenitor cells (Vela et al., 2002). Fur-
thermore, IL-6 and IL-6R are reported to promote neurogenesis
and gliogenesis (Islam et al., 2009; Oh et al., 2010). Li et al. (2010)
showed that IFN-vy stimulated neurosphere formation from em-
bryonic brain, but the effects of IFN-y are modified in the pres-
ence of microglia, supporting the complementary interactions
between cytokines.

These proinflammatory cytokines had been thought to cause
suppression of neurogenesis in pathological conditions, such as
chronic LPS stimulation (Monje et al., 2003), allergic encephalo-
myelitis (Ben-Hur et al., 2003), and status epilepticus (Iosif et al.,
2006; Koo and Duman, 2008). However, recent reports have
shown that that the different polarizations of microglia are in-
duced by different application protocols of LPS (Cacci et al.,
2008), suggesting that the combination and the concentration of
cytokines released by microglia change depending on the ambi-
ent conditions. Indeed, some previous reports suggest that each
cytokine reveals different effects at different concentrations (Ber-
nardino et al., 2008; Cacci et al., 2008; Das and Basu, 2008; Russo
et al., 2011). Bernardino et al. (2008) have shown that TNE-«
results in proliferation of neural stem cells at 1 ng/ml but caused
apoptosis at 10-100 ng/ml. Microglia in the developmental
brains may sense the change of environment and release a certain
combination of cytokines at suitable concentrations for neuro-
genesis and oligodendrogenesis, whereas overactivation of mi-
croglia in pathological inflammation or nerve injury induces
massive proinflammatory cytokine production, resulting in the
suppression of neurogenesis. Nakanishi et al. (2007) showed that
IL-6 promoted astrocytogenesis from the SVZ neurospheres. In
our study, however, although activated microglia release IL-6, the
effects on astrocytogenesis were not observed either in vivo or in
vitro. This might be because of different medium compositions
(i.e., growth factors) used for differentiation of neurosphere.
Compared with the other cytokines, only IFN-vy suppressed oli-
godendrogenesis, suggesting that a proper concentration range of
IEN-v to enhance oligodendrogenesis might be narrower than
the other cytokines.
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Of interest, our results suggest that activated microglia signif-
icantly increased Q4™ cells while decreasing PDGFRa™ cells.
These results suggest that activated microglia enhance oligoden-
drogenesis at later stages of oligodendrocyte differentiation. Re-
cently, Miron et al. (2013) showed that a switch from M1 to M2
occurred in microglia during remyelination, and oligodendro-
cyte differentiation was enhanced by M2 cell releasing factors. A
comprehensive analysis about the released factors from micro-
glia, including cytokines, and the precise identification of the cell
population (NSCs and/or NPCs) that are responsive to these fac-
tors will be necessary to understand fully the mechanisms under-
lying the effects of microglia on neurogenesis and gliogenesis.

In conclusion, we have found a population of activated micro-
glia accumulating in the early postnatal SVZ that facilitate neu-
rogenesis and oligodendrogenesis. A synergism among cytokines
was important for the effects. To our knowledge, this is the first
report to show that microglia regulate cell differentiation via re-
leasing cytokines in early postnatal brain development.
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ABSTRACT: The heptaarginine (R7)-conjugated peptide § was designed and synthesized as an inhibitor of ER-coactivator
interactions and ER-mediated transcription at the cellular level. The R7-conjugated peptide S was able to enter ER-positive T47D
cells efficiently, and treatment with 3 M of § downregulated the mRNA expression of pS2 (an ER-mediated gene) by 87%.

B INTRODUCTION

Breast cancer is the most common cancer in women, and its
incidence is increasing from year to year. The estrogen receptor
(ER), which is a ligand-inducible transcription factor and a
member of the nuclear receptor superfamily, is often overex-
pressed in the tissues of breast cancer patients and promotes the
estrogen-dependent proliferation of cancer cells.' ™ Several ERx
antagonistic drugs, such as tamoxifen and nonsteroidal selective
ER modulators, have been developed as treatments for breast
cancer.*™® Among those antagonists, tamoxifen acts via the
competitive inhibition of 17f-estradiol (E2) and is the most
widely used drug for treating breast cancer.”'® However,
tamoxifen has agonistic effects on ERa in uterine cancer cells
and increases the risk of endometrial cancer.”** In addition, it
activates the protein kinase B (Akt) signaling pathway by binding
to a particular ER variant, resulting in the inhibition of apoptosis
in cancer cells."*'* Therefore, novel drug candidates with
different mechanisms of action have long been desired. ER-
mediated gene activation is induced by the binding of E2 to the
ER ligand-binding domain and the subsequent binding of the
consensus LXXLL helical motif'® (L: leucine, X: any amino acid
residue) of the coactivator with the ER surface.'®"” Helical
peptides containing the above-mentioned consensus sequence
have been demonstrated to inhibit ER-coactivator interactions,
and they are also considered to be drug candidates for reducing
ER-mediated transactivation. Various helical peptides have been
reported as inhibitors of ER-coactivator interactions.'® "> The

W ACS Publications  ©2014 American Chemical Society
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peptidomimetic estrogen receptor modulators (PERMs),
specifically, PERM-1 and PERM-3 [with two mutation: Lys(1)
— Arg(1) and Leu(7) — Npg(7)] reported by Burris et al.
exhibited particularly potent inhibitory activity against ER-
coactivator interactions.'”*® However, only a few peptide-based
ER-transcription inhibitors that exhibit potent activity at the
cellular level have been reported”*** because of the low cell
permeability of such peptides. Thus, we assumed that the
conjugation of PERM with cell-penetrating peptides such as
oligoarginines and their derivatives®2 might solve the problems
surrounding the development of novel peptide-based transcrip-
tional inhibitors (Figure 1). In this communication, we describe
the synthesis of heptaarginine (R7)-conjugated PERM as
inhibitors of ER-signaling at the cellular level (Table 1).
Specifically, we synthesized R7-conjugated helical peptides and
evaluated their cellular uptake, ability to inhibit transcription in
ER-positive T47D cells, ability to inhibit ER-coactivator
interactions, and their preferred secondary structures (by
assessing their CD spectra).

B RESULTS AND DISCUSSION

Synthesis of Peptides. The N-terminal-free peptides 1—7
and their N-terminal fluorescein (FAM) labeled peptides were
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CPP-conjugated peptides

extracellular 4

intracellular

Figure 1. [lustration of the mechanism by which the CPP-conjugated
peptides inhibited ER-coactivator interactions at the cellular level.

synthesized using microwave-assisted Fmoc-based solid phase
methods, respectively. All of the peptides were purified by
reversed-phase high performance liquid chromatography and
were characterized using electrospray ionization time-of-flight
mass spectrometry (Supporting Information).

Biological Evaluations. First of all, we evaluated the cellular
uptake of fluorescein-labeled peptides (green; 1 yM) into ER-
positive T47D cells (incubated for 3 h) using confocal laser
scanning microscopy (CLSM, Supporting Information) as
shown in Figure 2. The R7-unconjugated peptide FAM-2 (an
N-terminal fluorescein-labeled version of peptide 2) was
completely unable to enter the ER-positive T47D cells, whereas
the R7-conjugated peptide FAM-5 passed through the cell
membrane efficiently and was distributed in the cytoplasm and
nucleus. This difference in the cell-penetrating abilities of the
molecules was solely due to the presence/absence of R7
conjugation. The R7-conjugated peptide FAM-4 also exhibited
cell permeability (Supporting Information).

Then, we evaluated the ability of the R7-conjugated peptides
to inhibit ER-mediated transcription. Transcriptional analysis of
an ER target gene (pS2) was carried out using T47D cells that
had been incubated with one of the peptides (3 M) in the
absence or presence of 10 nM E2 for 24 h. The mRNA expression
of pS2, which is the one gene whose expression is upregulated by
E2, was analyzed using the quantitative polymerase chain
reaction (Supporting Information). The relative pS2 mRNA
expression levels of the cells treated with each peptide are
summarized in Figure 3. The R7-unconjugated (nonmembrane-
penetrating) peptides 1—3 and the heptaarginine (YR7)¥
peptide did not inhibit transcription. On the other hand, the
mRNA expression of pS2 was significantly decreased (by 87%)
by the addition of 3 uM of the R7-conjugated peptide 5.
Treatment with 3 yM of the R7-conjugated peptide 4 did not

suppress the mRINA expression of pS2 at all, but treatment with
10 uM of 4 decreased it by 95% (Supporting Information).
Conversely, treatment with the R7-conjugated peptide 6 at
concentrations ranging from 3 M to 10 #M did not induce any
significant reduction in ER-mediated transcriptional activity.
These results demonstrated that the R7-conjugated peptides 4
and S were able to exhibit antagonistic effects on ER-mediated
transcription at the cellular level, and § displayed particularly
potent inhibitory activity.

The inhibitory activity of peptides 4 and § against ER—
coactivator interactions were evaluated using EnBio receptor
cofactor assay systems (RCAS) for ERa (Fujikura Kasei Co.,
Ltd.) according to the manufacturer’s instructions (Figure 4).
The R7-unconjugated peptides 1 and 2 demonstrated strong
activity against ERa—coactivator interactions. While the
activities of the corresponding R7-conjugated peptides 4 and §
were reduced, peptide § still demonstrated strong activity (IC:
94 nM). These results indicated that peptides 4 and 5 suppress
ER-mediated transcription by inhibiting ERa—coactivator
interactions. The R7-conjugated peptide 5 exhibited stronger
inhibitory activity against ER@—coactivator interactions than 4,
and therefore, § was able to suppress ER-mediated transcription
more efficiently than 4, even at the cellular level.

The dominant conformations of peptides 1—6 were analyzed
by assessing their CD spectra in 20% aqueous 2,2,2-
trifluoroethanol (TFE) solution (Figure 5). The CD spectra of
peptides 1 and 2, and those of their R7-conjugated peptides 4 and
S, displayed negative maxima at around 208 and 222 nm,
indicating that all of the peptides formed stable right-handed a-
helical structures. These findings suggested that the R7 fragment
did not disrupt helix formation. On the other hand, the SRC-1
peptide 3 and its R7-conjugated form 6 were found to be
composed of random coil structures rather than a-helices. These
results indicated that peptides require stabilized helical structures
in order to possess significant inhibitory activity against ER-
coactivator interactions.

B CONCLUSION

In conclusion, we developed heptaarginine (R7)-conjugated
PERM as molecules that could be used to suppress ER-mediated
transcription at the cellular level. The R7-conjugated peptides
were able to enter ER-positive T47D cells efficiently, and one of
them, peptide S, downregulated the mRNA expression of pS2 by
87% at a dose of 3 yM. Furthermore, S displayed strong
inhibitory activity (ICs: 94 nM) against ER—coactivator
interactions. Although the inhibitory activity of the R7-
conjugated peptide 5 against ER—coactivator interactions was
slightly decreased compared with that of the R7-unconjugated
peptide 2 (ICsy: 13 nM), § still exhibited potent activity. The
dominant conformations of the peptides were analyzed based on

Table 1. Sequences of Peptides 1—7

o peptide
PERM-1 (1)
PERM-3 (2)
SRC-1% (3)
PERM-1-R7 (4)
PERM-3-R7 (5)
SRC-1-R7 (6)
YR7 (7)

“Npg: neopentylglycine. “The LXXLL motif of the coactivator.

sequence

H-Lys-cyclo( D—Cys—Ile—Leu~C}?s )-Arg-Leu-Leu-GIn-NH,
H-Arg-cyclo(p-Cys-lle-Leu-Cys)-Arg-Npg®-Leu-GIn-NH,
H-His-Lys-Ile-Leu-His-Arg-Leu-Leu-Gln-NH,
H-Lys-cyclo(p-Cys-Ile-Leu-Cys)-Arg-Leu-Leu-Gln-(Gly);-(Arg),-NH,
H-Arg-cyclo(p-Cys-lle-Leu-Cys)-Arg-Npg-Leu-Gln-(Gly) ;- (Arg)-NH,
H-His-Lys-lle-Leu-His-Arg-Leu-Leu-Gln-(Gly);-(Arg),-NH,
H-Tyr-(Arg)NH,

dx.doi.org/10.1021/bc500480e | Bioconjugate Chem. 2014, 25, 19211924
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FAM-2

Figure 2. CLSM images of T47D cells that had been treated with FAM-2 or FAM-S (peptide concentration: 1 #M, incubation time: 3 h). (a) Bright-field
images, (b) nuclei stained with Hoechst 33342 (blue), (c) the intracellular distribution of the FAM-conjugated peptides (green), and (d) merged

images.
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Figure 3. Inhibition of ERa-mediated gene expression in T47D cells.
Peptide concentration: 3 g#M. The error bars represent standard
deviation, n = 3. *p < 0.05.
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Figure 5. CD spectra of peptides 1—6 in the 190—260 nm region.
Peptide concentration: 100 #M in 20% aqueous TEE solution.

their CD spectra, and it was found that 5 formed a right-handed
a-helical structure similar to that of the R7-unconjugated peptide
2. The R7-conjugation of the PERM did not disrupt their helical
structures. These results indicate that the conjugation of PERM
to R7 would aid the development of novel inhibitors of ER-
mediated transcription at the cellular level. The derivatization of
further helical peptides and detailed studies of their inhibitory
mechanisms are currently underway.

B ASSCCIATED CONTENT

© Supporting Information

Information about the synthesis and purification of the peptides
and the protocols of the in vitro assays. This material is available
free of charge via the Internet at http://pubs.acs.org.
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Sphingosine-1-phosphate promotes expansion

of cancer stem cells via STPR3 by a
ligand-independent Notch activation

Naoya Hirata', Shigeru Yamada', Takuji Shoda?, Masaaki Kurihara?, Yuko Sekino' & Yasunari Kanda'

Many tumours originate from cancer stem cells (CSCs), which is a small population of cells
that display stem cell properties. However, the molecular mechanisms that regulate CSC
frequency remain poorly understood. Here, using microarray screening in aldehyde
dehydrogenase (ALDH)-positive CSC model, we identify a fundamental role for a lipid
mediator sphingosine-1-phosphate (S1P) in CSC expansion. Stimulation with S1P enhances
ALDH-positive CSCs via S1P receptor 3 (S1PR3) and subsequent Notch activation. CSCs
overexpressing sphingosine kinase 1 (SphK1), an S1P-producing enzyme, show increased
ability to develop tumours in nude mice, compared with parent cells or CSCs. Tumorigenicity
of CSCs overexpressing SphK1 is inhibited by STPR3 knockdown or STPR3 antagonist. Breast
cancer patient-derived mammospheres contain SphK1+ /ALDH1 T cells or SIPR3 T /ALDHT+
cells. Our findings provide new insights into the lipid-mediated regulation of CSCs via Notch
signalling, and rationale for targeting SIPR3 in cancer.
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¥ rowing evidence suggests that many types of cancer,
ncluding breast, lung and prostate cancer, are initiated
from a small population of cancer stem cells (CSCs;
also called tumour-initiating cells)!~8, This minor population
produces the bulk of cancers through continuous self-renewal and
differentiation, which contributes to cancer heterogeneity.
Therefore, it is essential to elucidate the signalling and
regulatory mechanisms that are unique to CSCs, and to design
novel therapeutic agents against CSCs.

CSCs have been isolated from diverse tumours and established
cell lines, using several methods encompassing cell surface
markers, aldehyde dehydrogenase (ALDH) activity, side popula-
tion (SP) and sphere-forming ability. ALDH assays rely on the
fact that the level of ALDH, a detoxifying enzyme responsible for
the oxidation of intracellular aldehydes, is higher in stem cells
than in differentiated cells*. ALDH1 expression is correlated with
poor clinical prognosis in various cancers, such as breast, lung
and prostate cancer*™®. Because CSCs have been considered to
have molecular similarities to embryonic and normal adult stem
cells, the self-renewal behaviour of CSCs has been reported to be
mediated by several signalling pathways, such as Notch,
Hedgehog and Wnt’. However, the molecular mechanisms that
regulate the frequency and maintenance of CSCs via self-renewal
signals remain poorly understood.

Autocrine and paracrine signalling plays a key role in
maintaining the stem cell state and expansion of stem cells!?.
We therefore speculated that receptors for autocrine/paracrine
factors might play a key role in CSC regulation. Using microarray
screening in an ALDH-positive cell population of human breast
cancer MCF-7 cells, we found that several receptors are
upregulated. Among them, on the basis of pathophysiological
properties, we focused on S1P receptor 3 (S1PR3), a receptor for a
lipid mediator sphingosine-1-phospahate (S1P). S1P is known to
exert multiple responses, such as proliferation, survival and
cytoskeletal rearrangement, via its G protein-coupled receptor
(GPCR) in many cell types'!. S1P is synthesized from sphingosine
by sphingosine kinase (SphK); two isoforms of mammalian SphK
(sphingosine kinase 1 (SphK1) and SphK2) have been cloned and
characterized'>!3, In addition, the SphK1/S1P pathway has also
been implicated in tumour progression'#!%, SI1P has also been
shown to accumulate in the tumour microenvironment!®,
Although lipid mediators in cancer have been studied
extensively, the role(s) of SphK1/S1P in CSCs remain unclear.

We demonstrate here that S1P regulates expansion of CSCs in
several types of cancer. Our findings suggest that Notch activation
is essential for S1P-induced proliferation of CSCs via SIPR3.
We show that SphK1 regulates the tumorigenicity of breast
CSCs via S1PR3. Using clinical samples, we show that breast
cancer patient-derived CSCs contain SphK1+/ALDH1% cells or
SIPR3 T/ALDHI1 " cells. Thus, these results implicate the S1P
signalling pathway as therapeutic targets in CSCs.

Results

S1P is a regulator of CSC population via SIPR3. We used an
ALDH assay system to study the signalling pathways that regulate
the frequency and maintenance of CSCs. Many cancer cell lines,
including oestrogen receptor-positive MCF-7 cells, are known to
contain an ALDH-positive cell population®®!”:18 Consistent
with a previous report?, we confirmed that ALDH-positive cell
population in MCF-7 cells possessed CSC-like properties, as
assessed by expression of stem cell markers, drug resistance and
tumorigenicity (Supplementary Fig. 1). Through microarray
analysis, we investigated a possible receptor that increases the
proportion of the ALDH-positive cell population in MCE-7 cells
as a CSC model. We found SI1PR3 as a possible candidate in CSC
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regulation (Supplementary Data 1). SIPR3 was highly expressed
in the ALDH-positive cell population, a finding confirmed by
quantitative polymerase chain reaction (QPCR) assays (Fig. 1a).
S1PR2 expression was lower in the ALDH-positive cell population
compared with MCF-7 cells, and other types of SIPR are yet to be
detected in MCE-7 cells (Supplementary Fig, 2)'*2°, Stimulation
with SIP increased the proportion of ALDH-positive cell
population in a dose-dependent manner, with a maximal
response observed at 100 nM (Fig. 1b). Similar to S1P, dihydro-
S1P, another S1PR3 ligand, also increased the ALDH-positive cell
population (Supplementary Fig. 3). Moreover, stimulation with
S1P increased the number of SP cells (Fig. 1c), mammosphere-
forming efficiency (Fig. 1d), CD44 t/CD24 ~ population (Fig. le)
and expression of stem cell markers (Fig. 1f). These data indicate
that stimulation with S1P leads to an increase in breast CSCs.
In contrast, lysophosphatidic acid (LPA), another well-studied
lipid mediator, did not increase CSCs in MCF-7 cells. To confirm
the involvement of S1PR3, we inhibited SIPR3 using
pharmacological antagonists and RNA interference techniques.
The effects of SIP were blocked by the SIPR3 antagonist
TY52156 (ref. 21). Another antagonist CAY10444, which is
structurally different from TY52156, also inhibited the S1P effect.
In contrast, the S1PR2 antagonist JTEO13 had little effect
(Fig. 1g). Experiments using small interfering RNAs (siRNA)
confirmed the effects of antagonists (Fig. 1h). In addition,
short hairpin RNAs (shRNAs) against SIPR3 also inhibited
the enhancement of mammosphere-forming ability by S1P
(Supplementary Fig.4). Similar results with ALDH assay were
obtained in triple-negative MDA-MB-231 cells (Supplementary
Fig. 5a,b), suggesting that S1P regulates both luminal and triple-
negative type of breast CSCs. Furthermore, we examined CSCs
from other tumour types to determine whether these effects of
S1P are limited to breast cancer cell lines. Similar to MCE-7 cells,
stimulation with S1P increased the ALDH-positive cell
population in human lung cancer A549 cells, human prostate
cancer LNCaP cells, human glioma U251MG cells and human
ovarian cancer OVCAR-5 cells (Supplementary Fig. 6a). In
addition, TY52156 inhibited the S1P effect in these cell lines.
Taken together, these data demonstrate that S1P has an ability to
increase the number of CSCs via SIPR3 in several types of cancer.

S1P enhances Notch signalling via S1PR3. Growing evidence
suggests many similarities between embryonic stem cells and
CSCs’; therefore, we focused on Notch, Hedgehog and Wnt as
signalling pathway candidates downstream of the SIPR.
Stimulation with S1P induced expression of the Notch target
gene Hesl in MCF-7 cells (Fig. 2a) and ALDH-positive MCF-7
cells (Supplementary Fig. 7a). Moreover, SI1P also induced the
Hesl expression in ALDH-positive A549, LNCaP, U251 and
OVCAR-5 cells (Supplementary Fig. 7b). S1P-induced Hesl
expression was inhibited by S1PR3 antagonists (Fig. 2b). In
contrast, the Hedgehog target gene Glil, and Wnt target gene
Dkk1 were not induced. The effect of S1P on ALDH-positive cell
population was inhibited by DAPT, an inhibitor of y-secretase,
which has multiple substrates including Notch, not by the
Hedgehog inhibitor cyclopamine and the Wnt inhibitor
PNU74654 (Fig. 2¢; Supplementary Fig. 8). Similar effects of
DAPT were obtained in MDA-MB-231 cells (Supplementary
Fig. 5d), A549 cells, LNCaP cells, U251 cells and OVCAR-5 cells
(Supplementary Fig. 6b). To determine whether SIP has the
ability to activate the Notch pathway, we examined cleavage of
Notch in MCE-7 cells. Stimulation with S1P produced the Notch
intracellular domain (N1ICD) (Fig. 2d) and induced activation
of the Notch transcriptional reporter CSL-luc (Fig. 2e).
Because Hesl expression is dependent on NICD/CSL/MAML
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complex-mediated gene transcription®?, we verified whether co-
activators were involved in CSCs, using dominant-negative (DN)
mutants of CSL, which have been reported to have no ability to
bind to DNA?®. DN-CSL inhibited S1P-induced Hes! expression
and the ALDH-positive cell population (Fig. 2f). Similar results
were obtained by DN-MAML, which lacks transcriptional

actlvatmg domam and inhibits NICD-dependent transcriptional
activition®*. To examine which subtype of Notch was involved in
CSCs, we overexpressed each type of NICD. Overexpression of
NIICD increased Hes! expression and the ALDH-positive cell
population (Fig. 2g). N3ICD also increased the ALDH-positive
cell population (Supplementary Fig. 9a), while N2ICD and
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Figure 1 | Role of STPR3 in the ALDH-positive cell population within the MCF-7 cell line. (a) Expression levels of STPR (SIPR2 and S7PR3) in parental or
ALDH-positive MCF-7 cells by qPCR. Data represent mean * s.d. (n=3). (b) Representative flow data with ALDH substrate in the presence or absence of
STP (100 nM, 3 days) in MCF-7 cells. Dose-dependent effects of STP in the proportion of ALDH-positive cell population. Data represent mean £ s.d. (n=3).

(¢) Representative flow data of the SP assay with Hoechst 33342 dye alone

or in the presence of reserpine (15ugml~". (d) Effects of STP (100nM) on

mammosphere-forming efficiency in MCF-7 cells. The number of mammospheres was microscopically counted and the percentage of mammosphere-

forming cells was determined as mammosphere-forming efficiency (%). Th

e scale bar, 100 um. Data represent mean*s.d. (n=23). (e) Effects of S1P

(100nM) on CD44*/CD24 ™ population in MCF-7 cells. (f) Effects of S1P (100 nM) on expression of stem cell markers by qPCR. Data represent

mean = s.d. (n=3). (g) Effects of STPR3 antagonists (TY52156, 1uM; CAY1

0444, 10 uM) and the STPR2 antagonist (JTEO13, 10 uM) on S1P-induced

increase in the ALDH-positive cell population. Data represent mean * s.d. (n=3). (h) After transfection with siRNA, expression levels of S1P receptor were
examined by gPCR and immunoblotting. Effects of siRNAs against STPR3 and S1PR2 on S1P-induced increase in the ALDH-positive cell population. Data
represent mean x s.d. (n=23). Expression levels were normalized to glyceraldehyde 3-phosphate dehydrogenase messenger RNAs.
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Figure 2 | Role of Notch signalling in ALDH-positive cell population. (a) After stimulation with STP (100 nM) or LPA (100 nM) for 24 h, expression levels
of the Notch target gene (Hes?), Hedgehog target gene (GIi1) and Wnt target gene (Dkk1) were quantified in MCF-7 cells using gPCR. Data represent
mean £ s.d. (n=23). (b) Effects of TY52156 (1uM) or CAY10444 (10 uM) on S1P-induced HesT expression using gPCR. Data represent mean + s.d. (n=3).
(¢) Effects of the Notch inhibitor DAPT (5 uM), the Hedgehog inhibitor cyclopamine (10 pM) or the Wnt inhibitor PNU74654 (10 pM) on S1P-induced
increase in the ALDH-positive cell population. Data represent mean +s.d. (n=3). (d) Effects of S1P or LPA on N1ICD production by immunoblotting.
(e) MCF-7 cells transfected with a reporter plasmid encoding CSL-luc were cultured with or without S1P or LPA and were then analysed by luciferase
assays. Data represent mean £ s.d. (n=3). (f) Effects of overexpression of Flag-tagged DN-CSL or myc-tagged DN-MAML on S1P-induced Hes! expression
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antibodies. (g) Effects of overexpression of N1ICD on Hesl expression and ALDH-positive cell population. Data represent mean £ s.d. (n=3). (h) After
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N4ICD had little effect. S1P-induced NI1ICD production was experiments using Nofchl siRNA. Knockdown of Notchl
inhibited by CAY10444 (Fig. 2h); however, SIP did not induce inhibited the effect of S1P on ALDH-positive cell population
N3ICD production (Supplementary Fig. 9b). To further examine (Fig. 2i; Supplementary Fig. 10). Taken together, these data
the involvement of Notch in CSC, we performed knockdown suggest crosstalk between SIP and Notchl. To confirm the
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involvement of S1PR3 in crosstalk, we studied subtype of
G proteins coupled to S1PR3. Pertussis toxin (PTX), which
inactivates G; protein, abolished S1P-induced Hesl expression
and the ALDH-positive cell population, whereas C3 toxin, which
inactivates an effector of Gj,;;3 Rho, had little effect (Fig. 2j).
The effects of toxins were confirmed by overexpression of
constitutively active (CA) mutants for G;, but not by CA-G,,
(Fig. Zk). These data suggest that G; mediates S1P-induced Notch
activation via SIPR3. Collectively, S1P has an ability to increase
the number of CSCs via Notch signalling in several types of
cancer.

S1P increases ADAMI7 activity without Notch ligands.
We further investigated the molecular mechanism of crosstalk
between S1P and Notch in MCF-7 cells. Notch is generally
activated by binding of Notch ligands to Notch and then cleaved
by ADAMI17 and y-secretase?”. Among Notch ligands (Jaggedl,
2 and Delta-like ligand (DI} 1, 3 and 4), DII3 is not capable to
activate Notch signalling in adjacent cells?®.

To examine whether Notch ligands are required for the S1P
effect, we examined the expression level of Notch ligands. SIP did
not induce expression levels of Notch ligands (Supplementary
Fig. 1la). Knockdown of Notch ligands did not affect S1P-
induced Hesl expression and ALDH-positive cell population
(Fig. 3a,b). In contrast to SI1P, knockdown of Notch ligands
inhibited hypoxia-mimetic agent desferoxamine-induced Hesl
expression. In addition, neutralizing antibodies to Jaggedl
inhibited HesI induction by soluble Jaggedl-Fc, but not S1P-
induced Hesl expression and ALDH-positive cell population
(Supplementary Fig. 11c,d). Taken together, these data suggest
that SIP activates Notch signalling in Notch ligand-independent
manner.

We next studied cleavage enzymes that are responsible for S1P-
induced Notch activation. We found that stimulation with S1P
increased ADAMI17 activity in MCE-7 cells (Fig. 3c) and ALDH-
positive MCF-7 cells (Supplementary Fig. 7c). In addition, S1P
also increased y-secretase activity in MCF-7 cells (Supplementary
Fig, 12a). CAY10444 and PTX inhibited S1P-induced ADAMI17
activation (Fig. 3d) and y-secretase activation (Supplementary
Fig. 12b). Overexpression of CA-G; also increased both ADAM17
(Fig. 3e) and y-secretase activity (Supplementary Fig. 12¢).
Moreover, we examined whether ADAMI17 activation occurred in
CSCs. Overexpression of ADAM17 increased N1ICD production,
Hes1 expression and the ALDH-positive cell population (Fig. 3f).
Conversely, DN-ADAM17 (E406A; point mutation at metallo-
protease domain)?’ inhibited S1P-induced responses (Fig. 3g).
Expression of ADAMI10 or DN-ADAMIO (E384A; point
mutation at metalloprotease domain)?® had little effect on the
CSC signalling pathway. These data suggest that ADAMI17 is
involved in S1P-induced CSC proliferation.

P38MAPK mediates ADAM17 activation by S1P. We investi-
gated whether the intracellular domain of ADAM17 plays a role
in S1P-induced breast CSC proliferation. ADAMI7 activity is
regulated by phosphorylation-dependent ~mechanisms®~>);
therefore, we generated ADAMI17 mutants with either Thr735
(p38MAPK consensus motif) or Thr761 (Akt consensus motif)
replaced by alanine (Fig. 4a). Consistent with our data above,
S1P induced ADAMI17 phosphorylation at Thr735 (Fig. 4b).
S1P-induced ADAMI17 phosphorylation was inhibited by PTX
and CAY10444. A mutation at Thr735 decreased ADAMI17
phosphorylation through S1P, whereas a mutation at Thr761 had
little effect (Fig. 4c). In addition, mutation of Thr735 inhibited
S1P-induced ADAMI17 activation, Hesl expression and the
number of ALDH-positive cell population (Fig. 4d). To further

Ol

confirm the involvement of p38MAPK, we studied the association
between p38MAPK and ADAMI7. Stimulation with S1P induced
a transient phosphorylation of p38MAPK (Supplementary
Fig. 13a) and an association between p38MAPK and ADAMI17
(Fig. 4e). Mutation of Thr735 abolished this association (Fig. 4f),
suggesting that phospho-p38MAPK binds to ADAMI17 at
Thr735. Treatment with CAY10444 or PTX also inhibited the
SIP-induced association between p38MAPK and ADAMI17
(Fig. 4g). The p38MAPK inhibitor SB203580 inhibited the S1P-
induced responses (Supplementary Fig. 13b-d). Furthermore,
SB203580 inhibited the association between p38MAPK and
ADAM]17 (Supplementary Fig. 13f). In contrast, the PI3-kinase/
Akt pathway inhibitor LY294002 had little effect (Supplementary
Fig. 13b-e). Taken together, these data suggest that p38MAPK-
mediated ADAMI17 activation is involved in the S1P-induced
CSC phenotype.

SphK1 increases CSCs via S1PR3. S1P is synthesized through
SphK-catalyzed phosphorylation of sphingosine!»!4, We next
examined whether SphK is involved in breast CSCs. Consistent
with previous reports®>*3, overexpressed SphK1 was localized in
the cytosol, and SphK2 was mainly localized to the nucleus
(Fig. 5a). Enzyme activities of SphKs were also confirmed
(Supplementary Fig. 14). Overexpression of SphK1 increased
the number of ALDH-positive cell population in both MCF-7
(Fig. 5b) and MDA-MB-231 cells (Supplementary Fig. 15),
whereas SphK2 had little effect. Consistent with the ALDH assay
results, ADAMI17 activation, N1ICD production and Hesl
expression were induced by SphK1 but not SphK2 (Fig. 5c).
To determine whether intracellular S1P is involved in the
SphK1 effect, we tested the effects of the SIPR3 antagonist on
SphK1-induced increases in the ALDH-positive cell population.
Pretreatment with CAY10444 inhibited SphK1-induced responses
(Fig. 5d). SIPR3 shRNAs also inhibited these SphKl-induced
responses (Fig. 5e). Analysis by qPCR confirmed specific
suppression of SIPR3 by these shRNAs (Fig. 5¢), and treatment
with PTX also produced similar results. Recent studies suggest
that the ABC transporter mediates oestrogen-induced S1P
secretion in MCF-7 cells**. To determine whether the ABC
transporter is involved with the SphK1 effect, we used siRNAs
and a selective inhibitor to inhibit the transporter. An siRNA
against ABCCI inhibited SphKl1-induced ADAMI7 activation,
Hesl expression and the ALDH-positive cell population
(Supplementary Fig. 16a). The ABCCI inhibitor MK571 also
produced similar results (Supplementary Fig. 16b). In contrast, an
siRNA against Spns2, another S1P transporter>>, had little effects.
These data suggest that S1P produced by SphK1 stimulates
S1PR3, and leads to an increase in the number of CSCs.

SphK1 accelerates tumour formation of CSCs via S1PR3. Since
S1P is easily degraded by SIP lyase or phosphatases, we next
studied tumorigenicity using SphK1- or SphK2-overexpressing
CSCs in MCF-7 cells. Almost all nude mice injected with SphK1-
overexpressing ALDH-positive cells developed tumours within
6 weeks. Tumour formation was inefficient in the mice injected
with vector- or SphK2-overexpressing ALDH-positive cells
(Fig. 6a,b). Tumour sizes from SphKl-overexpressing ALDH-
positive cells were bigger than those from vector- or SphK2-
overexpressing ALDH-positive cells (Fig. 6c,d). Histological
analysis indicated that tumours derived from the ALDH-positive
cells and the SphKl-overexpressing ALDH-positive cells had
similar morphologies (Fig. 6e). To examine the proportion of
ALDH-positive cells in xenografted tumour samples, we con-
ducted double staining using ALDH assays and human-specific
antibodies to TRA-1-85 (Supplementary Fig. 17). The increase in
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the proportion of ALDH-positive cells in the tumour paralleled
the in vitro results, suggesting a stem cell hierarchy (Fig. 6f).
Histological analysis and double staining suggest that it is unlikely
that the enhanced incidence of tumour formation by expression
of SphK1 was due to cell differentiation. To examine whether
S1PR3 and ALDHI1 were co-expressed in the same cell, we per-
formed double staining of ALDH1 and S1PR3 using xenografted
tumour section (Supplementary Fig. 18). The number of ALDH1-
and S1PR3 double-positive cells was increased in tumours derived
from the SphK1-overexpressing ALDH-positive cells, compared
with control and SphK2-overexpressing ALDH-positive cells.
In addition, knockdown of SIPR3 significantly inhibited the
tumorigenicity of SphK1-overexpressing ALDH-positive cells,
whereas knockdown of SIPR2 had little effect (Fig. 6g).

N
£ S

Furthermore, chronic administration of the SIPR3 antagonist
TY52156 significantly inhibited the tumorigenicity of SphK1-
overexpressing ALDH-positive cells (Fig. 6h). Taken together,
both in vitro and in vivo results suggest that enhanced expression
of SphK1 accelerated tumour formation of CSCs via SIPR3.

Patient-derived CSCs contain SphK1T/ALDHI T cells. We
further extended our observations to primary cell culture. To
examine SIPR3 expression level in breast CSCs, we performed
gPCR using secondary mammospheres from patient-derived
tumour® (Supplementary Table 1). Similar to MCF-7 cells, SIPR3
was highly expressed in ALDH-positive cells derived from breast
cancer patient (Fig. 7a). In addition, we evaluated whether there
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The cells were lysed and subjected to immunoprecipitation with myc-specific antibodies, followed by p38MAPK-specific immunoblotting.

were co-expressions of SphK1/ALDH1 or S1PR3/ALDHI1 in
breast CSCs by immunochemistry. Double staining demonstrated
that these patient samples contained SphK1- and ALDH1 double-
positive cells or SIPR3- and ALDHI1 double-positive cells
(Fig. 7b,c). We further evaluated whether SphK1, ADAM17 and
N1ICD were co-expressed in the same cell. As a result, patient-
derived tumour cells contained triple-positive cells (Fig. 7d).

These data suggest that SphK1/S1PR3/Notch signalling is present
in CSCs derived from breast cancer patient.

Discussion
In the present study, we used ALDH assays to identify regulators
in CSCs, and determined that SI1P/S1PR3 signalling and
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messenger RNAs.

subsequent Notch activation resulted in an increase in the CSCs
in several types of cancer (Fig. 8). SIPR3 antagonist inhibited
the tumorigenicity of SphKl-overexpressed breast CSCs.
Furthermore, breast cancer patient-derived CSCs contained
SphK1t/ALDH1 ™ cells or SIPR3T/ALDH1* cells. The find-
ings presented here broaden our understanding of the role of
lipids in CSC biology, and have significant clinical implications.

We found that S1P has the ability to induce proliferation of
several types of CSCs, as stimulation with SI1P activates Notch

8

signalling, a key stem cell pathway. As such, SIP might have
various roles in stem/progenitor cells. Indeed, SIP has been
shown to maintain self-renewal of human embryonic stem cells in
cooperation with platelet-derived growth factor’®. Human-
induced pluripotent stem cells have also been shown to express
SIPR3 messenger RNAs, although their biological effects in
induced pluripotent stem cells are yet to be elucidated®”. We
postulate that S1P might have self-renewal properties, and play a
key role in stem cell regulation.
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Figure 6 | SphK1 increases CSC-mediated tumour formation in a mouse xenograft model. (a) Balb/c nude mice were subcutaneously injected with
1% 10° vector- or SphK-transfected MCF-7 cells. Tumour formation was indicated by tumours/injections at 6 weeks post injection. The P value was
calculated using the Fisher's exact test. Bonferroni correction was applied for multiple comparisons. *P<0.05 versus control. (b) Photographs of
representative nude mice transplanted with ALDH-positive cells, SphK1-overexpressing ALDH-positive cells and SphK2-overexpressing ALDH-positive
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injection. Data represent mean +s.d. (n=10). (e) Hematoxylin/eosin (H&E)-stained sections of tumour xenografts derived from vector-, SphK1-, and
SphK2-overexpressing ALDH-positive cells. Scale bar, 100 pm. (F) Representative flow cytometry analysis of ALDH activity in the xenograft tumours
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correction was applied for multiple comparisons. *P<0.05 versus control. ¢(h) TY52156 or vehicle was inserted in subcutaneously implanted Alzet osmotic

pumps before injection of 1x 105 SphK1-overexpressing ALDH-positive cells. Tumour formation was indicated by tumours/injections at 6 weeks post
injection. The P value was calculated using the Fisher's exact test. *P<0.05 versus control.

We also identified S1P-induced Notch activation without signalling without cell-cell contact?’. Furthermore, a recent study
Notch ligands. Consistent with our observations, previous studies  showed that multiple GPCRs, including the S1PR, resulted in
have shown that ADAM17 mediates ligand-independent Notch ~ shedding of TGFa via ADAMI7 activation in HEK293 cells*!.
activation, while ADAMI0 is ligand dependent®®%. Another ~Within the SIPR family, SIPR3 has higher intrinsic activity for
study has shown that soluble form of Jaggedl activates Notch shedding. These data strongly support a signalling pathway
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