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Non-invasive evaluation of cell reprogramming by advanced image analysis is required to maintain the
quality of cells intended for regenerative medicine. Here, we constructed living and unlabelled colony image
libraries of various human induced pluripotent stem cell (iPSC) lines for supervised machine learning
pattern recognition to accurately distinguish bona fide iPSCs from improperly reprogrammed cells.
Furthermore, we found that image features for efficient discrimination reside in cellular components. In
fact, extensive analysis of nuclear morphologies revealed dynamic and characteristic signatures, including
the linear form of the promyelocytic leukaemia (PML)-defined structure in iPSCs, which was reversed to a
regular sphere upon differentiation. Our data revealed that iPSCs have a markedly different overall nuclear
architecture that may contribute to highly accurate discrimination based on the cell reprogramming status.

e generation of human induced pluripotent stem cells (iPSCs) is simple and highly reproducible’. However,
only a small proportion of cells become pluripotent after introduction of the reprogramming factors,
possibly resulting in a mixture of bona fide iPSCs and partially reprogrammed cells*®. It is essentjal to
develop reliable methods to select completely reprogrammed iPSCs by eliminating the contamination of non-
iPSCs*. Previous studies have shown changes in gene expression, DNA methylation, and histone modifications
during iPSC reprogramming”. Furthermore, reporter genes have been integrated into the genomic loci of
pluripotency genes to visualize bona fide iPSCs*. However, there are no non-invasive methods that reliably
identify live human iPSCs in large and heterogeneous populations of reprogramming cells.

Recent advances in automated biological image analyses enable objective measurements of cellular morpholo-
gies®. A supervised machine learning algorithm, wndchrm (weighted neighbour distances using a compound
hierarchy of algorithms representing morphology), has been developed for automated image classification and
mining of image similarities or differences’. It is a flexible, multi-purpose image classifier that can be applied to a
wide range of bio-image problems. Unlike conventional image analysis, where users are required to specify target
morphologies, choose specific algorithms, and try different parameters depending on the imaging problem,
wndchrm users define classes by providing example images for each class; completely reprogrammed cells or
partially reprogrammed cells, for example. Once classes are defined, classifications and similarity measurements
are performed automatically. As the first step of the classification, wndchrm computes a large set of image features
for each image in the defined classes and then selects image features that are informative for discrimination of the
groups and constructs a classifier in an automated fashion®’. Next, the dataset is tested by multiple rounds of cross
validation to measure classification accuracy (CA) as well as class similarity, which can be visualized with phylo-
genetic tree. The wndchrm algorithm has been successfully used for early detection of osteoarthritis®, measurement
of muscle decline with aging, sarcopenia’, classification of malignant lymphoma'®, and many other applications™.

Nuclear structure and function are closely linked to cellular reprogramming and epigenomic regulation®.
During cell differentiation, nuclear structures are reconfigured dynamically. Previous studies have identified
numerous distinct nuclear bodies' . For example, promyelocytic leukaemia (PML) nuclear bodies typically
exist as small spheres of 0.3-1.0 um in diameter, and are implicated in various cellular pathways including
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chromatin organisation, viral response, DNA replication, repair, and
transcriptional regulation'"", Cajal Bodies are prominent in highly
metabolically active cells such as neurons and cancers, and are impli-
cated in the assembly or modification of transcriptional and splicing
machinery". The perinucleolar compartment (PNC) accumulates
polypyrimidine tract binding protein'® and several polymerase III
RNAs, which appears in virtually all types of solid tumours'.
These bodies have been studied intensively in somatic cells'??, but
much less is known about them in human iPSCs".

Here, we established an accurate classification method to identify
iPSCs using images of unlabelled live iPSC colonies. A combination
of wndchrm and specific morphology quantification suggested that
signals contributing to morphological discrepancies reside in nuclear
sub-domains.

Results

Colony morphologies reflect proper reprogramming, which can
be measured by pattern recognition. To build image classifiers to
differentiate variously reprogrammed human cells, we first collected
phase contrast images of live colonies formed by standard iPSC lines
(201B7 and 253G1)*?, newly generated iPSC lines (1H-4H), non-
iPSC lines (15B2 and 2B7), and somatic cells (human mammary
epithelial cells, HMECs) (Fig. 1a). 253G1 and 201B7 cells were the
initially established iPSC lines that were generated from human
fibroblasts by introduction of four factors (Oct3/4, Sox2, Klf4, and
c-Myc) and three factors (Oct3/4, Sox2, and KIf4), respectively*”.
New iPSCs and non-iPSCs were derived from HMECs and human
fibroblasts by a Sendai virus (SeV) carrying the four factors'. We
confirmed that these iPSCs maintained pluripotency and could
differentiate into three lineages in vitro (Supplementary Figs. S1
and S2)**. In contrast, 15B2 and 2B7 cells lacked pluripotency,
probably because of failure to silence the transgenes and activate
endogenous stemness genes’. The resultant image libraries
included 60 colony images (1024 X 767 pixels) for each of the nine
cell lines (Supplementary Fig. $3). In wndchrm, pattern recognition
is based on ability to distinguish different classes, not pre-defined
objects. Therefore, other than manually centering colonies, we used
the entire colony image with no prior segmentation, as input.

The image classifier must be trained with a sufficient number of
images. To optimize the classification capacities, we measured CA
using different number of training data set of iPSC (1H) and non-
iPSC (15B2), and found that the accuracy reached a plateau with
more than 40 images (Supplementary Fig. S4a).

In addition, dividing a large image into multiple equal-sized tiles
can sometimes provide better classification, particularly when
numerous cells are distributed throughout an image. Treating the
tilled images independently is expected to improve classification
ability as the size of dataset increases’>?. Therefore, we measured
CA with and without tiling and found that the accuracy was
improved by breaking an image into more than 16 images
(Supplementary Fig. S4b).

Under these optimized classification condition, we classified sev-
eral cell lines against iPSCs (1H cells) and compared CAs (Fig. 1b). In
this binary classification, CA reflects the degree of morphological
dissimilarities”. If the morphologies of two cell types are very distinct,
the classifier is expected to show higher rate of accurate cross valida-
tions, at the maximum CA of 1. 0. On the other hand, the CA value of
random classification between two cell types with no feature differ-
ences is expected to be 0.5. The results showed that the CA against
iPSCs (1H cells) was 0.66 for 2H cells, 0.68 for 201B7 cells, and 0.63
for 253G1 cells, but it was significantly high for non-iPSCs, 15B2 cells
(0.87), and HMECs (0.96) (Fig. 1b). Therefore, wndchrm analysis
was effective for discrimination of iPSC and non-iPSC colonies.

A set of informative image features extracted from each wndchrm
test is summarized in Figure 1c and Supplementary Table S1. The
Fisher discriminant values were clearly small between iPSC lines (1H

vs. 2H, and 1H vs. 201B7), while they were remarkably large for non-
iPSCs (15B2 cells) and HMECs that exhibited a common feature
pattern (Fig. 1¢). In addition, most of the image features that con-
tributed to the accurate classifications were based on transformed
images (Fig. 1c, black bars)®’. Thus, wndchrm analyses are effective
and objective for discrimination of iPSC and non-iPSC colonies.

We further examined the morphological similarities among the
cell lines. The phylogeny in Fig. 1d was generated based on the
pairwise class similarity (Supplementary Table S2), and showed that
various iPSC lines, particularly those reprogrammed with the four
factors, were closely clustered, whereas non-iPSCs (15B2) and
HMECs were distantly positioned from them (Fig. 1d, and
Supplementary Figs. S4c and S4d). A set of most informative image
features extracted for this wndchrm test is listed in Supplementary
Table $4.

Consistently, classifications between any combination of iPSC
lines (1H-4H) resulted in low CA, which suggests that their mor-
phologies are similar to each other (Supplementary Fig. Sde).
Furthermore, binary classifications using another iPSC line (4H) as
a reference (Supplementary Fig. S4f) resulted in a similar pattern to
Fig. 1b.

Besides the above-mentioned studies on the cell lines, wndchrm
analysis was effective to classify partially reprogrammed and fully
reprogrammed mouse cells grown in the same dish as a mixed popu-
lation (Supplementary Fig. S5).

Reprogrammed cells grow as large colonies. We investigated the
nature of image features that discriminate iPSCs and non iPSCs. As
mentioned above, we classified iPSCs (1H) and non-iPSCs (15B2)
with and without tiling the colony images (Supplementary Fig. S4b).
By doing so, an image is broken into equally sized rectangles that are
treated independently for successive training and test. An important
feature as a single entity is lost, while the one distributed throughout
the image is maintained, and size of the data set increases. We found
that the CA was improved by tiling (Supplementary Fig. S4b), sug-
gesting that the signals to identify iPSCs (1H) and non-iPSCs (15B2)
were scattered in the image, and the colony morphology per se is not
critical.

We further localised image features that discriminate iPSCs (1H)
and non-iPSC (15B2) by tiling the colony images into 64 tiles and
measuring the CA in each of them (Fig. le). As expected, a large part
of the predictive signal came from areas containing iPSCs.
Interestingly, the higher signals (CA = 0.75) were positioned inside
of the colony region (Inside), rather than the periphery with the local
edge shape (Periphery) or outside of the colony (MEF), suggesting
that unique features of the internal structure of the colony contribute
most to the distinction.

Because nuclear morphology changes during differentiation sta-
tus?!"2, we searched nuclear sub-structures that are different in iPSCs
and non-iPSCs. Among the nuclear structures tested in this study,
lamin A/C, the major component of the nuclear lamina*, was
expressed in the peripheral cells of iPSC colonies, while it was
detected in most of the cells in non-iPSC colonies (Fig. 1f). In addi-
tion, transcription factor Spl (specificity protein 1)** was highly
expressed inside of iPSC colonies (Supplementary Fig. S6). Such a
metastatic state of iPSCs in the colony may be recognized by
wndchrm.

The linear form of the PML-defined structure is characteristic of
appropriately reprogrammed iPSCs. Extensive immunofluorescence
analyses of ~20 distinct nuclear structures revealed that the PML
body**¥, Cajal body”, and PNC* were characteristic of bona fide
iPSCs, non-iPSCs, and cancerous Hela cells, respectively (Figs. 2a-
b, and Supplementary Fig. S7). The frequency of PML body formation
in iPSC lines (1H, 201B7, and 253G1) was less than that in non-iPSC
lines (15B2 and 2B7), and somatic cell lines (HMECs and IMR90
fibroblasts). Cajal body formation in non-iPSCs (0 * 02 per
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Figure 1 | Quantitative classification

described in Supplementary Table S1.
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of completely and incompletely reprogrammed human iPSC colonies. (a) Experimental Overview. iPSCs and non-
iPSCs are indicated as blue and red, respectively. (b) Binary classification of colony images against iPSCs (1H). Classification accuracy (CA) indicates the
level of morphological differences between two cell types. CA value of two cell types with no feature differences is expected to be 0.5 (dotted line). The
values are the means and standard deviation (s.d.) from 10 independent tests. N.S., not significant. (¢) Fisher discriminant scores assigned to the 2873
features for each test in Fig. 1b. The values were calculated from raw (red bars) and transformed images (black bars). The name of each feature group is
(d) Phylogeny based on morphological similarities. () Specification of the areas that distinguish iPSC (1H) and
for each sub-image are shown as high (red) and low (blue). Average CA values inside, at the periphery, and outside
of the colony (MEF, mouse embryonic fibroblast) are shown on the graph. (f) Selective expression of lamin A/C in the periphery of the iPSC colony.

Immunofluorescence images of lamin A/C (green) and DAPI (blue), and quantified intensities are shown at the right (n>600). Values are the means and

s.d. ¥, p<0.05; **, p<<0.01. Scale bars, 200 pm.
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images of PML and Cajal bodies (n=10). (d) Detection of linear PML structures by three-dimensional confocal microscopy. (e) Detection of PML
structural variation by structured illumination microscopy (100 nm resolution). Enlarged images of PML structures are shown in the upper boxes.
(f) Lack of SUMO-1 and Sp100 in the linear PML structures of bona fide iPSCs. The signal intensity along the arrow is shown below. PML, red; SUMO-1
and Sp100, green. (g) Transition of PML structures from linear to round during differentiation. The number of PML structures is shown at the right
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nucleus in 15B2 and 2B7 cells) and somatic cells (HMECs and IMR90
fibroblasts) was less frequent than that in iPSCs (1 = 0.15 per nucleus
in 1H, 201B7, and 253G1 cells), implying that hypoplasia of Cajal
bodies is a feature of non-iPSCs. The PNC was only observed in
Hela cells (mean number = 4 * 0.77), which is consistent with its
specific appearance in cancerous cells'® and high expression of one of
its components, hnRNPI, in HeLa cells (Fig. 2a-b).

Using the wndchrm image libraries constructed from immuno-
fluorescence of the PML and Cajal bodies (Supplementary Fig. S8),
bona fide iPSCs (1H cells) were discriminated from non-iPSCs (1582
cells) by extremely high CA values (~1.0) (Fig. 2¢).

PML-defined structures in iPSCs were especially striking, Linear
PML structures were found uniquely in bona fide iPSCs (Fig. 2a and
Supplementary Fig. S7a). Three-dimensional imaging by confocal
microscopy revealed approximately straight, rod-like PML struc-
tures traversing within the nuclei of iPSCs (Fig. 2d). In addition,
more detailed structures visualized by structured illumination
microscopy showed at least three classes of PML structures: linear
and connected bead-like in iPSCs (1H), irregular ring-like in non-
iPSCs (15B2), and normal spheres in HMECs (Fig. 2e). In terms of
protein composition, the linear PML structure in bona fide iPSCs was
distinct from that in somatic cells (Fig. 2f). In somatic cells such as
HMECs, the PML protein and its SUMO modification are required
for PML body formation and colocalisation with other components
such as Sp100%. In contrast, the linear PML structure in iPSCs evi-
dently lacked enrichment of SUMO-1 and Sp100. Finally, we found
that the PML-defined structure in iPSCs transited to a somatic sphere
PML body under differentiation conditions (day 6-10) in parallel
with an increased number of the bodies (Fig. 2g). The resulting PML
bodies coexisted with SUMO-1 and Sp100 on day 10 (Supplementary
Fig. $9). Thus, the PML structure is dynamically regulated in iPSCs
during their differentiation, indicating that the linear form of the
PML body is one of the hallmarks of fully reprogrammed iPSCs.

In summary, we report the morphometric characteristics of
human iPSCs by quantitative assessment of colony and nuclear
structures.

Discussion
In the present study, we developed a new non-invasive method to
distinguish nascent reprogrammed iPSC and non-iPSC colonies
based on their morphologies. Previously, mouse reprogramming
studies have used reporters integrated into the genomic loci of plur-
ipotency genes Fbx15, Oct4, or Nanog®*° to identify reprogrammed
cells. However, there have been no methods to reliably identify
human iPSCs in a population of fibroblasts and imperfectly repro-
grammed cells without cell labelling®. Our analysis using a collection
of cell lines including standard iPSC lines (201B7 and 253G1)>?,
newly generated iPSC lines (1H-4H), non-iPSC lines (15B2 and
2B7), and somatic cells (human mammary epithelial cells,
HMECs) demonstrated that wndchrm analysis is effective and
objective for discrimination of iPSC and non-iPSC colonies.
Quantitative measurement of morphological differences can be
very complex, and it is sometimes difficult to analyse only pre-
defined features®”®. Therefore, we used a supervised machine learn-
ing system, wndchrm, which has been developed to automatically
mine for morphological similarities in a wide variety of objects™. As
the first step, wndchrm computes a large number of features of both
raw images and ones processed for transformations including
Fourier, Wavelet and Chebyshev. Total calculated feature numbers
are 2873 at maximum, which are expected to cover general image
features. They include polynominal decompositions, high contrast
features, pixel statistics and textures, and so on”'®. Next, wndchrm
selects an informative feature by rejecting noisy feature by using
Fisher Linear Discriminant algorithm. The Fischer scores are also
used as feature weights, so that less discriminating features have a
reduced effect on the classifier. The classifier used is WNDS5 which is

related to the k-nearest neighbors type, except that it uses a negative
exponential in a weighted feature space rather than a simple linear
distance equation. While the classification system is composed of
several linear elements, it is not justified to characterize this system
as somehow limited in the complexity of the feature relationships it
can exploit. In fact, wndchrm outperforms over a dozen state of the
art classifiers which are constructed as either general, problem spe-
cific, linear or non-linear programming”*'. Because the method used
here is versatile and not limited to any particular type of cell or image,
it would be applicable to classify cells in various states, providing that
a sufficient numbers of images and their retrospective metadata is
available.

In this study, we found image features that discriminate between
iPSCs and non-iPSC (Fig. 1e) within colony components. It is inter-
esting that the value of morphological similarity does not depend on
the original cell types or reprogramming procedures. For example,
201B7, 253G1, and 15B2 cells were all derived from human fibro-
blasts, However, 201B7 cells were closely clustered with 1H-4H cells
that were derived from HMECs, suggesting that the cells have lost
their lineage identities with morphological features during repro-
gramming. It is also interesting that the morphologies of the two
non-iPSC lines (15B2 and 2B7) were not only distinct from iPSCs,
but also from each other, implying that they have failed reprogram-
ming at different stages or for different reasons (Supplementary Fig.
S4d).

Prior to the colony classifications, we analyzed the cell lines for
their undifferentiated states and differentiation abilities to find that
they formed relatively homogeneous colonies (Supplementary Figs
S1 and S2). However, reprogrammed cells generally could form a
colony that is composed of different types of cells. A question of how
the classification technology works on the heterogeneous colonies
remains to be investigated. It is of interest that tiling an image was
effective to determine the source of the classification signal in cul-
tured colonies (Fig. 1e) and cells™®. It was also successfully applied to
determine the location of the predictive osteoarthritis signal in X-
Rays®%.

We found that nuclear structures changed during reprogramming
dynamically and specifically. Using immunofluorescence images of
the PML and Cajal bodies, bona fide iPSCs (1H cells) were discrimi-
nated from non-iPSCs (15B2 cells) by extremely high accuracy,
almost 100% accuracy, with wndchrm (Fig. 2¢). This result suggests
that one can use the information on the different nuclear bodies to
discriminate between cell types effectively.

Among the nuclear structures, the linear PML-defined structure is
an attractive indicator that represents the reprogramming state of
iPSCs. The linear form of PML bodies has been observed in human
embryonic stem (ES) cells”, but not in mouse ES cells, possibly
because human ES cells correspond to mouse-derived epiblast stem
cells®**. The ring-shaped PML body found in human non-iPSCs
may represent a transition state from somatic cells to iPSCs.
Collectively, the linear PML structure is likely to be characteristic
of the pluripotent state of human cells.

In conclusion, the present study indicates that the reprogramming
states of live human iPSCs can be evaluated precisely by machine
learning technologies for image analyses. This versatile method is
applicable to other cell types, and may be valuable for quality control
of cells intended for regenerative medicine, as well as for basic
research. Our findings will also significantly advance our knowledge
of the nuclear landscape of iPSCs.

Methods

Generation and maintenance of iPSC lines. To generate human iPSC lines, four
reprogramming factors (Oct3/4, Sox2, K1f4, and c-Myc) were introduced into
HMECs and primary human fibroblasts using SeV vectors according to the
manufacturer’s protocol (Cyto tune-iPS DNAVEC). Briefly, 2 X 10° cells were plated
and infected with SeV vectors, and then cultured in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% foetal bovine serum. After ES cell-like
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colonies appeared, the medium was changed to primate ES cell medium
supplemented with 5 ng/ml basic fibroblast growth factor (bFGF) (ReproCELL).
Growing colonies were picked up mechanically, expanded, and maintained on mouse
embryonic fibroblasts (MEFs) to avoid spontaneous differentiation. Standard human
iPSC lines, 201B7 and 253G1, were provided by Kyoto University and RIKEN
BioResource Center, Japan, respectively. These cell lines were cultured on MEFs in
Repro Stem medium supplemented with 5 ng/ml bFGF and penicillin/streptomycin.

In vitro differentiation of human iPSCs. For embryoid body (EB) formation, iPSCs
were treated with a dissociation solution (CTK, ReproCELL), and clumps of cells were
cultured in DMEM/F12 containing 20% knockout serum replacement (Invitrogen)
supplemented with 9.2 mM L-glutamine, 1 X 107" M non-essential amino acids, 1 X
107" M 2-mercaptoethanol, and penicillin/streptomycin. The medium was changed
every other day. After 8 days of floating culture, EBs were transferred to a gelatin-
coated plate and cultured in the same medium for another 8 days.

Immunofluorescence analysis. Cells were fixed with 4% paraformaldehyde in PBS
for 10 min at room temperature, washed, and permeabilized with PBS containing
0.5% Triton X-100 for 5 min on ice. The cells were then incubated with primary
antibodies for 1 h, followed by secondary antibodies for 1 h. Images were obtained
under a microscope (IX-71; Olympus) equipped with a 60 X NA1.0 Plan Apo
objective lens and a cooled charged-coupled device camera (Hamamatsu).
Alternatively, images were captured with a confocal laser-scanning microscope (LSM
710, Carl Zeiss) with a 63 X/1.4 Plan-Apochromat objective lens and a cooled
charged-coupled device camera (Carl Zeiss). For immunofluorescences of the nuclear
structures (PML body, Cajal body and PNC), image stacks containing three-
dimensional datasets were collected at 1.0 pm intervals through the z axis, and
projected onto two dimensions using imaging software (Lumina Vision; Mitani
Corp). For structured illumination microscopic analyses, we used a microscope (Ti-E;
Nikon) equipped with a 100 X NA1.49 CFI Apo TIRF objective lens, an electron
multiplying charged-coupled device camera (iXon Em-CCD, Andor), and image
acquisition software (Nikon).

Image quantification. For image classifications, we used wndchrm ver. 1.31%7,
Images used were; phase contrast of colonies (1024 X 767 pixels)
(Supplementary Fig. $3), and immunofluorescences of nuclear structures (1280
X 1024 pixels) (Supplementary Fig. $8). No further segmentation was done
prior to wndchrm analysis. The numbers of training/test images were 60/6
(Fig. 1), 40/8 (PML body in Fig. 2), 35/7 (Cajal body in Fig. 2), and 26/7
(Supplementary Fig. S5). The options used were a larger feature set of 2873 (-1),
tiling of an image into 4 (-t4) for Fig. 1b-1d, and (-1, ~t8) for Fig. le. Fisher
scores were automatically computed for each feature in the following groups:
ChF, Chebyshev-Fourier Statistics; Ch, Chebyshev Statistics; Com, Combined
First Fourier Moments; Fra, Edge and Fractal Statistics; Har, Haralick Texture;
MsH, Multiscale Histogram; Zer, Zernike Moments (Fig. 1c and Supplementary
Fig. S4c)”. Pairwise class similarity values in Supplementary Table S2 were
computed from the average of the marginal probabilities of all of the test images
in each class. The per-class marginal probabilities were used as coordinates in a
marginal probability space, where pairwise inter-class distances were computed
using the Euclidean distance formula. Morphological similarity is the inverse of
morphological distance between classes. Phylogenies were computed using the
Fitch-Margoliash method implemented in the PHYLIP package, which is based
on pairwise class similarity values reported by wndchrm ver 1.3°%. For imaging
cytometry analyses, CELAVIEW RS100 (Olympus) was used to capture images,
and quantitative analyses was done using CELAVIEW analysis software as
following. For automated quantification of PML body, Cajal body and PNC,
each fluorescent image was segmented in CELAVIEW (Olympus) using the
DAPI channel to define the nuclei. The nuclear bodies were automatically
segmented based on their intensity and area using CELAVIEW as previously
reported®.

RNA isolation and quantitative PCR analysis. Total RNA was isolated using TRIzol
(Invitrogen). For cDNA synthesis, 1 pg of total RNA was reverse transcribed with a
High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Quantitative
PCR of target cDNAs was performed using Power SYBR Green PCR Master Mix
(Applied Biosystems). Each experiment was performed at least three times. Relative
fold changes were quantified by normalisation to f-actin expression. Primer
sequences are listed in Supplementary Table S3.

Antibodies. The primary antibodies used were: mouse PML (1 : 500, SC-966, Santa
Cruz), p80 coilin (1 : 300, #612074, BD Biosciences), hnRNPI (1 : 300, sc-16547, Santa
Cruz), lamin A/C (1:300, sc-7292, Santa Cruz), Spl (1:300, sc-16547, Santa Cruz),
and lamin B (1:300, sc-6216, Santa Cruz). The following secondary antibodies were
used: Alexa 488-conjugated donkey anti-mouse IgG (1 :250), Alexa 488-conjugated
donkey anti-rabbit IgG (1:250) (Molecular Probes), Cy3-conjugated donkey anti-
mouse IgG (1:1000), Cy3-conjugated donkey anti-rat IgG (1:1000), and Cy3-
conjugated donkey anti-rabbit IgG (1:1000) (Jackson ImmunoResearch).
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Abstract

Neural crest cells (NCCs) are an embryonic migratory cell population with the ability
to differentiate into a wide variety of cell types that contribute to the craniofacial
skeleton, cornea, peripheral nervous system, and skin pigmentation. This ability
suggests the promising role of NCCs as a source for cell-based therapy. Although
several methods have been used to induce human NCCs (hNCCs) from human
pluripotent stem cells (hPSCs), such as embryonic stem cells (ESCs) and induced
pluripotent stem cells (iPSCs), further modifications are required to improve the
robustness, efficacy, and simplicity of these methods. Chemically defined medium
(CDM) was used as the basal medium in the induction and maintenance steps. By
optimizing the culture conditions, the combination of the GSK38 inhibitor and TGFp
inhibitor with a minimum growth factor (insulin) very efficiently induced hNCCs
(70-80%) from hPSCs. The induced hNCCs expressed cranial NCC-related genes
and stably proliferated in CDM supplemented with EGF and FGF2 up to at least 10
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passages without changes being observed in the major gene expression profiles.
Differentiation properties were confirmed for peripheral neurons, glia, melanocytes,
and corneal endothelial cells. In addition, cells with differentiation characteristics
similar to multipotent mesenchymal stromal cells (MSCs) were induced from
hNCCs using CDM specific for human MSCs. Our simple and robust induction
protocol using small molecule compounds with defined media enabled the
generation of hNCCs as an intermediate material producing terminally differentiated
cells for cell-based innovative medicine.

Introduction

In order to apply human pluripotent stem cells (hPSCs) to innovative medicine,
such as cell therapy, disease modeling, and drug discovery, robust and efficient
methods to produce the desired cell types without contaminating undesired cells
are indispensable [1]. Since the contamination of hPSCs, in particular, may cause
serious adverse effects, careful monitoring, which requires a considerable amount
of time and cost, has to be conducted. Therefore, it would be beneficial to have
intermediate cells between hPSCs and terminally differentiated cells, which are
proved to have no contaminated hPSCs, contain limited but multiple
differentiation properties, and stably proliferate without phenotypic changes. One
of the promising candidates with such features is the neural crest cell (NCC) [2].

The neural crest emerges at the border of the neural and non-neural ectoderm
in gastrula embryos during vertebrate development [3]. Cells in the neural crest,
and later in the dorsal part of the neural tube, eventually delaminate and migrate
throughout the body while retaining their characteristic phenotype [4]. When
they reach their target tissues, NCCs differentiate into specific cell types depending
on the location [5]. NCCs give rise to the majority of cranial bone, cartilage,
smooth muscle, and pigmented cells in the cranial region, as well as neurons and
glia in the peripheral nervous system [3-5]. Cardiac NCCs are known to
contribute to valves in the heart, while vagal NCCs differentiate into enteric
ganglia in the gut [6]. NCCs give rise to neurons and glia in the peripheral
nervous system in the trunk region, secretory cells in the endocrine system, and
pigmented cells in the skin.

Using a lineage-tracing system, rodent neural crest-derived cells were detected
in adult tissues such as bone marrow, and still retained multipotent differentiation
properties, which indicated that these cells are one of the cell-of-origin of
multipotent mesenchymal stromal cells (MSCs) [7, 8]. Therefore, the production
of human MSCs (hMSCs) from hPSCs via NCC lineage is a promising approach
for the use of hPSCs in innovative medicine [9, 13]. A considerable number of
studies have been dedicated to establishing robust and efficient induction

these studies used non-human stromal feeder cells or only achieved low induction
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Figure 1. Induction of p75™9" cells from hPSCs. A) Schematic representation of the protocol. B) Morphology of colonies during the induction. Phase
contrast images were taken on days 0, 3, and 7. Scale bar, 200 um. C) The fraction of p75-positive cells in 201B7 cells was treated with SB431542 (SB)
(10 pM) and CHIR99021 (CHIR) (indicated concentration) for seven days, stained with an anti-p75 antibody, and analyzed by FACS. D) Fraction of the
p7579" population mduced by SB (10 pM) and CHIR (1 puM) from hESCs (KhES1, KhES3, H9) and hiPSCs (414C2, 201B7). Average + SD. N=3, biological
triplicate. E) lmmunocytochemncal analyses of colonies on day 7 (201B7). Cells were stained with antibodies against PAX6, TFAP2A, and p75. Scale bar,
100 pm.
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