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Figure 3. Transplanted Cells Differentiated Mainly into Astrocytes
(A) Transplanted GFP-labeled grafts (green) survived in the spinal cord. Scale bars, 500 pm.

(B) Most of the GFP-labeled grafts in ventral horn parenchyma differentiated into mature astrocytes, which were positive for astrocyte
markers (red), including GFAP, ALDH1L1, and GLT1, in vivo. A relatively small population of grafts also differentiated into CNPase™
oligodendrocytes or MAP2" neurons. A limited number of grafts remained as NESTIN* neural progenitors. Scale bar, 50 pm.

(C) Quantification of positive ratio of cell type markers in (B). A small number of GFP-labeled grafts were also positive for A2B5, an
oligoprogenitor marker, MAP2, a neuronal marker, or Nestin, a neural precursor marker, in vivo. The total number of GFP-positive cells,
counted to calculate the positive ratio, was 113.3 + 14.7 for NESTIN, 75.9 + 11.8 for GFAP, 68.7 + 5.5 for GLT1, 76.9 + 9.4 for ALDH1L1,
67.3 = 13,0 for A2B5, 69.3 + 19.2 for CNPase, 70 + 13.6 for TUJ1, and 66.7 + 20.2 for MAP2, respectively. Data represent mean = SD (n=3

mice per group). See also Figure S2.

insult (Figure 2B), evaluated by clinical grading system
(Table S1 available online).

At 10-40 days after the procedure, we observed improve-
ment in clinical motor score in the hiPSC-GRNPs trans-
plantation group (Figure 2C). Surviving lifespan was
extended by 7.8% in the hiPSC-GRNPs transplantation
group (n = 21, male:female = 14:7, 162.2 = 12.8 days)
compared to the control group (n = 21, male:female =
14:7, 150.4 + 12.1 days) (Figures 2D and 2E). When the
effect of transplantation was evaluated separately in male
and female mice, a greater survival improvement was noted
in males than in females (Figure $1). Survival lifespan was
significantly expanded only in males (145.3 = 9.8 days
for control, 158.5 + 11.2 days for the hiPSC-GRNPs trans-
plantation group, extended by 9.1%), not in females
(160.5 + 9.5 days for control, 169.7 + 12.6 days for the
hiPSC-GRNPs transplantation group, extended by 5.7%).
To evaluate motor neuron degeneration at the symptom-
atic phase, three male mice from each group were sacrificed

at 120 days of age. The number of 6-8 pm large-caliber
fibers was increased in the hiPSC-GRNPs transplantation
group (Figures 2F and 2G). We could not detect GFP signals,
derived from transplanted hiPSC-GRNPs, in nerve root
slices.

Transplanted hiPSC-GRNPs Differentiated into
Astrocytes in Spinal Cord of ALS Model Mice without
Tumorigenic Formation

We continued to evaluate clinical motor function (Table §1)
and defined clinical grade O as end stage. At the end stage of
disease progression, around 140-170 days after birth, the
animals were sacrificed and histological analysis was per-
formed to investigate the state of the engraftment. Trans-
planted hiPSC-GRNP-derived cells, which are positive for
GFP signals, continued to survive in the lumbar spinal
cord of ALS model mice (Figure 3A). Engraftment could be
observed at least 5 mm away from the injection site. We
assessed some cell subtype markers by immunostaining,

comparisons were made using Bonferroni adjustment (*p < 0.05). The number of 1-2 um caliber axons was significantly decreased and the
number of 6-8 um caliber axons was significantly increased in the hiPSC-GRNPs transplantation group. Data represent mean + SD (n =3
mice per group).

Scale bars, 100 pum. hiPSCs, human induced pluripotent stem cells; hiPSC-GRNPs, hiPSC-derived glial-rich neural progenitors. See also

Figure S1 and Table S1.
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Figure 4. hiPSC-GRNPs Transplantation Increased Neurotrophic Factors and Activated AKT Signal

(A) Gene expressions of neurotrophic factors, including Vegf, Ngf, Nt3, Bdnf, Gdnf, and Hgf were quantitatively analyzed using mouse-
specific primers. The levels of Vegf, Nt3, and Gdnf were significantly increased in the hiPSC-GRNPs transplantation group (*p < 0.05). Data
represent mean = SD (n = 3 mice per group).

(B) Gene expressions of neurotrophic factors, including VEGF, NGF, NT3, BDNF, GDNF, and HGF were quantitatively analyzed
using human-specific primers and the human-origin/mouse-origin ratio was calculated. Data represent mean + SD (n = 3 mice per
group).

(C) Western blot analysis of phosphorylated AKT, total AKT level, and VEGF in lumbar spinal cord in the PBS injection group and hiPSC-
GRNPs transplantation group.

(D) Densitometric analysis of (C). Measured values of proteins were normalized by that of B-actin. The levels of VEGF and AKT phos-

phorylation were significantly increased in the hiPSC-GRNPs transplantation group (*p < 0.05).
Data represent mean + SD (n = 5 mice per group). N.D., not detectable. See also Figure $3 and Table S2.

including GFAP/GLT1/ALDH1L1 for astrocytes (Figure 3B),
A2BS5 for oligodendroglial progenitors, and NESTIN for
neural progenitors (Figure 3C). Around 60%-80% of the
cells at the grafts were double-positive for GFP fluorescence
and GFAP marker, suggesting that transplanted hiPSC-
GRNPs had differentiated into astrocytes (Figure 3C).
Although we hardly observed the immunoreactivity of
functional/mature astrocyte markers including GLT1 and
ALDHI1L1 in vitro before transplantation, we did observe
it after transplantation. The rate of neurons or oligoden-
drocytes was low (Figure 3C). Only a small population
of grafts retained positive staining for NESTIN, that is, re-
maining in the neural progenitor stage of differentiation
(Figure 3C).

It is important to note that, during our observation
period (up to 3 months posttransplantation), the injection
sites showed no signs of tumor formation. Gross patholog-
ical examinations of other organs outside the CNS did not
reveal any heterotopic engraftment.

Transplanted hiPSC-GRNPs Upregulated

Neurotrophic Factors and Activated Cell Survival
Signal

We investigated the expression level of neurotrophic
factors in lumbar spinal cord. We designed mouse- or
human-specific primers to evaluate host- or graft-derived
mRNA separately (Table S2). Quantitative RT-PCR revealed
that upregulated expressions were observed in mouse
(host)-originated Vegf, Nt3, and Gdnf, but not in Ngf,
Bdnf, or Hgf (Figure 4A). However, human (graft)-origi-
nated expression, equal to hiPSC-GRNPs origin, was
observed only in VEGF (Figure 4B). Western blot analysis
demonstrated a significant increase in VEGF level in the
hiPSC-GRNPs transplantation group (Figures 4C and 4D).
Furthermore, hiPSC-GRNPs transplantation increased
phosphorylated AKT and activated AKT signaling, which
is downstream from the VEGF signal and is important
for cell survival in ALS (Lunn et al,, 2009) (Figures 4C
and 4D).
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DISCUSSION

Here, we describe that transplantation of human iPSC-
derived GRNPs produced astrocytes in vivo and prolonged
the survival period of mSOD1 mice. We used hiPSC-GRNPs
for testing the efficacy in mSOD1 mice, because replace-
ment therapy using astrocytes from rodent glial-restricted
progenitors in the cervical spinal cord of ALS rodent
models is already well established (Xu et al., 2011).

We showed that glial cells represent a potential target of
ALS therapy. However, we observed transient improve-
ment of lower limb function, as shown in Figure ZC,
and a similar previous study failed to show improvement
in the rescue of clinical manifestations and neuronal sur-
vival by transplantation of human-derived glial-restricted
progenitor cells from 17- to 24-week fetus into SOD1
transgenic mouse spinal cord despite the survival and pro-
liferation of exogenous astrocytes (Lepore et al, 2011).
Although the transient improvement in our study might
have stemmed from neuroprotective effects of the trans-
planted cells only in the lumbar region, with a possible
broader effect of neurotrophic factors on other regions
or behavioral alteration for food intake, as previously dis-
cussed (Table S1), we comprehensively compared the two
studies as well as others regarding lumbar transplantation
in terms of a number of aspects (Table $1), speculating
that there were differences in graft type, transplantation
condition, and/or transplantation timing. Regarding the
timing of transplantation, the survival improvement
in our study might have resulted in attenuation of the
glial contribution to the disease pathogenesis at an early
symptomatic stage (Hoillée et al., 2006; Yamanaka et al,,
2008). Regarding the cell injection site, instead of the cer-
vical cord, we injected the cells into the lumbar spinal
cords of ALS model mice, which resulted in improved
clinical scores of lower limbs. These data supported the
possibility of targeting not only the cervical cord but
also the lumbar spinal cord in ALS clinical trials, depend-
ing on the symptoms to be treated. Following previous
transplantation research (Table S1), we selected PBS,
which is a vehicle solution for grafts, as control agent of
transplantation. Dead cells or fibroblasts can be ap-
propriate control agents but may also possibly secrete
various factors. Furthermore, previously an extensive
study showed that, as a control agent, there was no signif-
icant difference among vehicle solution, dead cells, and
fibroblasts (Lepore et al., 2008).

iPSCs were previously reported to induce T cell-depen-
dent immune response by direct transplantation of un-
differentiated cells into syngeneic mice. However, a more
detailed investigation proved that autologous transplanta-
tion of terminally differentiated cells derived from iPSCs or
embryonic stem cells elicits only negligible immunoge-

nicity (Araki et al,, 2013; Okano et al, 2013). In our study,
we did not observe excess inflammatory responses around
transplanted cells under treatment of low-dose immuno-
suppression, suggesting that even if transplanted cells
were not autologous, we could control the immune
responses of the recipients by immunosuppressant
treatment,

The increase in the levels of neurotrophic factors had
been commonly observed in transplantation therapy of
ALS models (Nizzardo et al,, 2014; Teng et al,, 2012). We
observed that the transplanted hiPSC-GRNPs produced
VEGE and expressions of endogenous VEGF and other
neurotrophic factors in the host mice were upregulated. A
previous study showed that VEGF retrograde delivery
with lentiviral vector could prolong the survival of ALS
model mice by 30% (Azzouz et al., 2004) and that activated
AKT signaling, which is downstream of VEGF, is important
for cell survival in ALS (Lunn et al,, 2009). Similarly in this
study, transplanted hiPSC-GRNPs increased the VEGF
level and prolonged the survival of mSOD1 mice. We
could observe positive immunostaining for VEGF and
phosphorylated AKT in both remaining motor neurons
and astrocytes. However, we could not observe any
morphological difference in motor neurons between con-
trol and transplanted groups at end-stage. We also specu-
lated that, as shown in previous studies (Howland et al.,
2002), transplanted hiPSC-GRNPs differentiated into astro-
cytes expressing glutamate transporter 1 (GLT1) might
restore glutamate homeostasis in our study.

In our study, the males in both the control and hiPSC-
GRNPs transplantation groups died long before the
females, and this result is consistent with the previous
reports of ALS model mice (Cervetto et al., 2013; Choi
et al, 2008). However, improvement in male mice was
greater than in females (Figure $1) Interestingly, a similar
gender-dependent difference of therapeutic efficacy was re-
ported in ALS model mice (Cervetto et al,, 2013; 11 et al,,
2012). The epidemiological studies of sporadic ALS have
shown that both incidence and prevalence of ALS are
greater in men than in women and onset of the disease is
also earlier for men than it is for women (McCombe and
Henderson, 2010). Sex steroids are suggested to be involved
in the gender difference in ALS, but the direct importance
of estrogen is still controversial (Choi et al, 2008; 1i
et al,, 2012). Moreover, male neural cells are reported to
be more vulnerable to oxidative stress, induced by mutant
SOD1 overexpression, than female neural cells (L et al.,
20312). In our study, transplanted cells were mainly differ-
entiated into GFAP-positive astrocytes and upregulated
VEGE Furthermore, astrocytes can play neuroprotective
roles from oxidative stress via VEGF (Chu et al, 2010).
These findings suggest that hiPSC-GRNPs transplantation
may ameliorate male-specific vulnerability to oxidative

Stem Cell Reports | Vol. 3 | 242-249 | August 12,2014 | ©2014 The Authors 247

40




stress and improve the survival lifespan of male mice.
Further analysis would be necessary to elucidate VEGEF-
associated mechanisms in transplantation therapy.

In regard to safety, the potential tumorigenicity of grafts
is a predominant concern. We used the human iPSC line
“201B7,” which was previously reported to be safe from
the viewpoint of tumorigenesis (Kobayvashi et al., 2012).
Furthermore, we found no signs of tumor formation or
Ki67-positive grafts (Figure S2). However, a very small
proportion of grafts remained positive for the neural
progenitor marker NESTIN at 3 months posttransplanta-
tion. We cannot exclude the risk of tumor formation
from the remaining NESTIN-positive NPCs. It is important
to evaluate tumorigenicity by longer-term observations for
future clinical trials.

We tested the potential of cell therapy after onset of
the disease in ALS model mice, because most human cases
of ALS are sporadic and any treatment would be initiated
after onset. Our study showed a modest lifespan prolonga-
tion compared to previous studies testing cell therapy before
disease onset in ALS model mice. Future studies of transplan-
tations, such as combinations with MN engraftment, will be
required to accelerate ALS treatment toward restoration of
MN function and ultimately the complete cure of ALS.

EXPERIMENTAL PROCEDURES

Preparation of hiPSC-GRNPs for Transplantation

We differentiated hiPSCs into neural lineage cells using a previ-
ously described differentiation protocol (Kondo et al., 2013), under
the condition of additional 10 ng/ml human BMP4 (R&D Systems)
and 10 ng/ml human LIF (R&D) during the patterning stage (days
8-28).

Transplantation

We transplanted 40,000 hiPSC-GRNPs into bilateral lumbar spinal
cords of 90-day-old Tg SOD1-G93A mice. Each mouse received two
grafts (bilaterally at L3-L4) of 4 X 10* cells (in 0.5 pl PBS) into the
ventral horn.

Statistical Analysis

The Mann-Whitney test was used for the analysis of two popula-
tions of means, and p values <0.05 were considered significant.
Repeated-measures two-way ANOVA, followed by the Tukey-
Kramer test, was used for clinical motor scoring analysis. The
Kaplan-Meier plot was used to evaluate survival time, and the
log-rank test was applied to compare cumulative curves.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental
Procedures, three figures, and two tables and can be found
with this article online at hitp://dx.dolorg/10.1016/{stemer
2014.05.017.
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There is currently no effective cure for amyotrophic lateral sclerosis (ALS), which
is characterized by a loss of motor neurons. Diseased glial cells are thought
to accelerate motor neuron degeneration. My colleagues and I have found that

transplanted healthy glial cells derived from
human induced pluripotent stem cells (PSCs) can
protect motor neurons in spinal cords and prolong
the lifespan of ALS mice. Despite the hurdles ahead
for human trials, all possible avenues provided
by iPSC technology should be
considered and tested to combat
this pervasive disease.

Haruhisa Inoue, PhD
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Combating the middle-age spread

Activation and regeneration of brown fat by food components.

Regenerative medicine for ALS using human iPS cells

Transplanted glial cells improve the disease environment in spinal cords of ALS mice.

Transplanted cells expressing green fluorescent
protein in spinal cords of ALS mice (Kondo et
al., “Focal Transplantation of Human iPSC-
Derived Glial-Rich Neural Progenitors Improves
Lifespan of ALS Mice,” Stem Cell Reports,
3, 242-249 (2014), http://dx.doi.org/10.1016/
j.stemcr.2014.05.017

The question of why we gain weight is far from straightforward.
Obesity — defined as an excess accumulation of white body
fat — is becoming an increasingly urgent issue. The primary
function of white body fat is to store lipids converted from food-
derived sugar and fat. Brown body fat, on the other hand, uses
stored lipids to generate heat. Recently, brown body fat loss
and depression have been shown to lead to middle-aged spread
known as chunen butori in Japanese. My aim is to help improve

the prevention of obesity-related diseases
using food components. By elucidating the
differentiation mechanism and physiological
roles of brown body fat, my study aims to
promote the development of novel therapies
for obesity-related common diseases.

Scanning electron microscope images and inner structures of (a) white and (b) brown body fat.

Lipids in unilocular lipid droplets exist as one large globule as opposed to multiple small globules in
multilocular droplets. Photograph Source: Professor Emeritus Hajime Sugihara, Saga University.
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A Second Pedigree with Amyloid-less Familial Alzheimer’s
Disease Harboring an Identical Mutation in the Amyloid
Precursor Protein Gene (E693delta)

Yumiko Kutoku', Yutaka Ohsawa', Ryozo Kuwano?, Takeshi Ikeuchi®, Haruhisa Inoue?,
Suzuka Ataka®, Hiroyuki Shimada“, Hiroshi Mori’ and Yoshihide Sunada’

Abstract

A 59-year-old woman developed early-onset, slowly progressive dementia and spastic paraplegia. positron
emission tomography (PET) imaging revealed a large reduction in the level of glucose uptake without amy-
loid deposition in the cerebral cortex. We identified a homozygous microdeletion within the amyloid B (AB)
coding sequence in the amyloid precursor protein (APP) gene (c.2080_2082delGAA, p.E693del) in three af-
fected siblings and a heterozygous microdeletion in an unaffected sibling. The identical mutation was previ-
ously reported in the first Alzheimer’s pedigree without amyloid deposits. Furthermore, an increase in high-
molecular-weight AB-reactive bands was detected in the patient’s CSFE. Our findings suggest that soluble Ap-
oligomers induce neuronal toxicity, independent of insoluble A fibrils.

Key words: Alzheimer’s disease, familial Alzheimer’s disease, APP gene, AB oligomers, PET
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Introduction

Alzheimer’s disease (AD) is distinguished pathologically
from other forms of dementia by amyloid deposition in the
brain (1). Amyloid deposits are comprised of insoluble fi-
brils of 40 and 42-residue amyloid B (AB) peptides, derived
from the amyloid precursor protein (APP). To date, approxi-
mately 40 missense mutations in the APP gene have been
identified in over 80 AD families, most of which are located
near processing sites or within the AP coding sequence (2).
Almost all mutations in the APP gene cause the disease in a
dominant manner, suggesting that these mutations confer a
gain-of-function that results in the enhanced formation and
deposition of insoluble AP fibrils (3, 4). However, one AD
pedigree was reported to have a single amino acid deletion
within the AB coding sequence (E693delta), inherited as a
recessive trait, with a lack of AP deposition (5). Recently,

soluble AP oligomers, the precursors of insoluble AP fibrils,
have been suggested to play a pivotal role in the pathogene-
sis of AD (6, 7). In this study, we report a second recessive
AD pedigree negative for amyloid plaque, harboring the
identical E693 deletion. Our findings suggest a link between
this recessive mutation and the enhanced formation of sol-
uble A oligomers.

Case Report

We examined three patients from a single generation in a
pedigree from an isolated island in the Seto Inland Sea, Ja-
pan (Fig. 1A). The subjects’ parents were first cousins and
had no history of apparent episodes of memory or motor
impairment.

The proband (II-8) was a 59-year-old woman admitted to
our hospital for treatment of aspiration pneumonia. She had
been well until 35 years of age, when her family members
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Control

Sporadic
AD

PIB-PET

Figure 1. An AD patient negative for amyloid deposition. (A) Pedigree chart. The proband is indi-
cated by a “P.” A closed square or circle represents an affected member. A square or circle with a dot
in the middle represents an obligate carrier. A genetic study of the APP gene was performed in mem-
bers marked with “E*.”” (B) MRI FLAIR images of the brain of the proband at 50 years of age. (C)
PET images showing glucose uptake [(**F)-fluorodeoxyglucose, FDG; left] and amyloid deposition
[(1C)-Pittsburgh compound-B, PIB; right] in the brain. Control: a 78-year-old man without dementia
(upper). Sporadic AD: a 78-year-old woman with sporadic Alzheimer’s disease (middle). P: the pro-

band at 59 years of age (lower).

noticed short-term memory disturbances, particularly as she
took her dog for a walk numerous times each day. She was
diagnosed with AD at 42 years of age based on progressive
cognitive impairment and prominent spatial disorientation.
At 48 years of age, she first complained of difficulty walk-
ing in a straight line and consequently required a wheelchair
for mobility. She became bedridden with urinary inconti-
nence by 50 years of age. She was mute and unable to obey
simple commands. She was admitted to our hospital at 56
years of age, at which time she had spastic paraparesis and
mild dysphagia. The AB level in the serum and the total and
phosphorylated tau levels in the cerebrospinal fluid (CSF)
were normal. Fluid-attenuated inversion-recovery (FLAIR)
magnetic resonance imaging (MRI) imaging showed remark-
able brain shrinkage at 56 years of age (Fig. 1B). [°F]-
fluorodeoxyglucose (FDG) positron emission tomography
(PET) revealed a greater reduction in the level of glucose
uptake in the cerebral cortex compared to that observed in
sporadic AD patients, suggesting severely impaired energy
metabolism in the cerebral cortex (Fig. 1C, left). Unexpect-
edly, PET amyloid images using [''C]-Pittsburg compound-B
(PIB) (8) were negative for amyloid deposition, comparable

to that noted in normal control subjects (Fig. 1C, right).

Patients II-2 and II-5, the 76-year-old brother and 65-
year-old sister of the proband, respectively, had milder clini-
cal signs and symptoms than the proband. The onset of
memory impairment in the brother and sister at 59 and 44
years of age, respectively, was succeeded by difficulty in
walking due to spasticity of the lower limbs at 66 and 58
years of age, respectively. Both patients exhibited spastic
paraparesis and mutism and were being treated at other hos-
pitals. )

The local ethics committee approved the present genetic
study (No. 552-1), which was performed with informed con-
sent from an unaffected sibling (II-6) and the spouses of the
affected siblings (II-8, II-2, II-5). By sequencing exons 16
and 17 of the APP gene, we identified a homozygous mi-
crodeletion (c.2080_2082delGAA, p.E693del) in the affected
siblings, whereas the unaffected sibling had a heterozygous
deletion. Codon 693 in the APP gene codes for amino acid
protein 22 (E22) of the AP peptide (Fig. 2A). The proband
displayed normal sequences for all exons in two pfesenilin
genes (PSENI and PSEN2), with an APOE genotype of €3/
e3.
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Figure 2.

DNA and protein analyses. (A) Schematic representation of the APP protein structure

(upper). The amino acid E693 in the APP protein corresponds to amino acid E22 of the AP peptide
(AB22, middle). DNA sequences of the proband (P, II-8; lower) and an unaffected sibling (Unaffected,
I1-6; lower) are shown. The microdeletion of the APP gene and the deduced amino acid sequence of
the APP protein are shown. (B) Increased formation of high-molecular-weight bands reactive against
the anti-A antibody in the CSF obtained from the proband. Aliguots of CSF obtained from the pro-
band (Jane 1) or normal control subjects (lanes 2-5) were size fractionated under denaturing (upper)
or non-denaturing (lower) conditions and subsequently immunoblotted with a mouse monoclonal
anti-Ap antibody (82E1). This analysis showed the enhanced formation of high-molecular-weight AR
products (visible as diffuse banding) under non-denaturing conditions in the CSF obtained from the
proband (arrowhead, lower), despite a reduction in the level of total A under denaturing conditions

(upper). Synthetic AP peptides were run on the same gel for comparison purposes (1ane 6).

We then examined the level of AB in the CSF sample ob-
tained from the proband. An immunoblot analysis using an
anti-Af antibody was performed under both denaturing and
non-denaturing conditions. Compared to the control levels,
the total AP level was decreased under the denaturing condi-
tions (Fig. 2B, upper panel). Interestingly, however, non-
denaturing electrophoresis demonstrated the levels of high-
molecular-weight bands recognized by the anti-AB antibody
to be markedly elevated in the proband (Fig. 2B, lower
panel), thus suggesting enhanced formation of soluble Af
oligomers.

Discussion

In this report, we described a recessive familial AD pedi-
gree harboring a single amino acid deletion mutation (E693
delta) within the APP gene, identical to one previously re-
ported (5). The most remarkable phenotypic features of this
mutation are the lack of amyloid deposition and increased
soluble AP oligomers in the CSF. It may be inappropriate to
categorize this form of dementia without amyloid deposition
as AD; however, recent findings indicate that AB oligdrners
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play a critical role in synaptic dysfunction, at least in the
early stage of AD (9-11). This case report further indicates
that AP oligomers induce neuronal degeneration without
amyloid deposition. Because abnormal metabolism of APP
or AP is a molecular pathogenetic feature in the current
pedigree, our subjects can be diagnosed to be within the
range of the AD spectrum.

It remains unclear whether AP oligomers accumulate in
synapses or somata or how they impair synaptic transmis-
sion and induce neuronal dysfunction (12). A synthetic E693
delta AP peptide was recently shown to facilitate Ap oligo-
merization, although this did not lead to AP fibrilliza-
tion (5). Additionally, APP-E693delta transgenic mice ex-
hibit a brain pathology partially resembling that of AD, in-
cluding the presence of intracellular AP oligomers, although
without extracellular AP deposition (12). Indeed, the CSF
obtained from the current proband showed an increased
level of high-molecular-weight Af-reactive bands, presum-
ably corresponding to toxic AP oligomers. In accordance
with that observed in the first report of this condition, the
homozygous E693 deletion of the APP gene in this pedigree
may cause dementia solely via the formation of toxic A
oligomers, not the deposition of insoluble AP fibrils.

Kinship with the previously reported pedigree (5) is not
clear in our investigation, which was limited to the identifi-
cation of second- and third-degree relatives of the proband.
Compared with the patient in the first report (5), our pro-
band exhibited an earlier onset of dementia (33 vs. 55
years), more profound motor impairment (paraplegia vs.
mild pyramidal tract signs) and more severe brain shrinkage
(whole brain atrophy vs. parietal lobe atrophy). Other differ-
ences in genetic background may modify the severity of
these phenotypes. Further studies are therefore required to
clarify the pathogenetic mechanisms underlying the pheno-
typic differences caused by identical amino acid deletions.
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50N, DHAWK X 2 RBoOKETH 5 (17,18).
DHAIWZE BTV INA T —HOREEL LCoxhE
WERORMAED Y, —EORMBIBFBOLL TR,
DFD, BRI o TWwABENDHA I X AEHE
BER T VI NA T —ROER & FRHTRVWERDR
BEYVEoTWAWEENH L. KL DEZIAND
iPSHilEZ ML L, MM ~MEFEZTo T
5 4 7 DHA I & BIEREPER 2O N THER
277 21E, DHADOT VY NA T —H{~DEHHM %
R EVWTEAWHEEELHA., O &iE, HICH
FRIBERICBITABESADY 70— M T 5%,
—RECICR A BIMFER T VY NA T —IHIZBWTDH
ERICBEOHRBEZHKETDH Y, WEBFEIC U2 RE
BIEOT RN 2R L TW5, EEOY—L2EBEAIC
A AW —B R EEEB LT, BEEA OREBINC
EOXBYLRERETH [MEIMLER] ORZFELTPS
MREAMIZ L > THRITTELEERA.

F/2, INFTHEMBANAL (FV)Iv—) 0%
BAEE ENTI Ldh oD EBN TR ICHES
NphofzZ EVBETHL. THIE, BEirbREYR
BTHEAT L2PAROBREOMER O, b L L 3HE
WAL DEREIFHEORNADOREEZRL THE0O0

LaL,
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W oWA ML EE #FZ L WA B Bk

I S TR, LA L, BEREEB X O
PET W A = —J5 iPS ML T A B OMESERE &
HMBEAERRO 20072 ) 74 TRETHr7a—
ERICLTBY, 4HINS oM S0 bFE L2
MRERMEE BN CRiT e 0 s 228D, Thb
DY TEATERSTS, FdBRESEH~— o —
EBRDED XD BN —h — RSB R
VY, SHROMFEOMEBEIWESND.

B AW T L2 ERBIEAZEIR, JST - CREST Bl
BYRIERSEHEAE TR, SCRRFL 2R RE ST SR AR Bh & 7 240
FURBTE (22110007), AR e & (B -
HAFORBSTOESOERLITEE) (H25- /L
(FFAE)- $87E -019), SCHERRHEES SN0 iPS Ml & 1E
U7 BERmise, ESDRA - mRERBIZEE v & — Fdh - 1
PR BITIERSE R (24-9), NI AR 7EiRA
WL AR R AR AR S EARAM A OB % 52
JTEBBLZDDTH S,

EEOFFMER - FIR TR EFZAEL LA .
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3= 52 1k iE D =

RERAZPSHIKITZLRT ERPRIG ARTZTERF
JST CREST # i

et ot et s st i Pt St P ot P s St S ot et st s S s s S

ARk R AIEE IR YE (amyotrophic lateral sclerosis;
LITFALS) i, EH =2 — o VASBIRAICERL T
WIREFE%2 B 2 THE. 2HOHERE ThICE bk
IHIMET #EC 2R TH 5, ALSOFIHRHE
BHFR2A/I0R AN IR ENGRETH D, Bkl
3, PREMITE L. BEOY - 71370 TH
B, WUBLLED®E X AN, BENEERL 8720
WITFEMEHALSTH D . 70D ORL0%BFRKRN THREE
THFEFEMALSTH B, ThE T, FIHEMHALSDOE
LEBBEIETFLLT, 2L OBETFHEE SN
(FT1)o ALSIZIB69FFIZHID T, FEHET 7V 2D
iR Charcotis K DS S hizfk, HEDEREE
BTN, ZhET, BONATEREEhT
72N, WEEEFORRKEIEEL SN TELT, £
DEMPHRIEFER23E L. & - & &R
BRIEERERD—DTH 5,

et o ot o ot s ot e et ot ot o st ot Pt St e e P it ot s s

A O E BB LS TAR DNA binding
protein (TARDBP; LI'FTDP-43)

ALSICHE T 2SR MMO L. =2 —
OYOREW - HETEEVIER= 2 — 1 V[EE
DFEREEZNICE S EIEHAERLETIS & V3
SBOEEOERTH 5, HAKIZOEP., Fe&a
TWENDGLEMEIZ K > TEBIEICAHE ST,
FOELBRRSIZONTE., BEE TARETH -
7o 2006%F-I1=Neumann, Arai 5 i%. BISEIEEIFEZESS
PERE & IMFEMEALS O E AMRD E B AR SF ASTDP-43
BYINIDBTHBZ L EHE Lz, ZDHKabashi
52, TDPASBEEFIZER #HD (FERIITDP43)
KIEMEALSO R R % W L. TDPASMEIETF HF N

53

=1
RE

B&wh

AP b EBUS
L)1 y/y
oL Y4 E30&

ALSOEEEETFO—2THBZ L2 RH L, TDP-
3DEIEF VARV T—RINZALSOFRREL BEE L T
WBZEERL, MBHALSADERDHARE KN
=2 N

TDP-431d., & VSO BARDGHE L 5 5 ) K%
B (RNA) ISHEAT B2 V30 ETHD, RNAS
B, 2754 v vs (RNADQ BB LEER 0 B+
Z &), RNAD#k L &, 4 LRNADRHIZ 25
DoTW3, 72, TOHTDPAIEETFERLE
DR E T ILEOMES &, ERITDP-4313.,
BUNRTBELUTHETIIKWERER3 5. BETEE
T 5K MBI R EICEFET A EE D
EMBS T ST, L LENS, ZEEMTDP-
BRINEDOWELRERTHI L, FEFIC, e b
EH = 2 — 0 OMETEE IR L TW S 20
rggi. B A D HEAEM L, ¢ M E =1 —
OV EARTBEIENTERND, BHHlETH - 7,

Induced pluripotent stem cell (XL TiPS#H
fa)DER

20074 B &k b, iPSHIRE & v S EHAR & F
RAike S iz, iPSHIRRIE, B4 aHlle - Wik 2
L322 LN TEZLEEMERMIETS 0. KREHE
FMFNADDBRER T2 EATE I &Ik o TE
Wxhd, $4bb, &E S AOEERMES Mg
S5iPSHlilazEBIsr LT, Zh o626 K04 oM
fig - AR EEEEE U CORBEIREAD 72 D ISR § 5
ZENTRIZE - 7z, FEFRIZ20084EDimos 5 W,
ALSHISEDiPSHifg 2t EH = 2 — v Y D5k T 5
BENN DB Z & aWHTHE LAY, 51220094
1243, Ebertb ik, ALSHERROER = 2 — v VIEE
Th5, FUEMEAZEELE (spinal muscular atrophy;
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B S HREEBERORAHR (55155

£1 FIEEALSOFREEET

CHMPZB

BUFSMA) OFEEGHSEIPSHIIE 2 BT, A d
5GEM EMHEN B B R OB DWW AL 7

— 0 YDA EE, SMADFRED B+ B
'5‘75 EDVHETH D, BEEOIERITZ b HeE
TEBILwEMRLIY,

Zhud, BE S AKRAT, BE LMl E LT,
REABHELL . MEEME T2 L TEB I L%
RULRVIOMETH 5. ERLTDHR, 2 OKEEK
THRREDFEL & FEFHI DR EIRET T 5 Z L BFHET
5B & &MRLI, ALSTIE, Mitne-Netob A5, #
fEE{EF D —2 T b %vesicle-associated membrane
protein-associated protein B (VAPB) DZEEA4E9
ZiPSHfaZ I LT, T b2 641k U 7= 4
iz W TVAPBORIBE T LT WA Z & 2R
L. ALSHISEDiPSHIEA & 43{b L 7= T & [
2, RROBMAR L TWBI 2R L, 72,
BLTIX, bhbih&Bilicanb D7 L — 7k,
TDP-43% 2 % 9 5 ALSEFE HIsk DiPSHIRE % 18 31
LT, 2o »bilif= o —va e, fERL.
ZTOREO—LeF/ERT LI LITRIIL, E51C
TNHEB LI, FREROY — X% RO /Z 30
PEIZDWTR LAY,

ALSHERIPSHRE £ BV /- ALSOIRRER
WDOIZE

TDP-431%., #& L. 2D ORNAR#HE A7 (RNA
recognition motif; RRM) # & DRNAKA & /375K
ThH B0, ZDCKRIENZGlycineh % < TFET 5 4E

8 WSy 7 Vollg Nodl 2013.2
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3% (Glycinerich domain; GRD) % % 0'(&\
5, TOMEIL., & Sy BRLOBAIC
%aﬁ%k&%xbhfhw\%ﬁ&ms_
BOTHE SR 2TDPABETFEREDIZE A
ERZOMHIBIZEP L TWE, ZDZ &,
| TDPA43%S Iz L 5T, TDP-43& & VS0
EDIEAET L IEIE A B = X 5 M FAEIZE
ML TWBEZ EERIEL TS,

L4 d, EASH» 5. GRDICTHFET 5318
‘* 3@®TDP—43%£‘5§(G2988 R343Q, M337V) =4
T 3 SIEMEALS R H e O B RS A S a4
ERHA»6AF LT, Zhbhb, Loy
| ANRZB LT IAI PR F —FHNT
| IPSHINGZ B3 U7z, B L 2l Id W h
= RIS (embryonic stem cells: ESHIE)
HEBIL 2B E A, Tho» 6, HED
FRELR T A VLT, BRI = 2 -2 Y E T
x5z LIz L (B1),

MSQ%W%MMi\%Mﬁﬁeﬁﬁbtw%M@
é:tb'T'}Z LT, Elj= o VAN o (A Y- =y I 4

1358 i h 57z, TDP- 437"'55'& 9 HALSHISED
iPSHllfa s & 531k U 7= g Rl e T id. TDP-4374%
ZUSOBE UTETICWEE (ITTAREMN) #
BELT, TORAENS EH L, MBItk T 3
TDP-A3D ERERDE BN L Tvy/z, 7z, TDP-
WBDORFEMEHEMT 5, B P L2252 5354
RIS L, ALSEH = 2 — v ik, L olEFHk
Thot, EbIT, BHI=2— 0 vV EFFEMEL v
OB TE#L, 7a—H4 N b ) —EFNTCH

1 ipstEBEh 5 bl BB = —DO >
(BRBERXL /N 7ETHHRIE. X4 —JL100 xm)



BE1/HRBRBERORIR 51 8]

ALS iPS #iR3

LB L. 7 O L RN LB EFREOMEN %
TolbZ A, ALSHRDER = 2 — v v id, HHE
B Z R EAE < . RSS2 b BB TR
BAETLTWS &L $ic, RNARHHICBE S 28
EFHOBNERD-, E5i12. BT LamTZ
NEDEFMNKET S I L AR, FREBRS K
ERERA G LIC, BHZ ) -V SBARETH
BZLEMRLE (H2), . ThbDOREHNALS
DAL E D BMBHALSICED LS IZBbH-T
WBEPIZDNT, BET2TTHERE1DH S,
RIEERE L LIS L8R Y — X0 ah s —
BT, RETNEZFEIR I TS, D EDIE,
HHIS — ZDREUTH B, IV L THD OGN
ZERIE. BT USERNOFHEELFRL v/
O, BMEFLLEERWT. ZOHBERE., 5
g, BMEROFELZE, S HIEELKRE 2 DD

LWBEVD B,
o, BEA NI LEERT S L TORER

B UEEEIRaE S T 58 2 D 5 BiPSHlllgkkRE T
RRIDEDOEBETH D, TODITEENLER
BIRERP RGN T L E S RENS & BT
HBH, ZOEEFNRILT S -0, FLEFEIC
S IE 2 iPSHIRE 2 8IR T 2 720 O FUER L, ML
ML CHREOMIE 4B T ELEE,. KOMS
L& NIRRT AR T I L HEETHH I,

ALSIC & 1T 3iPSHfE & B = BEER D
ATBEME

BEOLZA, BEF= -0 VERERZRLELT
iPSHIfaE & Bz b M BEERIEAR I Tug
VW, LA LAM6., EREL -~ T, Billlat
DED, Z LB TETIh62»54{L L -Hlg%E ED
Za-UVEBOETLEMICEBREL ., ZORRAE
WET B HIZONT, e BB TR EA TS,
BHEEEOKEZZHNIZ, (1) BREME? S 2
NBETFH, BHEINAO= 2 — o OHFaFEE
P95, (2) BHEMAZS & 4 & h B RT3 HE
EhzflloMizERIE LT, e HETS. Q)

B-FRRORE %ﬁﬁ J‘?% / 7\
DRSS

TDP-43 Al AEET
ALSE8hi—a—0Ov
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FIRBDYE
H2 ALSHEEMipsHlRE AV ALSOREBR EERA 7 -2 F

BELIma—avd, BlExh2llo=2—-aY

EF-emREREERTS L. THD, %
iPSHifar 6 b LB H = -3 LR
Za—uVEBATZ 2 -v Y EaXET 50 7Rl
ERHOT, HilhE# = - VEREERT S 2

L ENE LABEERORESHFINS,

ALSE FRICHED) = 2 — 0 VEED 1 DTdh 2SMA

DEFN T AT, v v 2 EiEaiie 4 EheEnk
fid 5 &, AFHAESMERT 5 Z L RE S h T3,
FALSOFRRABEFO1IDOTHS L L ER
superoxide dismutase 1(SOD1) & &BFIFELT 3 ALSD T
TONENC, b R s TR T A Z &
12k B, FRERAOEIE & A FHBOEE,RE S h
T3, b MIBWTE, IBREke b atafins
ALSEFE OB AT 2 BERIGERAKENC TEEfT
THd9, . REMICMAT, EOBEOEDE
D XS LREEOMEABAET 520, WICEREL 725
MahEE 3 A RECIEERIGE 2 b U — LT 30k
E. BRALBREE RS M EN B 5,

=B
PEoksic, feuBEILH 5800, iPSHilE

ERAVTREDOFRED T < L —H+HBHRTS
ZEMTEREDICE-/z, Thoxd &, Hin
HREDOH 72 L IEREPHEENHERE S, BHIC
EEDEE X ADRBIZDOENE Z L AL 720,
5|k
1) Dimos, J. T. et al. Induced pluripotent stem cells generated from

patients with ALS can be differentiated into motor neurons. Science
321, 12181221, doi:1158799 [pii] 10. 1126/science. 1158799 (2008).

2) Ebert, A D.etal Induced pluripotent stem cells from a spinal muscular atrophy
patient. Nature 457, 277-280, doinature(7677 [pii] 10.1088/nature07677 (2009).
Egawa, N. et al. Drug Screening for ALS Using Patient-Specific
Induced Pluripotent Stem Cells. Sci Transl Med 4, 145ral104,
doi:4/145/145ra104 [pii]10.1126/scitranslmed. 3004052.
Bilican, B. et al. Mutant induced pluripotent stem cell lines
recapitulate aspects of TDP-43 proteinopathies and reveal cell-
specific vulnerability. Proc Natl Acad Sci U S A 109, 5803-5808,
doi:1202922109 [pii]10.1073/pnas.1202922109.

Glass, J. D. et al. Lumbar intraspinal injection of neural stem cells in

patients with amyotrophic lateral sclerosis: results of a phase I trial in 12
patients. Stemn Cells 30, 1144-1151, doi: 10.1002/ster. 1079.
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FRAEHRIERRE

5. iPS HERWETILYINCT—HREFILE

IViaEA LR

#EXR - FIRMEE - 1B B85 - FLEBR

2007 &, b MATLZEEMEMEE (induced pluripotent stem cells : iPS #i3) DI LIE,
EEPSHBEERVAEEEETTIVE, FREMRE BIEMRISEATWSE, ZOHRT, BBE

BIPSHREZAVERRICEST,

WSOPDHBREBTHRBORER & LTNEEI ML

APBEENR TV, bhibhHBTILIYNIT—RIPSHEZHENT, BEEMARICHVTM
EI MV IAPFELCTVWSE I CERH LU, ARRTE, MBERBIPSHIECEERRREE, 7
WINAT—RETFTIICBTB/NMBEI ML IODRRBICDOVWTIRN S,

EU®IC

HREBRBEOREDER TH 2 HBERIIFTE
PEEL\Wiz®, B EICLAEBRNRREOR
WiTHRETH B, TN T TEAEDOREMRHEOHZ
I2id, FEROREMERER EEHEROERFENE
W, BETREEY, MBETVRELFOLICE
BDHENTW2H, HENIC LrBEDIREL BT
THZEETERPoT,

2007 FEICEFELICL Y e P ALSREHHM
B2 (induced pluripotent stem cells : iPS §E ) @
VeSS & N7 Y, iPS MBI IR E AL
(embryonic stem cells : ES #ifg) 1ZUCH§ 5 £ 5
ELZBEL-BHERTH Y, ITEBICEREL,
WL, FIRE, AEE~OF{LETAE LT 5,
COFEMERVEI LT, BEOEHES S PS
MR L, BEOEEEHRLELE LM
RV Y —LVOBRTERETTFVE LTEERETAIL
HHEEL B olee INF THRE SN/IEBE PS K

EBWMERET TV, AEER VRIS
BEOTHE?, BALA P LV ABEOTTE?, RER
B& vy BOBWE - SERERYY, +—
FTrY-0REY, AREROVERE S,
EHEG AS—-E3 ERY MEORK - BESR
ERE - VF7AREREYO R LORBREZ
EL TS, ThoDOERFABOFT/MIMFER b L
ARBEOTLEIX, DRDROT NI NS T —TR
(Alzheimer’s disease : AD) E 7 2 leucine-rich
repeat kinase 2 (LRRK2) BE*F T H/3—F
IUREFVD b, AVF U UEEFV D o
BOWTEBEINTWEI bbb, /MNEEAMNL A
PRBEERERIZACBEETZRETHLI LD
WHTRENTZ,

MREI A NT T LDEFER, By V0K -
DU N BEOmBEERIIEERRE TR
TVRHMBRAEETHE Y, TRV -2 TE
BaENZY VT BiL, DAKEF A VENL
TIRBAERBENAY, BY VS0 E - s vs

iPS #lB2, TIYNTT—dK/, F7IOA KN—%, ABA U I~ —, APP E693delta TE, /\iafxk,
MR ML X, BEX RL X, ROUAFH I (DHA)
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ZBEDOIY Fedcdh, VANT 4 FEGOTM,
BEHI e &% T Do A LS VT BHIZDW
TRINVVEEBEZR E~EEL, NEmoHs
niz% 37 % (unfolded protein) 122V Tld5E
NELRVWEIREEITo T h, IO unfolded
protein 25/NAIZ B FE S N2 IRE R NB R A b
LA EWG, Mlgd/NMagEA L2 LTA b
L ATSENE E a7 Y MMAs A b L
DORBEFI T 2 EN o l2iGE, HHV
BRFHMERT A 256, MBETR M=V A2E
BL, MIE~ELLsnD Y,

I. IPSHIBEERWVWETILYINA Y —FK
HEIcDOWT

AD ERSNET, REMESEHLET L
ITHEOMEEEERETH ), BMECEEE LT
BOKXLEET S5OBEERETHD Y. AD M
WP RKELRREEIV A7 THY, SEEESHL
SRR DBOVEDOAL LT, EHFIIBNTY
BERIBENCEMNT LI EPFEINLTRY
2 Js)o

AD [ EEEMIC & ) B FEEE AD (early-
onset AD : BOAD) &k BREiZsHER! AD (late-onset
AD : LOAD) 251} b#Lb, EOAD iz 2ER D
1~5%TBETHY, FHEEET 30 HEMAH» S 60
AL T CLIBIA V. LOAD ik —fp 7% AD O3
BRICTHY, SEFDIOBL EE D 655EE
TRETLHI LISV, EOAD* ET A5 E4HE
HEEEREEXNOREE AD OREEET &L
T, amyloid precursor protein (APP), presenilinl
(PSENI), presenilin2 (PSEN2) HRIZE &N Tw
27, IO DOBEFICLIoTHIESRI SR
%5 EOAD W AD €626 A T 1% UT LHER
Lnds, wIhd 7 I FN—4% (amyloid
beta: AB) & /3y DEEIZBEDoTEY, Af
PAD OMBEMEEECEETHLILERL
T&72o LOAD B & W BELZBENERVDH S
bDEEZLNTWS, 1993 4 Corder Hi2 & B
apolipoprotein Ee4 (APOEs4) HY A7 BIETF
ELTHO THRE SN, APOB i BAICIE
B BEETBIVRI VI ETHY, ab A7

5 iPSHIE R IV T LY N = —IHE L LA R L

o — AR B B Y,

AD DR E LCiE, BAIICE AR
EFEND Y ORI BEORENALN, ZDE
ANBED E W13 APP 2 6 2 BB O BE R YD I 12
FVERSNDABTHLIEPHONT YA,
APP i 1 IS B BB Oy V8 HT, oL
¥ —VIEME EH$ 5 f-site APP cleaving enzymel
(BACEL) 2 & » TAPPsf & Cig o C99 124
BRENb, yr Ly —¥iFHE%HTH PSEN,
presenilin enhancer 2 (PEN-2), nicastrin (NCSTN),
anterior pharynx defective 1 (APH-1) #E&4IZ X
D Ap & APP intracellular domain (AICD) 243
fREnsd ™, BEENDLALDE T AL 40T
BBV, B 10%ILBRMEDTRLS 7 I T4 FHEiE
EERLLTWVWAL R THEEVDRTWE Y,
APP OBRIFHER/ v o 7 bip il {EFEBME
THE LR EM B TV R Vv ERER
IZEDWT, AORNTOREES, EHICL
DS YEIrNE ETETIOL AR
= FREADPIELZITANRONTE 2, —F T,
CDRBINEDE ABDT 7 F EERBEYER
ENTzo ZOFR, BAFTIYELZ LITIEAK

DyL7cts, RAEROET IR THI LIdTE

Birolz . BABICERT S AL ITRBEORK
HRESREY & 20, TEBERER AL TR
{, TEMALEEY A+ Tv—) DIFS
PHOHEELEE bOLSh, LNEETHLE
WY AR A T —RHARE SN T DY,

INETOIPSHILE B AD f (FO)

A DWTHUTIRABRS, bivbhid, 2¥ ho—

e MIiPSHIfE A b AR M e E R L, B
FOEAINT HNEEEL, AJELBEICFHH
WA L7z ABRWEIR LI LY —EHE
%) ( B -secretase inhibitor IV) T4 5 I &8
HHLI. —FT, yE7Ly—VYHEHTHD
y -secretase inhibitor XXI/Compound B & 5 j&
BET, FERLGEICALDWEIIEMT A &N
HBH L7 vy Ly —FEaEITdh 5 sulindac
sulfide iZ A DTWEBR B S €D DI, B
EALETHLIEFHBELAEY, chb3E
BOEHNOISEEORE R, REORRAR
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1R PREMEERRE

=@ iPS#ilaEREVE AD BIR
. oL s —LYRERTApEELE ] 2%
yt7 Ly —PHERTAEEER 1 V
NSAIDs CABEAE | (BEELE)
PSEN] A246E
PSEN? N1411 Ap 42040 11 3
AB 40 1
*ﬁgif UYEMES Y (pT231) 1 4
GSK-38 t
APPE693 4 MR AB A1) I<— (E6934, IMZH)
APPVTIIL FERAR AR 42/40 Brt (VT17L) 2
JREEH] NEEA LA, BYEA LR
Ap 42/40 H ¢
PSENI E94 VY L F— CREE 28
PSENI A79V
PP KN AR 42/40 I t 27

DR LML T VLT EEMEDNDH 5. Mertens b
L APP Bz FEEOREN AD BE O MM
oo PSHIfgE=BY L, SfbL/-fEE Hn
T NSAIDs DRI Z LI EERLTWS Y,
Yagi & (% PSENI, PSEN2 &% &+ 5 BEH»
LiPSHBEBILL A 49240 A ER L Tw
22k RR LY, Woodruff & id TAL effector
nucleases (TALEN) |24 24/ A EHFT % A
W PSENI B2+ %2 1B1E L, K& EOAD O &
® T & B PSENI ZE 2%, loss-of-function TiL 72
¢ gain-of-function T#H 5 Z & % 7& L7 ®, Israel
5iZ APP BB ORIEM AD, IlE%E AD 205 iPS
WML, AB4AODLER, VUERILY YD
EE, GSK380EMAERLZY —7, bh
DN APPER LB TAREEAD B LUIME
HAD OBE,S IPS Mg Bz L, KiNHEH
PSR, BFETo %

APP E693delta BE % H ¥ 2 Kkl AD BEH
MM BT, MigsMcamaEns AgiE
BEZHROMBEMEICEXTERIIAZ{, #
FAENICARA Y I —DERLTWVWLI L%
RE LG, MERN AL A Y I —DEFEIL 78-
kDa glucose-related protein (Bip/Grp78) D%
PEINEEZ MLV R - BILR P LARE T ER
LTWwize 627 Ly —EHEHICL-
T, AF VI —DEBEPHEE L, 20T L
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X, ABF YT —EWnd T IYNA T —TRIHRE
OFZE R YE MO T MEEHEBATEL
el eI, FNPMBEATHHESND Z & %2R
THRRETH oo TWOANABRERIRENI 12, X
B TIEINERC & o TR RMERERF (brain-
derived neurotrophic factor : BDNF) #3424 %
TEPHLNTWER?, MWELEY v — 1
DFTHRT H70012, F#d 5 BDNF 2 &
KERFOKREL Liz& 5, APP E693delta 2
B2 ET HRENE AD KM Mzt %
B L7, MNaFERA ML AREEL L, BEEOL
EWERCTEHELZE 25, Faasyoy
Bk (docosahexaenoic acid : DHA) % 321120
THEMEEA MV A BN SR, MR L
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