detectable by forming colonies on laminin-521 in Essential 8 in the process of hMSC differentiation. These results indicate that a culture system utilizing a combination of laminin-521 and Essential 8 medium provides a direct and highly sensitive method for detecting undifferentiated hPSCs. To our knowledge, this is the first report to show a direct and highly-sensitive *in vitro* method for detecting undifferentiated hPSCs as impurities in CTPs.

In this study, highly efficient amplification of undifferentiated hPSCs has been uniquely applied to quality control of CTPs. Amplified hPSC colonies were visible using phase-contrast microscopy and also immunofluorescence staining using pluripotency antibodies, which enabled direct detection of hPSCs contaminating CTPs. Our method distinguished between undifferentiated cells and other cells in vitro, and overcame the disadvantage of other in vitro methods such as flow cytometry and qRT-PCR. The flow cytometry analysis detects known marker molecules expressed in undifferentiated hPSCs using antibodies and proteins. Signals originating from non-specific detection commonly affect sensitivity of the assay as background. Our in vitro method can lower the background arising from non-specific detection and is expected to specifically detect residual undifferentiated hPSCs in CTPs. The qRT-PCR method is highly sensitive and can rapidly quantify undifferentiated cell contamination in CTPs. However, in the present study, gene expression levels of pluripotency markers during the differentiation process of hiPSCs into MSCs varied markedly among those marker genes (Figure 6B). Moreover, there remains a possibility that expression signals of marker genes were not derived from totally undifferentiated hPSCs, but from partially differentiated cells. Indeed, the expression level of LIN28 did not decrease so much during the differentiation as those of the other genes, which was not obviously associated with the differentiation status of the cells in EBs on Day 6 (Figure 6B), although we have previously reported that LIN28 was a useful marker for monitoring the level of residual hiPSCs in RPE cells derived from hiPSCs [3]. Thus, it is difficult to determine the presence of residual hiPSCs simply by qRT-PCRs. In contrast, direct detection method using the highly efficient amplification system can clearly detect the presence of intact undifferentiated cells. Based on the result from direct detection of residual hiPSCs when tested the cells on Day 6 of differentiation (approximately 0.01%-0.1%) (Figure 6C-D), it is conceivable that the qRT-PCR signals for the pluripotency marker genes (Figure 6B) are partly derived from residual hiPSCs but mainly derived from partially differentiated cells. Similarly, in the case of the cells at Day 14 of differentiation, the majority of the qRT-PCR signals of OCT3/4 and LIN28 (Figure 6B) are considered to be attributable to partially differentiating cells but not to intact hiPSCs. Combination of the in vitro methods including our cell culture method would mutually support useful quality assessment of CTPs to detect undifferentiated hPSCs.

In addition to the detection of undifferentiated cells, this culture system using laminin-521 and Essential 8 medium allows further characterization of the undifferentiated cells if they are maintained *in vitro* or inoculated into immunodeficient animals. Analyses for the properties of the residual undifferentiated cells would be necessary not only for the quality assessment of CTPs, but also for improvement of quality specifications of hPSCs as a raw/intermediate material for production of CTPs.

Here, we showed that our culture system is able to detect 0.01% of 409B2 hiPSCs and 0.001% of 253G1 hiPSCs, both of which were spiked into hMSCs (Figure 4). The detection sensitivity for hiPSCs spiked into hMSCs was different between the two hiPSC lines, although such a difference in cell growth on laminin-521 was not found between these two cell lines (Figure 3). This difference

may be attributable to the difference in the growth potential of hPSCs in the specific environment provided by CTPs. Kanemura et al. have recently demonstrated that hiPSCs co-cultured with iPSC-derived RPE undergo apoptosis by pigment epithelium-derived factor (PEDF) secreted from hiPSC-derived RPE [15], showing that CTPs themselves have the potential to affect cell growth of hPSCs. In the present study, the influence of the co-culture system with hMSCs to the proliferation of hiPSCs might have been different between the two cell lines.

The mechanism by which laminin-521 and Essential 8 medium enhance hiPSCs cell proliferation remains unclear. Rodin *et al.* have recently shown that addition of E-cadherin to laminin-521 permitted the efficient clonal expansion of hESCs [7]. E-cadherin is known to be the primary cell-cell adhesion molecule and essential for hESC survival [16]. We observed that anti-E-cadherin antibody decreased growth potential of hiPSCs under our experimental conditions (data not shown). Therefore, E-cadherin signaling may play some important roles in the rapid cell growth on laminin-521 in Essential 8 medium.

Tumorigenicity is one of the major safety concerns for CTPs derived from hPSCs that are transplanted into patients. However, testing strategies for the tumorigenicity of hPSC-derived CTPs have not yet been established. Here, we introduced a novel testing method for directly detecting a trace amount of undifferentiated hPSCs in vitro. The ability of each tumorigenicity-associated test should be taken into consideration to evaluate tumorigenicity of residual undifferentiated hPSCs as impurities in products. In vivo tumorigenicity tests using immunodeficient animals can detect tumorigenic cells including undifferentiated hPSCs, but this method is costly and time-consuming. The flow cytometry analysis and qRT-PCR are rapid, but these methods indirectly detect tumorigenic cells depending on marker molecules. Risk of tumorigenicity in hPSCs-derived CTPs should be assessed, based on the results from an appropriate combination of these tumorigenicity-associated tests. Our novel method will contribute to establishment of the testing strategies for tumorigenicity in products, following evaluation of the quality of CTPs derived from hPSCs for the future regenerative medicine/cell therapy.

#### **Supporting Information**

**Figure S1** (A) Quantification of the number of dissociated 201B7 cells expanded on laminin-521 or Matrigel in Essential 8 or mTeSR1 medium. Data are presented as the mean  $\pm$  standard deviation (SD) of three independent experiments (\*\*P<0.01, two-way ANOVA followed by a Bonferroni post-hoc test). LN521, laminin-521. MG, Matrigel. (B) Quantification of the number of dissociated 201B7 cells expanded on laminin-521 or LM511-E8 in Essential 8 or mTeSR1 medium. Results are presented as the mean  $\pm$ SD (n = 3) (\*\*\*P<0.001, two-way ANOVA followed by a Bonferroni post-hoc test). (TIF)

**Figure S2** (A-B) Expression levels of undifferentiated markers (*OCT3/4*, *NANOG*, *SOX2* and *LIN28*) in 201B7 cells (A) and 409B2 cells (B) subcultured on laminin-521 in Essential 8 were determined using qRT-PCR. Relative mRNA expression levels are presented as ratios to the level of that in control cells subcultured on Matrigel in mTeSR1 medium by colony passage. Results are presented as the mean ± SD (n = 3). (C-D) Expression levels of markers for the differentiation of embryoid bodies (EBs) derived from 201B7 cells (C) and 409B2 cells (D): endoderm (*GATA6*, *SOX17*), mesoderm (*CDH5*, *FOXF1*), and ectoderm (*SOX1*, *PAX6*). Relative mRNA expression levels are presented as

ratios to the level of that in control cells (EBs at day 10). Results are presented as the mean  $\pm$  SD (n = 3). (TIF)

Figure S3 Quantification of the number of 253G1 cells expanded on laminin-521 in Essential 8 or mTeSR1 medium. Cell numbers were counted at day 6, 9, and 12 after plating at  $8.0 \times 10^3$  cells/cm<sup>2</sup> or  $8.0 \times 10^2$  cells/cm<sup>2</sup>. (TIF)

Figure S4 Morphologies of forming colonies derived from 253G1 cells spiked into hMSCs are shown (images in the left). 253G1 cells (1%, 300 cells; 0.1%, 30 cells; 0.01%, 3 cells; 0%, 0 cells) were spiked into hMSCs (30,000 cells) and cocultured on 12-well plates coated with laminin-521 in Essential 8 medium for 9 days. Expression of the undifferentiated cell marker, TRA-1-60, in these colonies was assessed using immunofluorescence staining (images to the right). Each experiment was carried out in duplicate. (TIF)

Figure S5 Phase contrast images of the cells at day 18 of differentiation (at the stage of passage 0 MSCs) are

#### References

- 1. Bailey AM (2012) Balancing tissue and tumor formation in regenerative medicine. Sci Transl Med 4: 147fs28. Rev. 2. Kuroda T, Yasuda S, Sato Y (2013) Tumorigenicity studies for human
- pluripotent stem cell-derived products. Biol. Pharm. Bull 36: 189-192
- Kuroda T, Yasuda S, Kusakawa S, Hirata N, Kanda Y, et al. (2012) Highly sensitive in vitro methods for detection of residual undifferentiated cells in retinal pigment epithelial cells derived from human iPS cells. PLoS One 7: e37342.
- Food and Drug Administration (2008) Cellular Therapies derived from Human Embryonic Stem Cells-Considerations for Pre-Clinical Safety Testing and Patient Monitoring-April 2008. Cellular, Tissue, and Gene Therapies Advisory Committee (CTGTAC) Meeting #45. Available: <a href="http://www.fda.gov/ohrms/dockets/ac/08/briefing/2008-0471B1\_1.pdf">http://www.fda.gov/ohrms/dockets/ac/08/briefing/2008-0471B1\_1.pdf</a>.
- Hentze H, Soong PL, Wang ST, Phillips BW, Putti TC, et al. (2009) Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res 2: 198-210.
- Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, et al. (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol 25: 681-686.
- Rodin S, Antonsson L, Niaudet C, Simonson OE, Salmela E, et al. (2014) Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nat. Commun 5: 3195.
- Miyazaki T, Futaki S, Suemori H, Taniguchi Y, Yamada M, et al. (2012) Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat. Commun 3: 1236.
- Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, et al. (2011) Chemically defined conditions for human iPSC derivation and culture. Nat. Methods 8: 424-429.
- Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, et al. (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol 27: 275–280.

shown. Expression of MSC marker, CD105, in these cells was examined using immunofluorescence staining (images to the right). Arrowheads indicate the cells that were positive for CD105. (TIF)

#### Table S1 Sequences of the primers and probes for qRT-PCR.

(DOCX)

#### **Acknowledgments**

This work was supported by Research Grants from the Japanese Ministry of Health, Labour and Welfare (H23-SAISEI-IPPAN-004, H23-SAISEI-IPPAN-005, H24-IYAKU-SHITEI-027, H25-JITSUYOKA(SAISEI)-IP-PAN-008, and Marketing Authorization Facilitation Program for Innovative Therapeutic Products).

#### **Author Contributions**

Conceived and designed the experiments: KT SY YS. Performed the experiments: KT. Analyzed the data: KT SY TK HS AU YS. Contributed reagents/materials/analysis tools: KT SY TK HS AU YS. Wrote the paper: KT SY YS. Acquired the funding: HS AU YS.

- 11. Kajiwara M, Aoi T, Okita K, Takahashi R, Inoue H, et al. (2012) Donordependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proc Natl Acad Sci U S A 109: 12538-12543.
- 12. Jung Y, Bauer G, Nolta JA (2012) Concise review: Induced pluripotent stem cellderived mesenchymal stem cells: progress toward safe clinical products. Stem
- Chen YS, Pelekanos RA, Ellis RL, Horne R, Wolvetang EJ, et al. (2012) Small molecule mesengenic induction of human induced pluripotent stem cells to generate mesenchymal stem/stromal cells. Stem Cells Transl Med 1: 83–95.
- Kimbrel EA, Kouris NA, Yavanian G, Chu J, Qin Y, et al. (2014) Mesenchymal stem cell population derived from human pluripotent stem cells displays potent immunomodulatory and therapeutic properties. Stem Cells Dev 23: 1611–1624. Kanemura H, Go MJ, Nishishita N, Sakai N, Kamao H, et al. (2013) Pigment
- epithelium-derived factor secreted from retinal pigment epithelium facilitates apoptotic cell death of iPSC. Sci Rep 3: 2334. Xu Y, Zhu X, Hahm HS, Wei W, Hao E, et al. (2010) Revealing a core signaling
- regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc Natl Acad Sci U S A 107: 8129-8134.
- Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, et al. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861-872.
- Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, et al. (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol 26: 101-106.
- Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, et al. (2011) A more efficient method to generate integration-free human iPS cells. Nat. Methods 8: 409-412.

### PATHOBIOLOGY IN FOCUS

# A practical guide to induced pluripotent stem cell research using patient samples

Katherine E Santostefano<sup>1</sup>, Takashi Hamazaki<sup>2</sup>, Nikolett M Biel<sup>1</sup>, Shouguang Jin<sup>3</sup>, Akihiro Umezawa<sup>4</sup> and Naohiro Terada<sup>1</sup>

Approximately 3 years ago, we assessed how patient induced pluripotent stem cell (iPSC) research could potentially impact human pathobiology studies in the future. Since then, the field has grown considerably with numerous technical developments, and the idea of modeling diseases 'in a dish' is becoming increasingly popular in biomedical research. Likely, it is even acceptable to include patient iPSCs as one of the standard research tools for disease mechanism studies, just like knockout mice. However, as the field matures, we acknowledge there remain many practical limitations and obstacles for their genuine application to understand diseases, and accept that it has not been as straightforward to model disorders as initially proposed. A major practical challenge has been efficient direction of iPSC differentiation into desired lineages and preparation of the large numbers of specific cell types required for study. Another even larger obstacle is the limited value of *in vitro* outcomes, which often do not closely represent disease conditions. To overcome the latter issue, many new approaches are underway, including three-dimensional organoid cultures from iPSCs, xenotransplantation of human cells to animal models and *in vitro* interaction of multiple cell types derived from isogenic iPSCs. Here we summarize the areas where patient iPSC studies have provided truly valuable information beyond existing skepticism, discuss the desired technologies to overcome current limitations and include practical guidance for how to utilize the resources. Undoubtedly, these human patient cells are an asset for experimental pathology studies. The future rests on how wisely we use them.

Laboratory Investigation (2015) 95, 4-13; doi:10.1038/labinvest.2014.104; published online 4 August 2014

The potential influence of induced pluripotent stem cell (iPSC) technology for pathobiology studies is revolutionary. Once established from any given patient, iPSCs serve as enduring resources to provide various functional cell types, essentially forever, which retain genomic information from the original patient. For this reason, as well as based upon expectations of their applications for cellular transplantation therapy, iPSC research has been growing exponentially within the short number of years since the original method was published by Takahashi and Yamanaka in 2006. Technical feasibility and high reproducibility are two additional reasons why the method has prevailed worldwide so quickly. Fundamentally, iPSC generation does not require sophisticated equipment or technical expertise, and all the materials required for generation are

commercially available. Owing to more recent technological advances, one can now routinely generate iPSCs from patient peripheral blood cells without concern of exogenous gene integration. Accordingly, we can say iPSC technology has become a standard research tool in experimental medicine, like polymerase chain reaction, small interfering RNA, knockout mice and others.

Basic approaches to utilize patient iPSCs for disease mechanism studies are well demonstrated in the literature. Essentially, when patient iPSCs are differentiated into disease-relevant cell types, they can recapitulate, at least in part, molecular and phenotypic changes seen in patients. Using this system, we can further investigate how disease-related phenotypes develop 'in a dish', or even test whether novel therapeutic approaches can reverse these changes. Pioneering

E-mail: terada@pathology.ufl.edu

Received 20 May 2014; revised 24 June 2014; accepted 27 June 2014

<sup>&</sup>lt;sup>1</sup>Department of Pathology, Immunology and Laboratory Medicine, Center for Cellular Reprogramming, University of Florida College of Medicine, Gainesville, FL, USA; <sup>2</sup>Department of Molecular Genetics and Microbiology, Center for Cellular Reprogramming, University of Florida College of Medicine, Gainesville, FL, USA; <sup>3</sup>Department of Pediatrics, Osaka City University, Osaka, Japan and <sup>4</sup>Department of Reproductive Biology and Pathology, National Research Institute for Child Health and Development. Tokyo, Japan

Correspon dence: Dr N Terada, MD, PhD, Department of Pathology, Immunology and Laboratory Medicine, Center for Cellular Reprogramming, University of Florida College of Medicine, PO Box 100275, Gainesville, FL 32610, USA.

studies proved that these concepts are indeed valid for certain clinical disorders of both monogenic and polygenic origins. Thus, the future looks quite promising in general. However, when the concept is applied to model a wide range of diseases, we often encounter practical limitations and obstacles for their genuine application to understand diseases, and realize their application has not been as straightforward as initially proposed. First, despite numerous published protocols, *in vitro* differentiation of iPSCs is challenging, often requiring tremendous effort for optimization until the system becomes useful in other laboratories. Second, even after differentiation is successfully achieved, a major obstacle frequently resides in limited value of the *in vitro* outcomes, which may not closely represent disease conditions.

As we have witnessed triumphal examples and experienced many practical obstacles at the same time, we are gradually recognizing ways to utilize patient iPSCs more wisely. Three years have passed since we wrote the previous review in Laboratory Investigation, and during this time, we have had the opportunity to manage a core facility for patient iPSC research at the University of Florida. Thus, we feel this is a good time to revisit the issue of 'modeling diseases in a dish' using patient iPSCs, and try to elucidate where we are now with the technology. We target general experimental pathologists as primary readers of the present review, particularly those who are interested in starting patient iPSC research to study a disease of their interest, but not yet sure whether the direction will justify the effort. As there are many outstanding review articles available for recent technological advances in iPSCs,3-5 here we will focus more on introducing practical issues and solutions for pathobiology applications, leaving extensive details to the references.

#### **EXEMPLARY CASES**

To understand how patient iPSC research is generally conducted, it is useful to introduce a few exemplary cases briefly, in which patient iPSCs have been wisely and beneficially utilized. As iPSCs retain genomic information from the original patient, theoretically we can analyze phenotypic and functional characteristics manifested from changes in the individual genome. Initially, early-onset monogenic disorders, where a single genetic aberration is considered to cause severe deleterious effect on cellular function, have been studied preferentially using iPSCs.

#### **Early-Onset Monogenic Disease**

An exemplary work proving the concept, 'modeling diseases in a dish' was first published in January 2009 by Ebert *et al.*<sup>6</sup> The authors successfully established iPSCs from patients with spinal muscular atrophy, differentiated them into motor neurons, and demonstrated the premature death of neurons *in vitro*, a phenotype reflecting the disorder. Importantly, the study further proposed that disease iPSCs could be utilized to

screen novel drugs that could de-repress the *SMN2* gene, a close homolog of the mutated *SMN1* gene. SMN2 is normally not expressed in neurons but could mitigate the disease phenotype when induced. It should be noted that the *SMN2* gene only exists in humans but not in rodents, thus this type of drug screening would only be possible using human neurons.

#### Late-Onset Monogenic Disease

Modeling late-onset disease in a dish is a more difficult task because some environmental factors, for example, oxidative stressors, may be involved in disease progression. Nevertheless, Nguyen *et al*<sup>7</sup> demonstrated, for instance, that a phenotype of a familial Parkinson's disease (PD) can be evaluated *in vitro*. The authors generated iPSCs from a patient with a mutation in the leucine-rich repeat kinase 2 (LRRK2) gene and differentiated the iPSCs into dopaminergic neurons. The resultant dopaminergic neurons were more susceptible to oxidative stressors (hydrogen peroxide, MG-132 and 6-hydroxydopamine), compared with those from control iPSCs. The study also demonstrated that the patient iPSC-derived dopaminergic neurons had an increase in  $\alpha$ -synuclein, which is one of the major components of Lewy bodies, a hallmark of PD pathology.

#### Proving the Causal Mutation and Elucidating a Novel Mechanism

LRRK2-G2019S is the most commonly identified mutation, but it is only found in a few percent of the sporadic PD patients. Genome-wide association studies suggested that many other polymorphisms in other genomic loci are linked to the disease phenotypes and clinical courses. To that end, the exact pathological mechanism caused by the LRRK2-G2019S mutation needed to be elucidated using isogenic controls. Reinhardt et al<sup>8</sup> applied genomic engineering technology to correct the G2019S mutation in patient iPSCs. They confirmed LRRK2-G2019S indeed induced pathological changes of dopaminergic neurons such as deficit in neurite outgrowth, defect in autophagy, increase in α-synuclein, and higher susceptibility to oxidative stress. Furthermore, the study demonstrated the LRRK2-G2019S mutation is associated with activation of extracellular signal-regulated kinases (ERKs), which leads to transcriptional dysregulation of CPNE8, MAP7, UHRF2, ANXA1 and CADPS2, resulting in neural degeneration. By demonstrating an ERK inhibitormediated amelioration of the neurodegeneration, the study indeed indicated a novel therapeutic approach for patients with PD.

#### Polygenic Disorder or Disease of Unknown Causes

In the case of polygenic disorders or sporadic diseases with unknown causes, it is more challenging to obtain useful outcomes using patient-derived iPSCs. Israel *et al*<sup>9</sup> successfully investigated neural phenotypes derived from both familial and sporadic Alzheimer's disease. One of the

|                 |                                                                                                                                                                                                 | Helpful                                                 |            | Harmful                                                                                                                               |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------|--|
|                 | Strengths                                                                                                                                                                                       |                                                         | Weaknesses |                                                                                                                                       |  |
| Internal Origin | □ Clear merits to use patient iPSCs □ Strong research history for the disease □ Accessibility to number of patients (or iPSC clones) □ Preexisting collaborative strengths to develop the study |                                                         | 0          | May take time to establish differentiation protocols in your lab Differentiated cells may not be pure or mature enough for your study |  |
| _               | Op                                                                                                                                                                                              | Opportunities                                           |            | Threats                                                                                                                               |  |
| External Origin |                                                                                                                                                                                                 | High expectations for developing novel model systems    | 0          | Competitors working on similar directions                                                                                             |  |
|                 |                                                                                                                                                                                                 | High expectations from societies of particular diseases | ۵          | Competing animal models                                                                                                               |  |
|                 | 1                                                                                                                                                                                               | External and internal grant opportunities               |            |                                                                                                                                       |  |

**Figure 1** SWOT analysis before start patient iPSC research. It is critical to analyze all the strengths and potential problems you have before you initiate patient iPSC research. A local iPSC core facility may also assist you to analyze individual projects and create a research design.

two sporadic patient's iPSCs showed higher levels of the pathological markers amyloid- $\beta$  (1-40), phosphortau(Thr231) and active glycogen synthase kinase- $3\beta$  (aGSK- $3\beta$ ), as those derived from familial Alzheimer's disease, while the other case did not. These observations offered new opportunities to investigate the mechanisms underlying heterogeneity among sporadic cases. For such studies, however, a larger number of patients and controls would ideally be required.

#### **Imprinting Disorders**

In addition to genetic diseases, the iPSC models facilitate investigation of epigenetic-related diseases such as Beckwith-Wiedemann syndrome, Silver-Russell syndrome, Angelman syndrome and Prader-Willi syndrome. Unlike genetics based on the DNA sequence, epigenetic processes involve DNA methylation and histone modulation. One of the most important epigenetic phenomena is genomic imprinting by which genes are expressed in a parent-of-origin-specific manner. Abnormality of the imprinting mechanism during development causes epigenetic diseases. The methylation status of imprinting genes is maintained during iPSC generation and subsequent cultivation, implying that imprinting disease iPSCs are worth investigating to elucidate mechanism of imprinting abnormality.<sup>10</sup> Patient iPSCs from Angelman and Prader-Willi syndrome have been established and utilized for examination of epigenetic and transcriptomic abnormalities, and for testing compounds aimed at correcting the epigenetic aberrations. 11,12 One must use caution when analyzing epigenetic aberrations in imprinting disease iPSCs because the process of iPSC generation is associated with epigenetic dynamics that may bias interpretation.<sup>13</sup> However, iPSCs with in vitro multipotency have been an invaluable tool to clarify molecular mechanisms as a simulator of developmental defects. 14,15

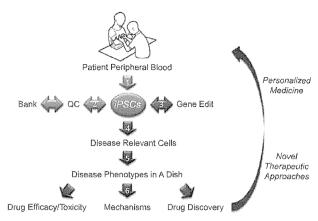



Figure 2 A typical work flow of patient iPSC research and tips for individual steps. (1) iPSC generation (∼3 weeks)—multiple clones from multiple patients using non-integrating reprogramming vectors; (2) Quality control (QC) and storage (1–4 weeks)—first by morphology and pluripotency markers, then ideally by gene expression profiling, teratoma formation, karyotyping, exome analysis, and mycoplasma testing; (3) Isogenic controls made by gene editing serve as ideal controls; (4) Differentiation (2–10 weeks)—consult a local iPSC core or colleagues to identify the best available protocols; (5) Disease recapitulation—set realistic goals to demonstrate unique pathological changes *in vitro*; (6) Study further disease mechanisms—molecular 'omic' analyses are often used here. 'Green' highlighted parts are usually taken care by a local iPSC core facility (if desired), whereas 'blue' highlighted parts will typically be performed by individual investigators.

#### PRACTICAL ADVICE BEFORE YOU BEGIN

These exemplary cases certainly make us feel hopeful that we can apply patient iPSCs to various diseases. Taking all the progress and current issues into consideration, which we discuss more in detail in the following section, we have compiled practical tips you may find useful when starting patient iPSC research. First, it is essential to analyze whether the project is worth pursuing, as with any other new research projects. A SWOT analysis, for an example as shown in Figure 1, will guide you to identify the potential internal and external strengths and weaknesses of your direction. Unfortunately, the field is highly competitive, and the funding is scarce; thus it is critical to fully analyze the status of your project before beginning. In the end, the most important factor in the analysis is whether you have unique and significant question(s) that are likely answered using patient iPSCs.

When the analysis is positive, Figure 2 illustrates an actual workflow of the study with estimated time lines. Unless you have extensive experience in human pluripotent stem cell culture, it is easiest to consult with an iPSC core facility or colleagues to generate patient iPSCs. In a typical study of a monogenic disorder, generation of three iPSC clones from three individual patients is minimally required, along with an equivalent number of controls; however, such number can vary considerably depending on your questions. The quality of iPSC clones should also be controlled by the core facility to

Table 1 List of iPSC banks and registries by disease

| Diseases | Institute                                           | Website                                                                           |
|----------|-----------------------------------------------------|-----------------------------------------------------------------------------------|
| General  | Corriel Institute/NIGMS                             | http://ccr.coriell.org/Sections/Collections/NIGMS/ipsc_list.aspx?Pgld=696         |
|          | American Type Cell Collection                       | http://www.atcc.org/Products/Cells_and_Microorganisms/Stem_Cells/Human_IPS_       |
|          |                                                     | Pluripotent.aspx                                                                  |
|          | RIKEN Bioresource Center Cell Bank                  | http://www.brc.riken.jp/lab/cell/english/index_hps.shtml                          |
|          | Wi-Cell                                             | http://www.wicell.org/home/stem-cell-lines/order-stem-cell-lines/                 |
|          |                                                     | obtain-stem-cell-lines.cmsx                                                       |
|          | Boston University, Center for Regenerative Medicine | http://www.bu.edu/dbin/stemcells/ips_cell_bank.php                                |
|          | U MASS International Stem Cell Registry             | http://www.umassmed.edu/iscr/Genetic-Disorders-Lines/                             |
|          | U Connecticut Stem Cell Core                        | http://stemcellcore.uchc.edu/services/distribution.html                           |
|          | Harvard Stem Cell Institute                         | http://stemcelldistribution.harvard.edu/shoppingCart/index                        |
| Neural   | Corriel Institute/NINDS                             | http://ccr.coriell.org/Sections/Collections/NINDS/ipsc_list.aspx?PgId=711&coll=ND |
| Mental   | NIMH Stem Cell Center                               | http://nimhstemcells.org/catalog.html                                             |
|          |                                                     |                                                                                   |

Currently available information of iPSC bank and registry (June 2014). Please note that the list here may not cover all the available sites.

meet the current standard, as discussed later. If patient iPSC clones or fibroblasts already exist in publicly available libraries, you can save substantial amount of time and cost. Table 1 shows a list of disease iPSC bank and registry, in which you may be able to find the lines of your interest. Additional information is available in a recent review article specifically discussing this topic. <sup>16</sup>

As we discuss later, iPSC differentiation should ideally be performed in collaboration between your lab and the iPSC core or a person who has iPSC expertise. In the steps of disease recapitulation and further mechanism studies, it is particularly important to set practical goals for patient iPSC research. First, you should accurately estimate purity, quantity and maturation status of the resultant iPSC-derived differentiated cells. Depending on those factors, you can identify what types of assays can be performed with the prepared cells. In general, patient iPSCs will hold the most value in identifying molecular changes caused by pathogenic mutations in certain human cell types. 'Omic' level screening will be particularly useful there; and isogenic iPSC clones with the mutation corrected through gene editing would serve as ideal controls in such tests, as discussed later.

## TECHNICAL IMPROVEMENT AND REMAINING CHALLENGES

#### iPSC Generation

Viral methods

Methods for achieving reprogramming have progressed significantly from the groundbreaking work completed by Yamanaka and colleagues. The variety of reprogramming approaches stems from an interest to develop methods that do not integrate DNA into the host genome, making them feasible for eventual use in clinical applications. Virus-

mediated reprogramming is commonly used for its capacity to efficiently transduce cells of interest. Original methods using retrovirus<sup>2,17</sup> and lentivirus<sup>18</sup> remain widely used. The disadvantage is that these viruses integrate transgenes randomly into the host genome upon infection. This has the potential to cause unpredictable changes in the genome and result in aberrant transgene expression, which can potentially impact data interpretation and differentiation potential. Although scientists have devised ways to remove the transgenes after reprogramming is complete (using loxP sites and Cre recombinase), <sup>19</sup> it is still necessary to thoroughly screen clones for confirmation of excision and loxP site retention that may alter endogenous gene expression. For these reasons, methods to reprogram cells have since focused on naturally non-integrating approaches.

Improvements using viruses that do not integrate into the genome, including adenovirus and Sendai virus, are becoming increasingly popular. The use of adenovirus was first applied to iPSC reprogramming shortly after the initial reprogramming reports. Adenovirus was chosen for its inability to integrate into the genome and ability to provide high transgene expression for a limited amount of time as the virus is reduced with each cell division. Although successful, the incidence of tetraploid cells following reprogramming has limited its usefulness. <sup>20</sup>

Sendai virus has recently been developed for reprogramming because it is non-cytopathic and remains in the cytoplasm of host cells.<sup>22</sup> In addition, it has the ability to reprogram peripheral blood mononuclear cells (PBMCs) in addition to other somatic cells (including fibroblasts). In addition to the non-integrating nature of this virus, it is cleared by culturing cells at an elevated temperature, or treatment with siRNA against the large protein (L-gene) of

the virus. Recently, a modification has also been introduced that enables clearance by microRNA 302L, naturally produced by pluripotent cells, which recognizes an inserted microRNA targeting sequence that was incorporated into the vector (Nakanishi, personal communication).

#### Non-viral methods

Non-viral methods include minicircle and episomal plasmids, piggyBac transposon, RNA transfection, protein transduction, and microRNA transfection. Traditional transfection was successfully used to reprogram mouse cells using polycistronic plasmids.<sup>23,24</sup> However, extensive screening was necessary to find clones without integration. In addition, repeated transfections were necessary to maintain high transgene expression. Minicircle DNA was first applied to reprogram adipose stem cells.<sup>25</sup> Polycistronic minicircle is advantageous because transfection efficiency is improved and it is diluted out more slowly during cell division, thus reducing the number of transfections required. Unfortunately, both conventional and minicircle DNA reprogram at much lower efficiency and also require more hands on time due to multiple transfections. Episomal plasmids can be stably introduced into cells using drug selection, and can be removed after drug selection is discontinued. Yu et al26 first showed feasibility of this method in 2009 by reprogramming human foreskin fibroblasts, although unfortunately this also yielded low efficiency. The piggyBac transposon system enables the removal of all exogenous elements, cleaner than the Cre-loxP system. In 2009, multiple groups demonstrated high efficiency reprogramming using tetracycline-inducible or polycistronic expression of the reprogramming factors.<sup>27–29</sup> Although removal of the transgenes was demonstrated by sequencing, transposasemediated excision of transgenes was shown to also induce microdeletion of genomic DNA, which could pose a problem for future use.

Methods described thus far carry the risk of unexpected persistence or genetic modification. To circumvent this, scientists have been devising methods, which do not introduce DNA into the host cell. mRNA synthesized in vitro from cDNA of the reprogramming factors was demonstrated to be successful in 2010.30 This method utilized host cells translation machinery, although it requires five consecutive transfections to be successful. Protein delivery is an alternative to nucleic acid introduction. Harnessing the ability of reprogramming factors tagged with C-terminus polyarginine domains to transduce through the cell membrane, two groups showed feasibility.31,32 Protein delivery method eliminates the need to screen for integration of transgenes. However, efficiency was lower, and multiple rounds of transduction were necessary. In 2011, mature doublestranded microRNA including mir-200c, mir-302s and mir369s family of microRNAs were shown to reprogram somatic cells by direct transfection.<sup>33</sup> Although this method

resulted in lower efficiency, it provides a viable method compatible with clinical use.

Ultimately, these methods and modifications have laid the groundwork for improving methodology. Combination of these methods with small molecules has been shown to improve reprogramming. In 2013, Deng's group used a cocktail of seven compounds to reprogram mouse somatic cells into iPSCs at efficiency comparable to standard reprogramming techniques.<sup>34</sup> The ability to apply this technique to human cells would be an exciting advance in the field. Although many methods focus on efficiency, it is important to note that efficiency alone is not the most important aspect of the reprogramming process. In the end, it is more important to obtain a number of high quality iPSCs clones. Generally, fewer than 10 clones per individual are needed, especially if using a non-integrating method where exhaustive transgene screening is not necessary.

#### Practical considerations

Starting cell type before reprogramming is an important consideration. Dermal fibroblasts and PBMCs are the most common starting cells, and while most methods nearly always reprogram dermal fibroblasts successfully, using a method that also works for PBMCs increases flexibility. Benefits include reduced processing time (biopsy outgrowth can require up to 1 month vs isolation of PBMCs from a blood draw can be completed within an hour). In addition, a blood draw is less invasive and particularly useful for obtaining cells from pediatric patients. Ultimately, starting cell type may vary depending on the questions to be asked. If initial assays using fibroblasts can be useful for disease understanding, it may be advantageous to reprogram those cells. Regardless of delivery method (virus, plasmid and so on), utilizing polycistronic plasmids to introduce all reprogramming factors at once is easier and increases the likelihood of successfully reprogramming.

Commercial availability of multiple reprogramming methods is also increasing. Although cost may be an issue, it is possible to send samples to be reprogrammed using various non-integrating methods or to purchase ready to use reagents to complete the procedure in the lab. In addition, it is important to realize the reprogramming process itself is not the only barrier to overcome. It is imperative to learn proper culture techniques. To this end, many commercially available cell culture media are available (Life Technologies, ReproCell, Stem Cell Technologies and so on) that can ease the transition for researchers who are new to the culture techniques required to propagate these cells. Even for seasoned scientists, commercial protocols and products enable quick improvements and it is advantageous to keep up to date to reduce labor and improve quality of iPSC culture.

In addition to various culture media, there are also a number of different substrate iPSCs can be cultured on (mouse embryonic fibroblasts, Matrigel, Vitronectin, Geltrex and so on). In addition, iPSCs themselves are generally an intermediate resource before differentiation to various lineages. As such, the vast variety of differentiation protocols generally has different starting cell culture conditions. Usually, these are referred to as feeder dependent or feeder free. For this reason, it may be advantageous to generate frozen stocks cultured by feeder-dependent and feeder-free techniques to reduce the labor involved if testing out a number of protocols.

#### **Quality Control**

Variability within iPSC clones (either genetic, epigenetic or phenotypic) has been a concern in patient iPSC research. Unless each iPSC clone is carefully evaluated, researchers could potentially run into issues with data misinterpretation when using this approach.

#### Quest for genome stability

To investigate characteristics of iPSCs derived from monogenic disorders, one of the important issues is to validate retention of the gene mutation in iPSCs and to identify additional mutations introduced during iPSC generation. By comparing genomes of parental cells and iPSCs, exome analysis may be a prerequisite for subsequent medical research of pathogenesis and drug discovery. Whole-exome analysis covering protein-coding sequences is sufficient to investigate pre-existing and additional mutations, although the recent platform of exome analysis has expanded to include not only coding but also untranslated, non-coding RNA and their adjacent regions. The number of single-nucleotide mutations per cell genome was estimated from 22 human iPSCs by extensive exome analysis on protein-coding sequences.<sup>35</sup> Generally, iPSCs are considered to have a comparable nucleotide substitution rate independent of donor cells, except for cells from patients with a genome instability syndrome, a DNA repair disorder or a DNA damage response syndrome. However, acquisition of novel mutations during passages is indeed unavoidable, and banking of early passage iPSC clones is therefore essential once suitable disease iPSCs are established and characterized.

#### Quest for quality control

In addition to genomic analysis, general characteristics of disease iPSCs such as morphological analysis, *in vitro* differentiation by embryoid body formation, teratoma formation by injection of iPSCs into immunodeficient animals, karyotypic analysis, short tandem repeat analysis, pluripotency markers such as Oct4/3, Sox2, Nanog, SSEA4, Tra-1-60 and Tra-1-81, and gene expression of exogenous and endogenous pluripotency-associated genes are usually performed. Before banking, contamination of mycoplasma, bacteria, virus and endotoxins should ideally be tested. Generally, morphology of iPSCs provides us enormous information including purity, quality, transformation, undifferentiated state and other cell contamination. In addition to these standard quality controls, profiling of RNA

expression, DNA methylation and glycans can be added for monitoring when necessary. These comprehensive analyses would also elucidate pathogenic states such as aberrant genomic methylation and gene expression of patient iPSCs.

#### Ouest for suitable controls of disease iPSCs

In addition to disease-derived iPSCs, preparation of suitable control iPSCs are required for elucidation of disease mechanisms and drug discovery. One of the ideal controls is genetically corrected iPSCs. To correct gene mutation in disease iPSCs, ZFN, TALEN and CRISPR/Cas-based methods for genome editing can be used. Alternatively, introduction of exogenous genes that are mutated in disease iPSCs may be used, but the expression level of the exogenous gene may bias phenotypes. Another control is iPSCs obtained from the same age, gender and ethnic group. Usually, iPSCs from more than three independent patients and from more than three independent healthy donors need to be analyzed to conclude that observed pathogenic phenotypes are due to endogenous genotypes of the disease iPSCs. However, genetic correction and preparation of age-, gender- and ethnic-matched controls is labor intensive. To circumvent this, commonly available iPSCs from healthy donors may be used for comparison. MRC5-derived (fetal lung fibroblast) iPSCs have been utilized as a control in several previous reports, 13,37-41 and can be obtained from the public bank. If MRC5-iPSCs do not demonstrate pathogenic phenotypes that disease iPSCs do under the same experimental condition, MRC5iPSCs would serve as a practical control.

#### Differentiation

#### Lack of practical differentiation protocols

Depending on the desired disease or field of study, there may be ample protocols for investigators to turn to (as in the case of neurodegenerative disease modeling).<sup>3,5</sup> However, unless the particular lab is well versed in the biology of both pluripotent stem cells and differentiated cell types, the likelihood of reproducing a protocol in a reasonable time is uncertain. In general, differentiation protocols advantage of particular cytokines, culture media and extracellular matrices, thus making these protocols quite expensive. Often, after differentiation, cell populations of interest need to be separated using specific surface markers to achieve sufficient purity. In addition to the expense, most protocols are time consuming and slow in data collection. In general, common obstacles in published differentiation protocols include low reproducibility, low yield, high cost and multiple steps, which often utilize complicated procedures. Thus, except for a few relatively straightforward lineages such as neural progenitors, we are still lacking very practical protocols to prepare a large number of diseaserelevant cell types. Developing simple, easy and affordable methods, where the process can be applied to robust

large-scale cell differentiation from patient iPSCs, is truly desired in the field.

#### Uncertain quality of differentiated cells

Depending on the cell type, iPSC differentiated cells may not proliferate well in the long term. As with human primary cells, doubling times while maintaining proper phenotype will most likely be limited, making it more difficult to carry out desired experiments. Furthermore, the possibility of freezing a batch of cells for later use may be unrealistic, giving investigators a 'one shot' per differentiation scenario to obtain meaningful data. This can become taxing if a differentiation protocol takes months from start to finish as in the case of vascular cell differentiation with a 2-month long protocol.<sup>42</sup> Also, unless the differentiation protocol is well established in an investigator's own hands, a portion of the obtained cells will need to be used to assess the proper phenotype. Despite a successful differentiation protocol, investigators may run into issues if these cells are to be used in functional assays. iPSCderived cells may have the proper phenotype but may be too immature to also possess the normal function of the cells. In that case, investigators will have to optimize such conditions for their specific interests keeping in mind the physiological relevance of their in vitro assays.

#### Practical considerations

Although there remain many issues to be improved, some iPSC differentiation protocols are relatively straightforward, and have been successfully used by multiple groups to obtain mesoderm, 42-44 endoderm 45 and ectodermal 46-48 lineages. These protocols utilize available materials, the procedures are uncomplicated, the methods include simple cell purification steps such as sorting, and their reproducibility and usefulness have been demonstrated by other investigators. There are many additional protocols available in the literatures (many that share commonalities, while others are distinct). As the field is constantly changing, updated information is best obtained through an iPSC core facility or colleague scientists. We emphasize here again that one should try to reproduce the protocol(s) in a side-by-side collaboration with a scientist who has expertise in iPSCs and another scientist with experience of the targeted differentiating lineage. Knowing the biology of both ends, the cells you start with and those you end up with, is critical to reproducing protocols in a reasonable time.

#### **Disease Modeling**

#### How to fill the discrepancies from real disease

Although generation of disease-relevant cell types from patient-derived iPSC is a standard strategy for studying a 'disease in a dish' as described above, many human diseases arise from multicellular interactions in the context of tissue architecture, organ or whole-body homeostasis. Therefore, it is essential to further advance model systems to represent a more complex physiological environment similar to the body.

When your hypothesis requires the interactions of different cell types for pathogenesis, multiple cell types in a co-culture setting will certainly provide further functional insights for the disease. As an exemplary work, the co-culture of glial cells from ALS iPSCs with neurons from normal iPSCs demonstrated the non-cell autonomous effect of diseased glial cells for aberrant survival of neurons. Similarly, aberrant controls in vasculature tone would be better understood when co-culturing endothelial and vascular smooth muscle cells together rather than using a single cell type.

Admirably, iPSCs possess pluripotency comparable to embryonic stem cells (ESCs), which are originated from the embryonic blastocyst stage embryo. Both iPSCs and ESCs are competent to early developmental cues. Once proper cues are given, initial specification occurs to induce differentiation. The multiple types of differentiated cells are autonomously organized and interact with each other leading to subsequent fate specification like the cascade of embryonic development. To take maximum advantage of this self-organizing ability of pluripotent stem cells, several groups have developed sophisticated 3D culture protocols for making organoid structures in vitro. One example is the so-called 'mini-brain' consisting of tissue layers that mimic the brain cortex. Using this culture technique, Knoblich's group demonstrated that iPSCs derived from a microcephalic patient indeed formed a smaller brain than iPSCs from a healthy control.<sup>50</sup> Similarly, several organoid culture techniques for iPSCs have evolved to generate other tissue types and organs (optic cup, pituitary gland).51,52 Lack of vascular supply is the major limiting factor to grow more functional units in organoid culture. Remarkably, Taniguchi's group was able to generate a transplantable small liver unit from human iPSCs. They co-cultured hepatic endoderm cells differentiated from iPSC with human mesenchymal stem cells and human umbilical vein endothelial cells in a loosely solidified extracellular matrix. These cells autonomously formed the functional units of the liver in vitro with the support of microvasculature. Upon transplantation of the unit into immunodeficient mice, the liver bud quickly connected to the host vascular networks and further functional maturation occurred.53

Advances in differentiation protocols heavily rely on our knowledge of the molecular mechanisms of embryonic development. Our knowledge is not sufficient to provide the optimal environment for desired morphogenesis from iPSC in vitro culture. Nevertheless, simple inoculation of iPSCs into immunodeficient animals is able to form teratomas, which comprise cells from all three germ layers (endoderm, mesoderm and ectoderm). As mature tissue organization (gut epithelial, cartridge and so on) can be observed in the tumor, it will be feasible to assess the histopathological phenotype of patient-derived iPSC using this methodology. For instance, iPSCs from dominant genetic disorders with oncogenesis may develop cancer in teratomas over time. Patients with familial adenomatous polyposis develop

adenoma and adenocarcinoma in colon. Similarly, iPSCs from familial adenomatous polyposis may generate adenoma and adenocarcinoma in colon-like mucosa in teratomas. iPSCs from degenerative disorders may exhibit degeneration or apoptosis of cells in corresponding tissues of teratomas. It is also noteworthy that histopathological analysis of implanted cells into immunodeficient animals may support *in vitro* phenotypes of iPSCs during the differentiation process.

To model systemic disease, it is compelling to reconstitute the human pathological process in experimental animals. For example, type I diabetes is recognized as a type of autoimmune disease, in which three major cell lineages (hematopoietic cells, pancreatic  $\beta$  cells and thymus epithelial cells) have important roles. Melton's group has reconstituted the human version of these three lineages into animals by transplantation into immunodeficient mice.<sup>54</sup> A more rigorous approach is led by Nakauchi's group, where they successfully generated a whole kidney or pancreas derived from iPSCs in the pig by blastocyst complementation. They transferred donor pig iPSC into pancreatogenesis- or nephrogenesis-disabled blastocyst stage pig embryos, and demonstrated the embryos were born as chimeras having pancreas or kidney exclusively derived from the donor pig iPSCs.55 Any blastocyst complementation using human iPSC into animals has not been performed yet because of ethical issues, but theoretically it is feasible to generate whole functional human organs in animals using the same strategy. This humanized animal or hybrid animal approach using patient-derived iPSC would be a next-generation disease model for studying human pathology.

#### **Gene Editing**

Rapidly evolving gene-editing technology has been shown valuable in patient iPSC research as well, as described above with an exemplary case.

#### **TALEN**

Transcription activator-like effector nucleases (TALENs) are composed of a DNA-binding domain that is capable of directing the FokI nuclease to a specific target site. Two TALENs, recognizing left and right arms of the target site, respectively, can bring two FokI monomers close together for the formation of a functional dimer, which generates a DNA double-strand break (DSB) on the target site. 56,57 The TALEN-induced DSBs activate the DNA repair system within cells, which stimulates non-homologous end joining (NHEJ) in the absence of a homologous DNA template. The error-prone nature of this repair mechanism results in the introduction of nucleotide mismatches, insertions or deletions. However, in the presence of a homologous template DNA, the DSB triggers homologous recombination, introducing desired DNA sequence alterations. The TALENs have rapidly gained prominence as a novel genome-editing tool, which were successfully applied to create site-specific gene modifications in model organisms such as yeast, plants, zebra fish, mouse, rat and human cells, including human pluripotent cells.<sup>58–62</sup> TALEN has also been used to generate single base-pair mutations, linking single-nucleotide polymorphisms to specific human disease.<sup>63</sup> Furthermore, TALENs have even been utilized to eliminate the mutant form of mitochondrial DNA from patient-derived cells.<sup>64</sup> Currently, TALEN plasmids targeting 18 740 protein-coding human genes have been assembled using a high-throughput Golden-Gate cloning system.<sup>65</sup> Delivery of these TALENs can be achieved by injection of DNA or mRNA encoding TALENs or even the TALEN proteins directly.<sup>62,66,67</sup>

#### CRISPR

The CRISPR system is another effective genome-editing tool, which utilizes Cas9 nuclease to cleave DNA and chimeric guide RNA (gRNA) to target Cas9 to a specific region in the genome. 68,69 The Cas9-gRNA-mediated genome editing has been shown to have improved efficiencies over TALENs and it is also easier to implement. 68-72 Moreover, it allows simultaneous editing of more than one site through expression of multiple gRNAs. 68,69 This approach was used to create mice carrying five different mutant genes in a single step,73 and also was shown to generate large deletions of genomic regions by directing Cas9 cleavages at the two sites flanking the desired deletion.<sup>68</sup> Wu et al<sup>74</sup> have even shown in mice that a dominant mutation in Crygc gene that causes cataracts could be rescued by a Cas9-mediated DSB on the mutant allele, which triggered homology-directed repair based on the endogenous WT allele. More recently, a clone library encoding short gRNAs targeting all open reading frames in the human genome has been generated. Combined use of this library with Cas9 enabled the generation of random gene knockouts in the human genome, which can be screened for desired phenotypes to link genes to their functions. 75,76 The CRISPR technology has been used to cure a mouse model of a human fatal liver disorder (type I tyrosinemia) caused by a single genetic mutation in the fumarylacetoacetate hydrolase gene. 77 This defect in tyrosine catabolism causes toxic accumulation of the amino acid, leading to liver failure. CRISPR-mediated genome editing could one day help treat many diseases caused by single mutations, such as hemophilia and Huntington's disease.

A mutant version of the Cas9 was further reported which cleaves only one strand of the target DNA, generating single-strand nicking, thus favors HR DNA repair over NHEJ (error prone), increasing desired DNA changes over random mutations. Recently, a nuclease-defective Cas9 enzyme has been utilized to label genomic loci, allowing for visualization of *in vivo* of their partitioning in live cells. Most interestingly, the catalytically inactive Cas9 nuclease, in complex with a gRNA, can bind to a specific site, which physically blocks the RNA polymerase, thus silencing the target gene. Similarly, the catalytically inactive Cas9 was fused to known transcriptional activator domains and targeted to specific promoter regions by corresponding gRNAs, upregulating the target gene expression. The

ability to artificially control the expression of specific target genes not only enables us to better understand gene functions but also to manipulate cell fate through controlled expression of desired sets of pathway genes.

#### **CONCLUDING REMARKS**

Undoubtedly, patient iPSCs are an enduring asset for experimental pathology studies, with some exemplary applications introduced above and many more in published literature. Additional technical improvement, particularly in iPSC differentiation methods and three dimensional cultures, as well as expansion of patient iPSC banking, will further accelerate the field. From a pathologist perspective, patient iPSC banking will serve as a powerful addendum to existing tissue banks. Their value is unlimited, as once established, they serve as an enduring and expandable resource for live patient cells. For instance, it is almost impossible to obtain hepatocytes from a rare metabolic disease through liver biopsy of a large number of patients at one given time and place. However, through iPSC banking, such resources will be available to any researcher, any place in the world, and at any time. Banking iPSCs of large patient cohorts with a clinical and GWAS database would be particularly useful in order to identify molecular mechanisms underlying certain genetic links to the disease or individual patients' drug efficacy and toxicity. The future rests on how properly we prepare the resource and how wisely we use it.

#### **ACKNOWLEDGMENTS**

We thank Ms Erika Suzuki for her secretarial work.

#### DISCLOSURE/CONFLICT OF INTEREST

The authors declare no conflict of interest.

- Hankowski KE, Hamazaki T, Umezawa A, et al. Induced pluripotent stem cells as a next-generation biomedical interface. Lab Invest 2011:91:972–977.
- Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663–676.
- Sandoe J, Eggan K. Opportunities and challenges of pluripotent stem cell neurodegenerative disease models. Nat Neurosci 2013;16:780–789.
- Cherry AB, Daley GQ. Reprogrammed cells for disease modeling and regenerative medicine. Annu Rev Med 2013;64:277–290.
- Tabar V, Studer L. Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat Rev Genet 2014;15:82–92.
- Ebert AD, Yu J, Rose Jr. FF, et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 2009;457:277–280.
- Nguyen HN, Byers B, Cord B, et al. LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 2011;8:267–280.
- Reinhardt P, Schmid B, Burbulla LF, et al. Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell 2013;12:354–367.
- Israel MA, Yuan SH, Bardy C, et al. Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature 2012;482:216–220.
- 10. Hiura H, Toyoda M, Okae H, et al. Stability of genomic imprinting in human induced pluripotent stem cells. BMC Genet 2013;14:32.

- Yang J, Cai J, Zhang Y, et al. Induced pluripotent stem cells can be used to model the genomic imprinting disorder Prader-Willi syndrome. J Biol Chem 2010;285:40303–40311.
- Chamberlain SJ, Chen PF, Ng KY, et al. Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader-Willi syndromes. Proc Natl Acad Sci USA 2010;107:17668–17673.
- Nishino K, Toyoda M, Yamazaki-Inoue M, et al. DNA methylation dynamics in human induced pluripotent stem cells over time. PLoS Genet 2011;7:e1002085.
- Cruvinel E, Budinetz T, Germain N, et al. Reactivation of maternal SNORD116 cluster via SETDB1 knockdown in Prader-Willi syndrome iPSCs. Hum Mol Genet 2014 (e-pub ahead of print).
- Martins-Taylor K, Hsiao JS, Chen PF, et al. Imprinted expression of UBE3A in non-neuronal cells from a Prader-Willi syndrome patient with an atypical deletion. Hum Mol Genet 2014;23:2364–2373.
- McKernan R, Watt FM. What is the point of large-scale collections of human induced pluripotent stem cells? Nat Biotechnol 2013;31: 875–877.
- Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131:861–872.
- Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318:1917–1920.
- Soldner F, Hockemeyer D, Beard C, et al. Parkinson's disease patientderived induced pluripotent stem cells free of viral reprogramming factors. Cell 2009;136:964–977.
- Stadtfeld M, Nagaya M, Utikal J, et al. Induced pluripotent stem cells generated without viral integration. Science 2008;322:945–949.
- Zhou W, Freed CR. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 2009;27: 2667–2674.
- Nishimura K, Sano M, Ohtaka M, et al. Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem 2011;286:4760–4771.
- Okita K, Nakagawa M, Hyenjong H, et al. Generation of mouse induced pluripotent stem cells without viral vectors. Science 2008;322: 949–953.
- Gonzales F, Monasterio MB, Tiscornia G, et al. Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. Proc Natl Acad Sci USA 2009; 106:8918–8922.
- Jia F, Wilson KD, Sun N, et al. A nonviral minicircle vector for deriving human iPS cells. Nat Methods 2010;7:197–199.
- Yu J, Hu K, Smuga-Otto K, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 2009;324:797–801.
- Kaji K, Norrby K, Paca A, et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 2009;458: 771–775.
- Woltjen K, Michael IP, Mohseni P, et al. PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 2009; 458:766–770.
- Yusa K, Rad R, Takeda J, et al. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods 2009;6:363–369.
- Yakubov E, Rechavi G, Rozenblatt S, et al. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors. Biochem Biophys Res Commun 2010;394:189–193.
- Kim D, Kim CH, Moon JI, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 2009:4:472–476.
- 32. Zhou H, Wu S, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 2009;4:381–384.
- Miyoshi N, Ishii H, Nagano H, et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 2011;8:633–638.
- Hou P, Li Y, Zhang X, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 2013;341: 651–654.
- 35. Gore A, Li Z, Fung HL, et al. Somatic coding mutations in human induced pluripotent stem cells. Nature 2011;471:63–67.
- Toyoda M, Yamazaki-Inoue M, Itakura Y, et al. Lectin microarray analysis of pluripotent and multipotent stem cells. Genes Cells 2011; 16:1–11.

- Nishino K, Toyoda M, Yamazaki-Inoue M, et al. Defining hypomethylated regions of stem cell-specific promoters in human iPS cells derived from extra-embryonic amnions and lung fibroblasts. PLoS One 2010:5:e13017.
- 38. Park IH, Zhao R, West JA, *et al.* Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008;451:141–146.
- Hannan NR, Segeritz CP, Touboul T, et al. Production of hepatocyte-like cells from human pluripotent stem cells. Nat Protoc 2013;8:430–437.
- Vallier L, Touboul T, Brown S, et al. Signaling pathways controlling pluripotency and early cell fate decisions of human induced pluripotent stem cells. Stem Cells 2009;27:2655–2666.
- Pick M, Ronen D, Yanuka O, et al. Reprogramming of the MHC-I and its regulation by NFκB in human-induced pluripotent stem cells. Stem Cells 2012;30:2700–2708.
- Marchand M, Anderson EK, Phadnis SM, et al. Concurrent generation of functional smooth muscle and endothelial cells via a vascular progenitor. Stem Cells Transl Med 2014;3:91–97.
- Uosaki H, Fukushima H, Takeuchi A, et al. Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One 2011;6:e23657.
- Choi KD, Yu J, Smuga-Otto K, et al. Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells 2009;27:559–567.
- Cai J, DeLaForest A, Fisher J, et al. Protocol for directed differentiation of human pluripotent stem cells toward a hepatocyte fate, In: StemBook(Internet) 10 Jun 2012. Available fromhttp:// www.ncbi.nlm.nih.gov/books/NBK133278.
- Chambers SM, Fasano CA, Papapetrou EP, et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 2009;27:275–280.
- 47. Lee G, Chambers SM, Tomishima MJ, et al. Derivation of neural crest cells from human pluripotent stem cells. Nat Protoc 2010;5:688–701.
- Kriks S, Shim JW, Piao J, et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature 2011;480:547–551.
- Di Giorgio FP, Boulting GL, Bobrowicz S, et al. Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell 2008;3:637–648.
- Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly. Nature 2013;501: 373–379.
- Nakano T, Ando S, Takata N, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 2012;10:771–785.
- 52. Suga H, Kadoshima T, Minaguchi M, et al. Self-formation of functional adenohypophysis in three-dimensional culture. Nature 2011;480:57–62.
- Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 2013; 499:481–484.
- 54. Melton DA. Using stem cells to study and possibly treat type 1 diabetes. Philos Trans R Soc Lond B Biol Sci 2011;366:2307–2311.
- Matsunari H, Nagashima H, Watanabe M, et al. Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs. Proc Natl Acad Sci USA 2013;110:4557–4562.
- Mahfouz MM, Li L, Shamimuzzaman M, et al. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA 2011;108:2623–2628.

- 57. Christian M, Cermak T, Doyle EL, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010;186:757–761.
- Hockemeyer D, Wang H, Kiani S, et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 2011;29: 731–734.
- 59. Tesson L, Usal C, Ménoret S, *et al.* Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 2011;29:695–696.
- Sander JD, Cade L, Khayter C, et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 2011;29:697–698.
- Sung YH, Baek IJ, Kim DH, et al. Knockout mice created by TALENmediated gene targeting. Nat Biotechnol 2013;31:23–24.
- 62. Pennisi E. The tale of the TALEs. Science 2012;338:1408-1411.
- Ochiai H, Miyamoto T, Kanai A, et al. TALEN-mediated single-base-pair editing identification of an intergenic mutation upstream of BUB1B as causative of PCS (MVA) syndrome. Proc Natl Acad Sci USA 2014;111: 1461–1466
- 64. Bacman SR, Williams SL, Pinto M, et al. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med 2013;19:1111–1113.
- 65. Kim Y, Kweon J, Kim A, et al. A library of TAL effector nucleases spanning the human genome. Nat Biotechnol 2013;31:251–258.
- Liu J, Gaj T, Patterson JT, et al. Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS One 2014;9:e85755.
- 67. Jia J, Jin Y, Bian T, et al. Bacterial delivery of TALEN proteins for human genome editing. PLoS One 2014;9:e91547.
- Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013;339:819–823.
- Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013;339:823–826.
- Jinek M, East A, Cheng A, et al. RNA-programmed genome editing in human cells. Elife 2013;2:e00471.
- Cho SW, Kim S, Kim JM, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 2013;31:230–232.
- 72. Hwang WY, Fu Y, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 2013;31:227–229.
- Wang H, Yang H, Shivalila CS, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 2013;153:910–918.
- 74. Wu Y, Liang D, Wang Y, et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 2013;13:659–662.
- 75. Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014;343:84–87.
- 76. Wang T, Wei JJ, Sabatini DM, et al. Genetic screens in human cells using the CRISPR-Cas9 system. Science 2014;343:80–84.
- 77. Yin H, Xue W, Chen S, et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 2014;32:551–553.
- Chen B, Gilbert LA, Cimini BA, et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 2013; 155:1479–1491.
- Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNAguided platform for sequence-specific control of gene expression. Cell 2013;152:1173–1183.
- 80. Kearns NA, Genga RM, Enuameh MS, et al. Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development 2014;141:219–223.

# Stem Cells Bond Our Organs/Tissues and Engineering Products

Masashi Toyoda, PhD; Akihiro Umezawa, MD, PhD

he human body is made up of trillions of cells that work together. Cells make up tissues and organs, and a group of organs performs a certain function for homeostatic maintenance. Many diseases result from a homeostatic imbalance. Stem cells in organs and/or tissues play important roles in the regulation of homeostasis. Stem cell-based therapy has become a promising strategy for the treatment of many diseases. Therefore, regenerative medicine may one day restore the function of damaged organs or tissues. On the other hand, tissue engineering, such as cell-sheet and artificial organs that might supplement or completely replace the functions of impaired or damaged tissues, has developed remarkably.¹ An integrated strategy of tissue engineering including artificial organs and stem cell-based therapy medicine should give rise to a new regenerative medicine for organ failure.

#### Article p 1762

Stents have been used for the treatment of coronary artery disease (CAD) for more than a decade. A coronary stent is

placed in an artery to keep the vessel patent to maintain blood flow. Stent implantation is a major treatment option for CAD (eg, in bypass surgery) and has saved many patients' lives.

But no therapy is without risk. In fact, in clinical practice, persistent inflammation occurs around the stent, and can result in coronary restenosis and thrombosis. Until now, however, there has not been an appropriate experimental in vivo model to analyze the mechanisms of these side effects.

In this issue of the Journal, Sato et al² report on the established animal models of coronary stenting. In the past, many researchers used the endothelial injury model of CAD, in which there is transient injury to the endothelium, and then the mechanisms of restenosis of the artery are analyzed. But the stent implantation model has had difficulties because of inflammation around the stent. Sato et al used the stenting model of the rat abdominal aorta and showed that transplantation of adipose tissue-derived stem cells (ASCs) prevents this persistent inflammation.

Stem cells can self-renew and differentiate into multiple types of cells and have varying degrees of differentiation potential:

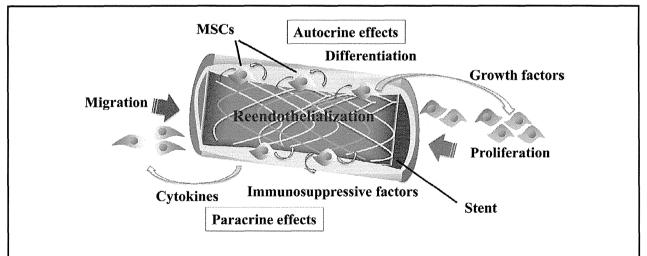



Figure. In stent implantation, administration of mesenchymal stem cells significantly stimulates reendothelialization through paracrine and autocrine effects on cell migration, proliferation, differentiation and cell fusion, leading to tissue/organ regeneration.

The opinions expressed in this article are not necessarily those of the editors or of the Japanese Circulation Society.

Received May 14, 2014; accepted May 15, 2014; released online June 4, 2014

Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology (M.T.); Department of Reproductive Biology, National Research Institute for Child Health and Development (A.U.), Tokyo, Japan

Mailing address: Masashi Toyoda, PhD, Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan. E-mail: mtoyoda@tmig.or.jp

ISSN-1346-9843 doi:10.1253/circj.CJ-14-0558

All rights are reserved to the Japanese Circulation Society. For permissions, please e-mail: cj@j-circ.or.jp

pluripotency, ES cells and iPS cells; multipotency, somatic stem cells; and unipotency, or precursor cells. Mesenchymal stem cells (MSCs) are multipotent cells that can be derived from a variety of fetal and adult tissues such as bone marrow and adipose, and possess an immunosuppressive effect.<sup>3</sup> Therefore, MSCs are being used in clinical studies of a variety of diseases, and can be used in allogeneic settings without immunosuppressive therapy, and as cellular immunosuppressants that have the potential to control steroid-refractory acute graft vs. host disease.4 In addition, the results of Sato et al suggest that the immunosuppressive effect of MSCs enables construction of a model to analyze the in vivo risk of stent therapy. The authors also show that transplantation of ASCs stimulates reendothelialization and inhibits neointimal formation after stent implantation in the animal model (Figure). They have previously reported that ASCs stimulate reendothelialization and inhibit neointimal formation in a wire injury model.<sup>5</sup> In the current experiment, they reproduced the effect of reendothelialization by ASC stimulation in the stent model and used 2 types of stents: a Driver coronary stent (bare metal) and a Cipher stent (sirolimus-eluting). Treatment with the Driver implant resulted in more effective reendothelialization by ASC stimulation than with the Cipher stent.

MSCs produce and secrete a broad variety of cytokines, chemokines, and growth factors, which influence the microenvironment through paracrine and autocrine effects on cell migration, proliferation, differentiation and cell fusion (Figure).<sup>6,7</sup> In fact, these factors are potentially involved in cardiac repair. The implantation of a cell-sheet over the damaged area of a failing heart has been shown to improve cardiac function through a paracrine effect.8 Cell-sheets have recently been developed as a tissue engineering technology, and then put to practical use in several clinical studies. Paracrine effects of the cell-sheets by myoblasts, MSCs and cardiac progenitor cells improve cardiac function.9 Major components of the regenerative mechanism in cell-sheet implantation would be both angiogenesis and the recovery of diastolic function in the heart. Most likely, MSC-released factors lead to tissue/organ remodeling, repair and regeneration in vivo. With stent implantation, MSC administration significantly stimulates reendothelialization and inhibits neointimal formation through paracrine fac-

Sato et al caution that the effect of reendothelialization might depend on the material type of the stent. In the future, factors affecting coronary restenosis after stent deployment in the coronary artery need to be identified. Peripheral technologies have indeed been developing along with the progress of regenerative medicine research, and development of stent design and efficiency and the safety of stent therapy should be expected in the form of combination products with cell-based products.

Cardiovascular disease is a growing problem in our aging society. It will be more important than ever to use stents as treatment for CAD. There are several animal disease models for hypertension, obesity and diabetes, and researchers will use these animals to study the mechanisms of heart disease and the development of stent therapy. The report by Sato et al therefore contributes to the growing number of clinical and preclinical studies of effective stent therapies for heart disease.

#### Disclosures

None declared.

#### References

- Gojo S, Toyoda M, Umezawa A. Tissue engineering and cell-based therapy toward integrated strategy with artificial organs. *J Artif Or*gans 2011; 14: 171–177.
- Sato T, Takahashi M, Fujita D, Oba S, Nishimatsu H, Nagano T, et al. Adipose-derived stem cells stimulate reendothelialization in stented rat abdominal aorta. Circ J 2014; 78: 1762–1769.
- Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. *Exp Hematol* 2003; 31: 890–896.
- Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis L, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: A phase II study. *Lancet* 2008; 371: 1579–1586.
- Takahashi M, Suzuki E, Oba S, Nishimatsu H, Kimura K, Nagano T, et al. Adipose tissue-derived stem cells inhibit neointimal formation in a paracrine fashion in rat femoral artery. *Am J Physiol Heart Circ Physiol* 2010; 298: H415–H423.
- Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 2008; 103: 1204–1213.
- Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells. *Int J Mol Sci* 2014; 15: 4142–4157.
- Sawa Y, Miyagawa S. Present and future perspectives on cell sheetbased myocardial regenerarion therapy. *Biomed Res Int* 2013; 2013: 583912, doi:10.1155/2013/583912.
- Shudo Y, Miyagawa S, Nakatani S, Fukushima S, Sakaguchi T, Saito A, et al. Myocardial layer-specific effect of myoblast cell-sheet implantation evaluated by tissue imaging. Circ J 2013; 77: 1063–1072.

Online Submissions: http://www.wjgnet.com/esps/bpgoffice@wjgnet.com doi:10.4252/wjsc.v6.i2.203 World J Stem Cells 2014 April 26; 6(2): 203-212 ISSN 1948-0210 (online) © 2014 Baishideng Publishing Group Co., Limited. All rights reserved.

TOPIC HIGHLIGHT

WJSC 6<sup>th</sup> Anniversary Special Issues (2): Mesenchymal stem cells

# Differentiation of mesenchymal stem cells into gonad and adrenal steroidogenic cells

Takashi Yazawa, Yoshitaka Imamichi, Kaoru Miyamoto, Akihiro Umezawa, Takanobu Taniguchi

Takashi Yazawa, Takanobu Taniguchi, Department of Biochemistry, Asahikawa Medical University, Hokkaido 078-8510, Japan

Takashi Yazawa, Yoshitaka Imamichi, Kaoru Miyamoto, Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan

Akihiro Umezawa, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan

Author contributions: Yazawa T, Umezawa A and Miyamoto K designed the research; Yazawa T and Imamichi Y performed the research; Yazawa T and Taniguchi T wrote the paper.

Supported by Ministry of Education, Culture, Sports, Science and Technology of Japan, No. 23590329; the Terumo Life Science Foundation, and the Smoking Research Foundation

Correspondence to: Takashi Yazawa, Lecturer, Department of Biochemistry, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, Hokkaido 078-8510,

Japan. yazawa@asahikawa-med.ac.jp

Telephone: +81-166-682342 Fax: +81-166-682349 Received: November 2, 2013 Revised: December 24, 2013

Accepted: January 17, 2014 Published online: April 26, 2014

#### **Abstract**

Hormone replacement therapy is necessary for patients with adrenal and gonadal failure. Steroid hormone treatment is also employed in aging people for sex hormone deficiency. These patients undergo such therapies, which have associated risks, for their entire life. Stem cells represent an innovative tool for tissue regeneration and the possibility of solving these problems. Among various stem cell types, mesenchymal stem cells have the potential to differentiate into steroidogenic cells both in vivo and in vitro. In particular, they can effectively be differentiated into steroidogenic cells by expressing nuclear receptor 5A subfamily proteins (steroidogenic factor-1 and liver receptor homolog-1) with the aid of cAMP. This approach will provide a source of cells for future regenerative medicine for the treatment of diseases caused by steroidogenesis

deficiencies. It can also represent a useful tool for studying the molecular mechanisms of steroidogenesis and its related diseases.

 $\ \odot$  2014 Baishideng Publishing Group Co., Limited. All rights reserved.

Key words: Steroid hormone; Adrenal; Gonad; Steroidogenic factor-1; Liver receptor homolog-1; Mesenchymal stem cells; Differentiation

Core tip: Stem cells can be a potential source of cells for regenerative medicine for diseases caused by steroidogenesis deficiency. Among various stem cell types, mesenchymal stem cells have the potential to differentiate into steroidogenic cells both *in vivo* and *in vitro*. This system can also provide a powerful tool for studying the molecular mechanisms of steroidogenesis and its related diseases.

Yazawa T, Imamichi Y, Miyamoto K, Umezawa A, Taniguchi T. Differentiation of mesenchymal stem cells into gonad and adrenal steroidogenic cells. *World J Stem Cells* 2014; 6(2): 203-212 Available from: URL: http://www.wjgnet.com/1948-0210/full/v6/i2/203.htm DOI: http://dx.doi.org/10.4252/wjsc.v6.i2.203

#### **INTRODUCTION**

In mammals, steroid hormones are produced from cholesterol mainly in adrenal glands and gonads. Steroid hormones are essential for glucose metabolism, the stress response, fluid and electrolyte balance, sex differentiation and reproduction via binding to cognate receptors in target tissues. Therefore, a steroidogenesis abnormality can often be life threatening. Congenital adrenal hyperplasia (CAH) is one of the most common disorders caused by deficiency of any enzyme involved in steroidogenesis in adrenal glands [1,2]. Impaired cortisol and aldosterone pro-



duction increases adrenocorticotropic hormone (ACTH) secretion from the pituitary gland, leading to adrenal hyperplasia and accumulation of adrenal androgens. Female patients are prenatally virilized because of excess androgen and neonates of both genders may suffer from a life-threatening Addisonian crisis. Steroid hormone deficiency also occurs in aging people by hypogonadism. In males, testosterone concentrations decline with age, causing various clinical symptoms such as obesity and hypertension [3-6]. Postmenopausal women often suffer from osteoporosis caused by estrogen deficiency [7,8]. Hormone replacement therapy has been well established for the treatment of such patients, although they require hormone replacement for their entire lifetime. In addition, these patients suffer from various side effects (liver and kidney damage, immune system dysfunction) and risks associated with long-term replacement therapy (cancer). Therefore, another therapy is needed to resolve these problems. Stem cells represent an innovative tool for tissue regeneration and gene therapy, which could possibly solve these problems. In this review, we provide an overview of differentiation and regeneration of steroidogenic cells using mesenchymal stem cells (MSCs), preceded by a description of the development of steroidogenic organs. We also describe molecular events, such as coactivator function and epigenetic modifications, which occur during differentiation.

#### DEVELOPMENT OF STEROIDOGENIC ORGANS AND NUCLEAR RECEPTOR 5A SUBFAMILY

Steroidogenesis begins with conversion of cholesterol into pregnenolone in mitochondria by the P450 side chain cleavage enzyme (P450scc/CYP11A1/Cyp11a1), a rate-limiting enzyme in the synthesis of all steroid hormones. Thereafter, various hormones are synthesized by tissue-specific P450 hydroxylases and hydroxysteroid dehydrogenases [9,10]. Although adrenal glands and gonads produce various steroid hormones in adult life, they have a common developmental origin, a so-called adrenogonadal primordium (AGP) that mainly originates from the intermediate mesoderm and is localized on the coelomic epithelia of the developing urogenital ridge<sup>[11-13]</sup>. As development proceeds, AGP separates into two distinct populations, adrenocortical and gonadal primordia, characterized by the existence of chromaffin cell precursors and primordial germ cells, respectively, which originate and migrate from other germ layers. During differentiation, adrenal glands and gonads synthesize tissue-specific steroid hormones by specific expression patterns of steroidogenic enzymes.

Steroidogenic factor-1 (SF-1, also known as Ad4BP) is one of the earliest markers of the appearance of AGP<sup>[11,14]</sup>. Because SF-1 knockout mice fail to develop adrenal glands and gonads, SF-1 represents a master regulator of the development of these organs<sup>[15-17]</sup>. SF-1/

Ad4BP is also important for steroidogenesis by regulating the transcription of steroidogenic genes. SF-1/Ad4BP was originally discovered by Keith Parker and Ken Morohashi as a transcription factor that binds to the Ad4 sequence in promoter regions of all cytochrome P450 steroid hydroxylase genes for transactivation [18,19]. They concluded from the expression of SF-1 in steroidogenic cells and its regulation of all steroid hydroxylase genes that SF-1 is a determinant factor in cell-specific expression of steroidogenic enzymes. In addition to steroidogenic enzymes, diverse groups of SF-1 target genes, such as other steroidogenic genes, pituitary hormones and cognate receptors, and sex differentiation-related genes have been identified thus far<sup>[17,20,21]</sup>. SF-1 belongs to the nuclear receptor (NR) superfamily. NRs are lipophilic ligand-dependent and independent transcription factors and essential for various physiological phenomena<sup>[22,23]</sup>. A large number of family members have been identified from invertebrate to mammals. There are a total of 48 family members on the human genome. They share a common structural organization: zinc finger DNAbinding domain and a carboxyl-terminal ligand-binding domain. The NR superfamily can be broadly divided into four classes based on their characteristics (steroid hormone receptors, RXR heterodimers, dimeric orphan receptors and monomeric orphan receptors). SF-1 is categorized into monomeric orphan receptors, although Ingraham and colleague argued the possibility that phosphatidylinositols are ligands for SF-1<sup>[24]</sup>. SF-1 is very similar to liver receptor homolog-1 (LRH-1). LRH-1 was originally identified in the liver<sup>[25]</sup> and is known to function in metabolism, cholesterol and bile acid homeostasis by regulating the transcription of a number of genes [26-29]. In addition to the liver, LRH-1 is highly expressed in tissues of endodermal origin. It is also expressed in gonads and involved in steroidogenesis; in particular, its ovarian expression levels are the most abundant among tissues [30]. These factors constitute one of the NR subfamilies and are designated as NR5A proteins (Table 1, SF-1 is NR5A1 and LRH-1 is NR5A2). SF-1 and LRH-1 have various common characteristics, such as binding sequences, target genes and cofactors [24,31-38].

Consistent with its role in steroidogenesis, SF-1 expression is detected in adults in three layers of the adrenal cortex (zona reticularis, zona fasciculata and zona glomerulosa), testicular Leydig and Sertoli cells, ovarian theca, granulosa cells and, to a lesser extent, in the corpus lutea [39,40]. In the corpus lutea, LRH-1 rather than SF-1 is highly expressed and is important for progesterone production [36,41,42]. LRH-1 is also expressed in testicular Leydig cells [12,43,44].

SF-1 knockout mice die shortly after birth because of adrenal insufficiency and exhibit male-to-female sex reversal in external genitalia<sup>[15]</sup>. These phenotypes are caused by the complete loss of adrenal glands and gonads. Although the initial stages of adrenal and gonadal development occur in the absence of SF-1, they regress and disappear during the following developmental stage.



Table 1 Summary of the characteristics of steroidogenic factor-1 and liver receptor homolog-1

| Nuclear receptor | Expressing tissues         | Function                               | Phenotypes of knockout mice                                                |
|------------------|----------------------------|----------------------------------------|----------------------------------------------------------------------------|
| SF-1/<br>Ad4BP/  | Testis, ovary,<br>adrenal, | Steroidogenesis<br>Sex differentiation | Adrenal and gonadal agenesis                                               |
| NR5A1            |                            | Energy homeostasis                     | Sex reversal in external genitalia                                         |
|                  |                            |                                        | Impaired expression of pituitary gonadotropins Abnormality of ventromedial |
| LRH-1/           | Ovary, testis,             | Steroidogenesis                        | hypothalamic nucleus<br>Embryonic lethal around                            |
| NR5A2            | liver, pancreas,           |                                        | E6.5-7.5 d                                                                 |

Because gonads disappear prior to male sexual differentiation, the internal and external urogenital tracts of SF-1 knockout mice are of the female type, irrespective of genetic sex. Heterozygous SF-1 knockout mice show decreased adrenal volume associated with impaired corticosterone production in response to stress [45-47], whereas transgenic overexpression of SF-1/Ad4BP increases adrenal size and ectopic adrenal tissue in the thorax [48,49]. Total SF-1 disruption in mice demonstrated that SF-1 is crucial for the determination of steroidogenic cell fate in vivo. It has also been shown in Leydig cell and granulosa cell-specific knockout (LCKO and GCKO, respectively) models that SF-1 plays important roles in steroidogenesis following the development of steroidogenic organs. In LCKO mice, testicular steroidogenic acute regulatory protein (StAR) and Cyp11a1 expression is impaired, indicating a defect in androgen production[50]. Consistent with this hypothesis, the testes fail to descend (an androgen-dependent developmental process) and are hypoplastic. In GCKO mice, the ovaries are hypoplastic, adults are sterile and ovaries show reduced numbers of oocytes and lack corpora lutea<sup>[51]</sup>. Gonadotropin-induced steroid hormone production are also markedly reduced in this model.

LRH-1 knockout mouse embryos die around E6.5-7.5 d<sup>[52,53]</sup>. Moreover, heterozygous and GCKO models revealed the importance of LRH-1 in steroidogenesis <sup>[41,54,55]</sup>. In heterozygous Lrh-1-deficient male mice, testicular testosterone production is decreased along with the expression of steroidogenic enzymes and the development of sexual characteristics <sup>[54]</sup>. In addition, GCKO mice are infertile because of anovulation with impaired progesterone production <sup>[41]</sup>. It has also been demonstrated that LRH-1 has a broader role beyond steroidogenesis in these cells as they fail to luteinize.

Although SF-1 and LRH-1-deficient models revealed a common function in gonadal steroidogenesis, both factors cannot compensate for the deficiency of the other factor, even in cells expressing both factors. These facts indicate that even although SF-1 and LRH-1 control transcription by binding to the same response sequences,

each has selective actions on the pattern of gene expression in the development of steroidogenic cells and steroidogenesis.

# DIFFERENTIATION OF MSCS INTO STEROIDOGENIC CELLS

In an early study, forced expression of SF-1 has been shown to direct differentiation of murine embryonic stem cells (ESCs) toward the steroidogenic lineage and then Cyp11a1 mRNA was expressed after the addition of cAMP and retinoic acid [56]. However, the steroidogenic capacity of these cells is very limited and they do not undergo de novo synthesis because progesterone is the only steroid hormone produced in the presence of the exogenous substrate, 20α-hydroxycholesterol. In addition, major differences between these differentiated cells and natural steroidogenic cells have been shown in cholesterol delivery and the steroidogenic pathway, including deficiencies of StAR (cholesterol delivery protein from the outer to inner mitochondrial membrane in steroidogenic cells) and steroidogenic enzymes, except for Cyp11a1 and Hsd3b1<sup>[56-58]</sup>. It is also very difficult to isolate clones expressing SF-1 from ESCs and induced pluripotent stem cells<sup>[37,57,59]</sup> because SF-1 (and LRH-1) overexpression is cytotoxic to these cells. These studies clearly indicate that SF-1 initiates the fate-determination program of the steroidogenic lineage in stem cells, although it is not completed in pluripotent stem cells.

Based on these results, we focused on MSCs [57], multipotent adult stem cells that have been shown to differentiate into mesodermal lineages, such as adipocytes, chondrocytes, osteoblasts and hematopoietic-supporting stroma, both *in vivo* and *ex vivo* [60-63]. Furthermore, MSCs are able to generate cells of all three germ layers, at least *in vitro*. Although MSCs were originally discovered in bone marrow (BM-MSCs) [60,64-66], they have also been isolated from various origins, such as fat, placenta, umbilical cord blood and other tissues [62,63,67-69]. In addition to their multipotency, MSCs have attracted considerable interest for use in cell and gene therapies because they can be obtained from adult tissues and suppress immune responses [70,71]. Indeed, their therapeutic applicability has been assessed in some cases and particularly in bone tissue engineering [72,73].

## Induction of MSC differentiation into steroidogenic cells in vivo and in vitro

To investigate the potential of MSCs to differentiate into steroidogenic cells, BM-MSCs from GFP-transgenic rats were transplanted into prepubertal testes (Figure 1A)<sup>[57]</sup>. In testes, there are two different steroidogenic populations, fetal and adult Leydig cells<sup>[74-76]</sup>. Even although the cells in these two populations share a common characteristic of producing androgen, they are different in their origin, ultrastructure, lifespan, steroidogenic pathway and its regulation. Fetal Leydig cells have multiple origins and



WJSC | www.wjgnet.com

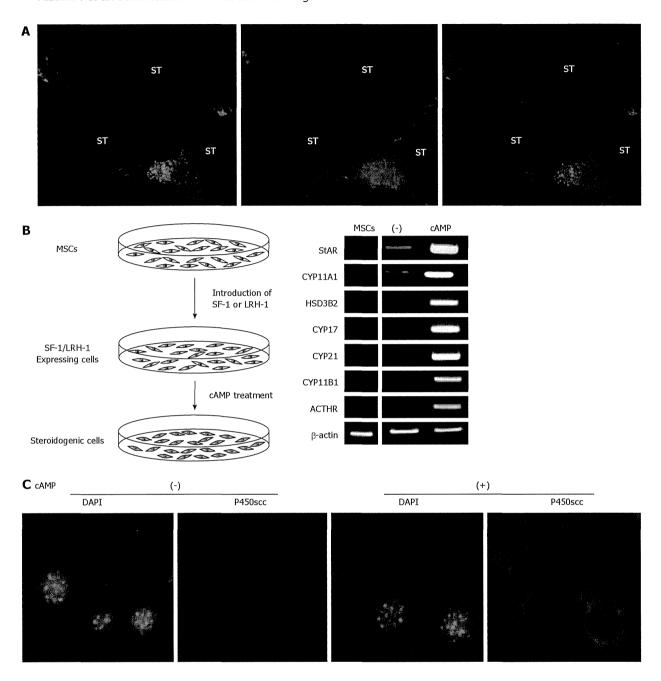



Figure 1 Differentiation of mesenchymal stem cells into steroidogenic cells. A: Transplantation of GFP-positive MSCs into prepubertal testis. Double staining of frozen sections from the testis 5 wk after MSC transplantation with anti-GFP and anti-P450scc antibodies; B: Protocol for generating steroidogenic cells from MSCs, and gene expression pattern of steroidogenic cells derived from hBM-MSCs; C: Fluorescence images of DAPI staining and P450scc immunostaining of SF-1 introduced BM-MSCs cultured with or without cAMP. ST: Seminiferous tubule. MSC: Mesenchymal stem cell.

appear in the interstitial space to induce sex differentiation just after the formation of the testis cord. Adult Leydig cells, which originate from mesenchymal precursor cells present in the testicular interstitium, appear to induce puberty. During the postnatal period, fetal Leydig cells are replaced by adult Leydig cells in prepubertal testis. Therefore, it should be possible to use transplanted BM-MSCs in such conditions *in vivo*. Indeed, after 3 wk, transplanted GFP-positive cells were located in the interstitium and expressed various steroidogenic enzymes for androgen production (P450scc/Cyp11a1, 3β-HSD I and

Cyp17). These results indicate that MSCs have the capacity to differentiate into steroidogenic Leydig cells *in vivo*.

Although these data suggest that the injected stem cells differentiated into Leydig cells, the apparent stem cell plasticity may also be explained by possible cell-nuclear fusion between donor and recipient cells. However, purified murine BM-MSC lines spontaneously differentiate into steroidogenic cells *in vitro*<sup>[57]</sup>. A human *CYP11A1* promoter-driven GFP reporter, which consisted of a 2.3-kb fragment that drives reporter gene expression selectively in adrenal and gonadal steroidogenic cells<sup>[77]</sup>,

Table 2 Properties of steroidogenic cells derived from mesenchymal stem cells induced by steroidogenic factor-1/liver receptor homolog-1 and cAMP

| Cells          | Origin                        | SF-1/LRH-1 | Produced               | Properties of differentiated cell |
|----------------|-------------------------------|------------|------------------------|-----------------------------------|
| VID40          | Mouse                         | Plasmid    | T-1-1-1                | one Testicular leydig cells       |
| KUM9           | Bone marrow                   | riasmid    | Testosterone           |                                   |
| hMSC-          | Human                         | Plasmid    | Cortisol               | Adrenal fasciculata cells         |
| TERT-E6/7      | Bone marrow                   | Retrovirus | Cortisol               |                                   |
| UE7T-13        | 1                             | Retrovirus | Testosterone, cortisol |                                   |
| UE6E7T-12      | Human                         | Retrovirus | Testosterone, cortisol | Fetal adrenal-like cells          |
| UE6E7T-11      | Bone marrow                   | Retrovirus | Testosterone, cortisol |                                   |
| UCB408E6E7T-33 | Human<br>Umbilical cord blood | Retrovirus | Progesterone cells     | Ovarian granulosa-luteal cells    |

has been transfected into BM-MSCs to detect cell populations committed to the steroidogenic lineage. In some transfected cell lines, GFP fluorescence was detected in very small populations that were also positive for Cyp11a1. Further analysis showed that these cells expressed several Leydig cell markers, including  $3\beta$ -HSD type I and VI and luteinizing hormone (LH) receptor. These observations further support the *in vivo* findings that MSCs have the capacity to differentiate into steroidogenic cells, even under the isolated condition. Therefore, part of population of MSCs can spontaneously differentiate into steroidogenic cells *in vitro*. Interestingly, SF-1 expression was also detected in the GFP-positive cells.

### Differentiation of MSCs into steroidogenic cells induced by SF-1 and LRH-1

The above mentioned results strongly suggest that SF-1 can effectively direct the differentiation of MSCs into the steroidogenic lineage. Indeed, MSCs completely differentiate into steroidogenic cells and show their phenotype after stable expression of SF-1 (using plasmids or retroviruses) and cAMP treatment (Figure 1B)[36,37,44,57,78,79]. SF-1 by itself induces morphological changes in BM-MSCs, such as the accumulation of numerous lipid droplets, although these cells hardly express steroidogenic enzyme genes or produce steroid hormones at detectable levels. However, SF-1 expressing cells strongly become positive for CYP11A1/Cyp11a1 after cAMP treatment (Figure 1C). These cells express many other steroidogenesisrelated genes (SR-BI, StAR, 3β-HSD and other P450 steroid hydroxylases) and autonomously produce steroid hormones, including androgen, estrogen, progestin, glucocorticoid and aldosterone. Notably, this approach differentiates human BM-MSCs into high cortisolproducing cells in response to ACTH, which are very similar to fasciculata cells in the adrenal cortex (Figure 1B). Adenovirus-mediated transient expression of SF-1 also differentiates BM-MSCs into steroidogenic cells with the capacity of *de novo* synthesis of various steroid hormones<sup>[80-84]</sup>. After transplantation into animal models, these MSC-derived steroidogenic cells can improve symptoms of steroid hormone deficiencies caused by adrenalectomy. However, as mentioned above, these methods are not applicable to ESCs, embryonal carcinoma cells and terminally differentiated cells, such as fibroblasts and adipocytes<sup>[37,57,81]</sup>. These results indicate that MSCs are suitable stem cells for differentiation of steroidogenic cells. This hypothesis is supported by the fact that after predifferentiation into MSCs, ESCs can also be subsequently differentiated into steroidogenic cells using SF-1<sup>[37]</sup>.

As in the case of SF-1, introduction of LRH-1 (using retroviruses) into BM-MSCs with the aid of cAMP induced the expression of steroidogenic enzymes and differentiation into steroid hormone-producing cells<sup>[44]</sup>. Expression of SF-1 was never induced in LRH-1-transduced cells and vice versa. Therefore, LRH-1 could act as another master regulator for determining the MSC fate to the steroidogenic lineage. This phenomenon is likely to represent a situation of active progesterone production in human corpus luteum; LRH-1 is highly expressed, whereas SF-1 is expressed at very low levels<sup>[36,42]</sup>.

# MOLECULAR MECHANISMS OF DIFFERENTIATION

## Steroidogenic cells derived from various MSCs and their properties

In addition to BM-MSCs, various MSC types have been differentiated into steroidogenic cells by the above mentioned methods. However, their steroidogenic properties markedly vary and depend on the derivation tissues and species (Table 2)[36,42,57,83,84]. For example, hBM-MSCs differentiated into cortisol-producing adrenocorticallike cells and umbilical cord blood (UCB)-derived MSCs differentiated into granulosa luteal-like cells, which produced high levels of progesterone [36,57]. Gondo et al [83] also reported that steroidogenic profiles of adipose tissue-derived MSCs were markedly different from those of BM-MSCs prepared from the same mouse. However, the cell differentiation fate was consistent in each MSC. These findings suggest that the steroidogenic properties of the differentiated cells depend on the characteristics of the originating MSCs.

To determine the difference between BM-MSCs and UBC-MSCs, the fluctuations in gene expression were investigated by a DNA microarray [36,85]. Among the identified genes, peroxisome proliferator-activated receptor  $\gamma$  coactivator-1 $\alpha$  (PGC-1 $\alpha$ ) was expressed only in UBC-MSCs at relatively high levels. Consistent with these re-



WJSC | www.wjgnet.com

sults, the expression of PGC-1 $\alpha$  was observed in ovarian granulosa cells. Overexpression of PGC-1 $\alpha$  in granulosa cells induced the genes essential for progesterone synthesis, whereas knockdown of PGC-1 $\alpha$  in granulosa cells attenuated the expression of these genes. These results demonstrate that PGC-1 $\alpha$  represents one of the important factors for progesterone production in luteinized granulosa cells.

#### Epigenetic regulation during differentiation

Differentiation of stem cells into specialized cells can be viewed as a process in which epigenetic changes result in alterations in genes expressed by the cell as it becomes more specialized [86,87]. Thus, stem cell differentiation is a process that involves a series of epigenetic changes in the genome: histone and DNA modifications cause chromatin structural changes and affect the profiles of gene expression. In fact, such epigenetic modifications contribute to the induction of steroidogenesis-related genes when MSCs differentiate into steroidogenic cells [44,88-30].

The histone code hypothesis predicts that post-translational modifications of histone tails, alone or in combination, function to direct specific and distinct DNAtemplated programs<sup>[91]</sup>. Histone acetylation is a positive marker of transcription, while histone methylation correlates with transcriptional activation (H3K4, H3K36) and repression (H3K9, H3K27) that are dependent on their amino acid residues [92]. In hMSCs-derived steroidogenic cells, H3K27 acetylation and H3K4 dimethylation (active enhancer markers) increased in the regulatory regions of some steroidogenesis-related genes (glutathione S-transferase A and ferrodoxin reductase) after the introduction of SF-1<sup>[89,90]</sup>. Conversely, histone eviction, which has been reported in actively transcribed genes<sup>[93]</sup>, took place on the promoter and the enhancer regions of the StAR gene [88]. Because these modifications occurred around the SF-1 binding sites, recruitment of SF-1 to the regulatory regions is likely to induce recruitment of various transcriptional regulators and histone modifiers, which in turn alter chromatin structure and lead to the expression of steroidogenesis-related genes.

In addition to histone modifications, DNA methylation at cytosine residues of the dinucleotide sequence CpG, which induces gene silencing, is essential for differentiation and development [94,95]. In MSC-derived steroidogenic cells, the DNA methylation status changes in the promoter regions of some steroidogenic genes during differentiation [44]. In undifferentiated hBM-MSCs, the CYP11A1 promoter region is hypomethylated, whereas the CYP17A1 promoter region is highly methylated. In SF-1/LRH-1-introduced MSCs during cAMP treatment, this condition was almost completely unchanged in the CYP11A1 promoter region, whereas the CYP17A1 promoter region was progressively demethylated. These methylation patterns of the CYP11A1 and CYP17A1 promoters closely paralleled the induction patterns of both genes by cAMP. There is a time lag associated with the induction of steroidogenic enzymes by cAMP treatment in SF-1/LRH-1-introduced MSCs<sup>[44,57]</sup>. The order of induction of the enzymes is similar to the sequential order of the steroid hormone synthesis pathway; upstream enzymes (CYP11A1 and 3β-HSD) were rapidly induced at earlier time points (6-12 h), whereas downstream enzymes (CYP17A1 and CYP11B1) were induced at later time points (24-48 h). Because this time lag disappeared by treatment with a demethylating agent, the status of DNA methylation in the promoter regions could be important for regulating the expression of steroidogenic enzymes in MSCs.

#### CONCLUSION

It is clear that SF-1 represents a master regulator, not only for the development of steroidogenic organs, but also for steroidogenesis following organogenesis. LRH-1 is also important for steroidogenesis in gonads. In addition, SF-1 and LRH-1 direct differentiation of non-steroidogenic stem cells into steroidogenic cells. Among the various stem cell types, MSCs are suitable stem cells for the differentiation of steroidogenic cells. After pre-differentiation into MSCs, pluripotent stem cells can also be subsequently differentiated into steroidogenic cells using SF-1. These cells may provide a source for regenerative and gene therapies, although various problems should be resolved in future studies. It is essential to delineate the conditions that allow the directed differentiation into specific steroidogenic lineages with the characteristics of testicular Leydig cells, ovarian granulosa and theca cells, as well as various types of adrenocortical cells (reticularis, fasciculata and glomerulosa). In addition, it is necessary to establish methods for inducing SF-1 and LRH-1 expression in stem cells without gene transfer. Further studies are required for the realization of regeneration of steroidogenic tissues.

MSC-derived steroidogenic cells also provide opportunities for investigating various phenomena involved in differentiation of steroidogenic cells and steroidogenesis. In addition to the molecular mechanisms of differentiation described herein, the conservation and evolution of the androgen metabolic pathway (11-ketotestosterone production) between teleost fish and mammals has been revealed [78,90]. Genome-wide analyses of differentiated cells identified novel target genes regulated by SF-1 and LRH-1 [89,90,97,98]. In addition, they contributed to the elucidation of one of the causes of steroidogenesis disorders [99-101]. Thus, progression of these studies is also important for the understanding of steroidogenesis and its related disorders.

#### REFERENCES

- Claahsen-van der Grinten HL, Stikkelbroeck NM, Otten BJ, Hermus AR. Congenital adrenal hyperplasia--pharmacologic interventions from the prenatal phase to adulthood. *Pharma*col Ther 2011; **132**: 1-14 [PMID: 21635919 DOI: 10.1016/j.pharmthera.2011.05.004]
- White PC, Bachega TA. Congenital adrenal hyperplasia due



WJSC | www.wjgnet.com