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Schematic summary of the present findings. The Lin™/ckit™/CD106™/CD44" BMC population abundantly migrates into damaged

muscles to suppress inflammation and activate the muscle regeneration processes in Duchenne muscular dystrophy, in part via the TSG-6-
mediated pathway. Chronic injury/regeneration cycles drain the numbers of both Lin™/ckit™/CD106" /CD44™ and Lin~/ckit™/CD106™ /CD44™
populations in BM. Abbreviation: BM-MSCs, bone marrow-mesenchymal stromal cells.

Hagiwara et al. proposed that BMT did not significantly
improve the muscle function of mdx mice [43] compared with
non-BMT mdx mice, which is consistent with this study. For
BMT, the recipient mice receive high-dose irradiation that
ablates not only bone marrow cells but aiso other cells to
worsen the regeneration ability. Therefore, in our study, we
first conducted the 10-week-old mdx or WT mouse BMC
transplantation into 3—4-week-old mdx mice (Mdx-wt vs. Mdx-
mdx) to compare these two BMT models on mdx mouse
pathology. Although muscle differentiation from BMCs was
almost undetectable, we observed muscle function and patho-
logical differences between these mice. From that point, we
hypothesized and investigated whether the differences in the
WT and mdx BM-MSC populations and the alteration of BM-
MSC populations could be related to muscle pathological con-
ditions in mdx mice.

Several possibilities could account for the reduction of
BM-MSC populations in 10-week-old mdx mice. We previously
reported that transient reduction of the cD45~/cDa4a™/
CXCR4" cells in BM with appearance of this population in
peripheral blood during ectopic bone formation [8]. In addi-
tion, during the inflammation phase in multiple sclerosis
mice, interferon-gamma secreted from activated T cells
decreased the number of CFU-Fs and CD45™ cells in BM [44].
These data suggest that induction of direct or indirect stimuli
in pathological conditions can mobilize MSC populations from
BM to contribute to tissue regeneration at a distant location.
In mdx mice, these stimuli from degenerated muscles are
expected to chronically continue because the muscle patho-
logical symptoms have progressed. Thus, the continuous
requirement to contribute to muscle regeneration from BM
might be responsible for the reduction in the BM-MSC popu-
lation in mdx mice (Fig. 7). Previously, we reported that
HMGBL1 is abundantly released from necrotic epithelial cells
of the mouse skin graft model and mobilizes PDGFR™ cells
from BM into the circulation [9]. In DMD mice, however, we
did not observe HMGB1 elevation in the serum (data not
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shown), indicating another unknown mechanism underlying
the mobilization of BM-MSCs from BM into circulation and
damaged muscles.

Surface marker analyses have suggested the existence of
multiple subpopulations in BM-MSCs [15, 16], and the roles
of each population in vivo have remained unclear. Here, we
demonstrated that BM-MSCs can be subdivided into Lin~/
ckit™/CD106"/CD44™ and Lin~/ckit™/CD106™/CD44™ cells.
Our whole-transcriptome analysis demonstrated that the
Lin~/ckit"/CD106"/CD44™ cells preferentially expressed SDF-
1o in BM. SDF-1u-expressing stromal cells in BM contribute to
niche formation for HSCs [10, 13, 14, 45]. In addition, there
are some similarities in the expression profiles of other genes
between Lin™/ckit™/CD106%/CD44~ BMCs and CXCL12 (SDF-
la)-abundant reticular cells or niche-maintaining cells in BM
[10-12, 14, 46]. From this context, we estimate that Lin™/
ckit™/CD1067/CD44™ cells in BM may be involved in this
niche formation mechanism for HSCs. Further precise investi-
gations are necessary to elucidate the roles and functions of
this mesenchymal cell population in BM.

Similar to HSC, heterogeneous MSC populations are also
hierarchically organized at the apex, from stem-like cells with
self-renewing capacity to more differentiated cells with lim-
ited lineage potentials [15, 16]. The stem cell populations in
various tissues are generally thought to be in a slow cycling
or quiescence state under physiological conditions [47-49]. In
this study, the Lin™/ckit™/CD106™/CD44™ population was pro-
liferative and dominantly accumulated in damaged muscles.
Conversely, the Lin~/ckit™/CD106"/CD44™ population in BM
was shown to be a slow-cycling population. Thus, it appears
that the Lin~/ckit™/CD106%/CD44™ population includes
effecter cells that egress into the circulation in response to
injury and serve to support regeneration through their anti-
inflammatory activity and resident stem-cell activation,
whereas the Lin~/ckit™/CD1067/CD44™ population in BM
includes a stem-like cell population. However, it is still unclear
whether a hierarchical relationship between Lin™/ckit™/
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CD106"/CD44™ and Lin™/ckit™/CD106"/CD44* BMCs {Fig. 7)
exists, and further studies are warranted to clarify the in vivo
relationship of these two populations.

In a recent study, CD106 marked an MSC subpopulation
with unique and powerful immunomodulatory activities in
vitro [6]. However, no report is available for the in vivo func-
tion of CD106™ MSCs. This study showed that recruited Lin™/
ckit™/CD106™ /CD44™ BMCs highly expressed TSG-6 in dam-
aged muscle. TSG-6 is a strong anti-inflammatory protein that
is secreted from MSCs in culture [3, 42, 50-52]. We also
showed that the TSG-6- or TSG-6/CD44-mediated pathway
activates myoblast and satellite cells in vitro and in vivo. In
addition, we observed the acceleration of muscle regenera-
tion as well as the suppression of inflammation following the
treatment of freshly isolated Lin~/ckit™/CD106"/CD44™
BMCs, in part through the TSG-6-mediated pathway. However,
we cannot yet determine the benefits of Lin™/ckit™/CD106™/
CD44™ BMCs for damaged muscles. Although the accumula-
tion of Lin™/ckit™/CD106%/CD44~ BMCs is low in mdx
muscles, these cells may have a high impact on the muscle
regeneration process. Therefore, in future studies, it would be
of interest to investigate whether this small BM-MSCs fraction
(Lin™/ckit™/CD106™ /CD44™) has the same effect on muscle
regeneration as observed in Lin~/ckit™/CD106% /CD44™ BMCs
or whether they exhibit different activities, such as muscle
differentiation.

In this study, we did not consider the potential effect of
Lin~/ckit™/CD106™ /CD44™ BMCs or TSG-6 on muscle resident
fibro/adipocyte progenitors (FAPs). Recent studies have indi-
cated that sufficient FAPs activities are important for muscle
regeneration [53-55]. It is also known that BM-MSCs and
FAPs have similar surface markers [54, 55] and express CD44
[56, 57], thus suggesting that TSG-6 secreted from Lin™ /ckit™/
CD106™/CD44™ BMCs also has effects on FAP proliferation
and activities to facilitate muscle regeneration. The interaction
of BM-MSCs with FAPs during muscle regeneration needs to
be investigated precisely in the future. Together, these find-
ings illustrate the putative scheme for the roles of the BM-
derived Lin~/ckit™/CD106¥/CD44™ BMCs, which dominantly
migrate in damage muscles and release TSG-6, with other
trophic factors, to suppress inflammation/fibrosis and pro-
mote muscle regeneration processes in vivo. With future stud-
ies, the local/systemic administration of TSG-6 may become a
new candidate strategy for improving DMD pathology.

In conclusion, it is clear that the normalization of dystrophin
gene expression is necessary for the ultimate cure of DMD.
Nevertheless, we consider that the series of results shown
here have a significant impact on the muscle repair mecha-
nisms by the endogenous BM-MSC population. This study also
provides a novel concept that the normalization of MSC popu-
lations in BM may prevent the secondary exacerbation of
inflammatory/fibrotic damages and improve clinical manifesta-
tions. A chronic exhaustion of MSC populations in BM appears
to occur in other intractable hereditary or nonhereditary dis-
eases besides DMD if persistent injury and inflammation con-
tinuously activate Lin~/ckit™/CD106%/CD44™ cells in BM.
Further precise analyses of heterogeneous BM-MSC popula-
tions to understand their roles and mechanisms in various in
vivo pathological settings may provide novel therapeutic strat-
egies by targeting intrinsic homeostatic maintenance mecha-
nisms driven by BM-MSCs in vivo.
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Abstract. POU domain proteins are a family of critical
regulators of development and differentiation due to their
transcriptional activity in the nucleus. Skn-1a, a member of
the POU domain protein family, appears to be expressed
predominantly in epidermal keratinocytes and is thought to
play a critical role in keratinocyte differentiation and prolif-
eration. In this study, we examined the mechanisms involved
in the nuclear localization of Skn-la. We transiently expressed
enhanced green fluorescent protein (EGFP) reporter constructs
encoding EGFP fusions with Skn-1a deletion and mutation
proteins in normal human epidermal keratinocytes (NHEKS).
The experiments clearly demonstrated that Skn-la contained
a functional nuclear localization signal (NLS) domain,
and that the smallest domain necessary for Skn-1a nuclear
transport was the GRKRKKR sequence located within
amino acids 279-285. Previous studies have shown that the
phosphorylation of specific amino acids neighboring the
NLS may regulate nuclear transport and that the amino acid
residues threonine (Thr) and serine (Ser) have the potential to
undergo phosphorylation. We examined whether the amino
acids Thr286 and Ser287, which reside adjacent to the NLS at
the carboxy-terminal side, play a role in Skn-1la nuclear local-
ization. For this purpose, we generated three EGFP-Skn-1a
mutation constructs, in which Thr286, Ser287, or both Thr286
and Ser287 residues were replaced with alanine, respectively.
The results showed that the Thr286 and Ser287 residues were
involved in the regulation of nuclear localization as well as
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epidermal differentiation. These results suggested that the
epidermal differentiation signaling pathway, involving kinase
and phosphatase activation, may regulate the NLS activity of
Skn-1la in keratinocytes. Collectively, these data contribute
to understanding the mechanisms of nuclear translocation of
POU domain proteins and epidermal differentiation.

Introduction

The epidermis is a stratified squamous epithelium in which
viable cells move outwardly from the basal layer to become
terminally differentiated keratinocytes that eventually consti-
tute the stratum corneum. Keratinocyte proliferation and
differentiation are closely regulated by cellular transcription
factors, including activator protein-1 family proteins (1), nuclear
factor-kB family proteins (2), cytidine-cytidine-adenosine-
adenosine-thymidine/enhancer-binding proteins (3),
p53-related proteins (4), and POU transcription factors (5).
POU transcription factors are characterized by a bipartite
POU domain in which a homeodomain is connected by a
short linker region to an N-terminally located POU-specific
domain (6). The POU-specific and POU homeodomain are
DNA-binding domains of the helix-turn-helix type.

Skn-1a, a member of the POU domain transcription factor
family, appears to be expressed predominantly in the epidermal
keratinocytes and is thought to play a critical role in keratinocyte
differentiation and proliferation (7-9). Skn-1a transactivates the
expression of the genes encoding K10 and SPRP2A, which are
expressed during keratinocyte differentiation, suggesting that
Skn-1la promotes keratinocyte differentiation. Furthermore, we
have previously reported that the mRNA expression of Skn-1a
increases in cultured normal human keratinocytes subsequent
to calcium-induced differentiation (9,10).

Similar to POU domain proteins characterized thus far (2),
Skn-la exerts its function in the nucleus. Nuclear proteins
enter this cellular compartment via the nuclear pore complex
after being synthesized in the cytoplasm, and usually, they
are actively transported through the nuclear pore (11). Such
active transportation requires energy, transport receptors, and
an endogenous nuclear localization signal (NLS) within the
cargo protein.

NLSs have been identified in a variety of nuclear
proteins ranging in size from <100 to >1,000 amino acids,
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including polymerases, kinases, phosphatases, transcription
factors, histones, tumor suppressor molecules, and various
viral proteins. In the present study, we characterized the
NLS of Skn-la, which was shown to be localized within its
DNA-binding domain as a motif highly conserved among the
POU domain proteins. Its identification enhances our under-
standing of the evolution of POU domain proteins and the
mechanisms involved in regulating the access of POU domain
proteins to the nucleus.

Materials and methods

Enhanced green fluorescent protein (EGFP)-Skn-la deletion
and mutation reporter constructs. The EGFP-Skn-1a plasmid
was constructed as described below (7). First the Skn-la
coding region, which contains the canonical NLS consensus
sequence, GRKRKKR (aa279-285), was amplified by
performing PCR and subcloned into the C-terminus of
pEGFP (Clontech Laboratories, Palo Alto, CA, USA). The
primers were used for PCR, BsrGI-207; 5-GGGTGTACA
AGTTCACACAGGGAGATGGGCTGGCGA-3" and
Not1-295; 5-TATGCGGCCGCAGTCAGGCGGATGTTG
GTCTC-3' for the 207-295 fragment, BsrGI-207 and NotI-287;
5'-GGGGCGGCCGCTTTAGCTGGTCCGTTTCTTTCT
CTTCCTACCAAA-3' for the 207-287 fragment, BsrGI-258;
5-GGGTGTACCCTCTCCGTCAGA CCCCTCAGTG-3' and
Not1-287 for the 258-287 fragment, BsrGI-269; 5-GGGTGT
ACACCTCCTACCCCAGCCTCAGTGAA-3' and No#l-287
for the 269-287 fragment. The 273-287, 279-287 and 279-285
fragments were directly employed as the following linkers:
5'-GTACAGGCTCAGTGAAGTATTTGCTAGGAAGAG
AAAGAAACGGACCAGCGC-3' and 5'-GGCCGCGCT
GGTCCGTTTCTTTCTCTTCGTACCAAATACTTCACT
GAGCCT-3' for the 273-287 fragment, 5'-GTACAC
CGGTAGGAAGAGAAAGAAACGGACCAGCGC-3' and
5'-GGCCGCGCTGGTCCGTTTCTTTCTCTTCCTAC
CGGT-3' for the 279-287 fragment, 5'-GTACACCGGTAG
GAAGAGAAAGAAACGGACCAGCGC-3' and 5-GGCCG
CCCGTTTCTTTCTCTTCCTACCGGT-3' for the 279-285
fragment. The EGFP-Skn-1a deletion constructs pEGFP-
Skn-la 207-295, pEGFP-Skn-1a 207-287, pEGFP-Skn-1a
258-287, pEGFP- Skn-la 269-287, pEGFP-Skn-1a 273-287,
pEGFP-Skn-1a 279-287 and pEGFP-Skn-1a 279-285 were
generated by cloning the corresponding segments into pEGFP
as BsrGI-Nofl fragments. We also constructed the mutation
constructs pEGFP-Skn-1a 279-285m in which both Arg282
and Lys283 were replaced by alanines using the following
linkers: 5'-GTACACCGGTAGGAAGGCTGCTAAACG
GACCAGCGC-3' and 5-GGCCGCCCGTTTAGCAGCCTT
CCTACCGGT-3"

Plasmids for the EGFP-Skn-1a mutation reporter constructs
EGFP-Skn-1a 207-287m1 in which threonine (Thr) 286 was
replaced with alanine, EGFP-Skn-1a 207-287m?2 in which
serine (Ser) 287 was replaced with alanine, and EGFP-
Skn-la 207-287m3 in which both Thr286 and Ser287 were
replaced with alanine, were constructed from pEGFPI1-
Skn-la 258-287 by PCR with mutagenetic primers (forward
for all, BsrGI-207; 5-GGGTGTACAAGTTCACACAGGGAG
ATGGGCTGGCGA-3"; reverse, 5'-GGGGCGGCCGCTT
TAGCCGGTCCGTTTCTTTCTCTTCCTACCAAA-3' for
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ml, 5-GGGGCGGCCGCTTTAGCTGCCCCGTTTCTTTC
TCTTCCTACCAAA-3' for m2, and 5-GGGGCGGCCG
CTTTAGCCGCCCCGTTTCTTTCTCTTCCTACCAAA-3'
for m3).

Cell culture. Normal human epidermal keratinocytes (NHEKS)
from neonatal foreskin were obtained commercially (Clonetics,
San Diego, CA, USA). Cultures were grown in a 60-mm culture
dish in keratinocyte growth medium containing human recom-
binant epidermal growth factor (0.1 ng/ml), insulin (5 ng/ml),
hydrocortisone (0.5 ng/ml), gentamicin (50 ng/ml), and ampho-
tericin-B (50 ng/ml). Phorbol 12-myristate 13-acetate (PMA,
Sigma-Aldrich, St. Louis, MO, USA) was used to induce
keratinocyte differentiation.

Transfection and microscopy. The plasmid constructs described
above were used in transient transfection studies in cultured
NHEKs (9,10). After the cells had grown to ~70% conflu-
ence, they were transfected with 5 ng of the EGFP-Skn-la
expression vector using the DOTAP Liposomal Transfection
Reagent (Roche Applied Science, Indianapolis, NJ, USA).
The pEGFP plasmid was used as the control. The cells
expressing EGFP were analyzed by fluorescence microscopy of
10 randomly selected fields. The cells were considered positive
when the nuclear fluorescence signal was clearly stronger that
the cytoplasmic fluorescence signal. The total number of cells
expressing EGFP (A) and the number of the positive cells in
which EGFP was localized in the nucleus (B) were measured,
and the rate of B/A was calculated. The rate of nuclear translo-
cation of each construct was expressed as a percentage relative
to that of EGFP-Skn-1a 279-285 which contained the most
minimum component of the DNA fragment.

Western blot analysis. Western blot analysis was performed
following a routine method (9,10). Briefly, the transfected cells
were lysed by the sample buffer, electrophoresed on 15% poly-
acrylamide gels, and then transferred onto a polyvinylidene
difluoride membrane. The membranes were incubated with
monoclonal anti-GFP antibodies (Roche Diagnostic Corp.,
Indianapolis, IN, USA), followed by incubation with a
horseradish peroxidase-labelled secondary anti-mouse anti-
body. Immunocomplexes were visualized using visualized
using the Image Lab System (Bio-Rad, Hercules, CA, USA).
Anti-B-actin antibodies were used as a control.

Statistical analysis. The Student's t-test was used to determine
the level of significance of differences in sample means. P<0.01
was considered significant. Data were shown as mean + SD.

Results

Nuclear translocation of the EGFP-Skn-1a deletion proteins.
To identify the regions of the Skn-la protein required
for its transport into the nucleus, we generated reporter
constructs for Skn-1a deletion proteins fused to EGFP at their
N-termini (Fig. 1). The putative NLS consensus sequence,
GRKRKKR is located between amino acids 279 and 285.
We transfected the constructs into NHEKSs and analyzed the
EGFP fusion protein localization 24 h later by fluorescence
microscopy. Western blot analysis was also performed to
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Figure 1. Schematic representation of the enhanced green fluorescent protein (EGFP)-Skn-1a deletion reporter constructs. General structure of the EGFP-Skn-1a
constructs. The constructs contain the cytomegalovirus (CMV) promoter and the enhanced green fluorescent protein (EGFP) gene. Skn-l1a fragments were
fused with the C-terminal amino acid of EGFP. GRGRKKR (aa279-285) is the putative consensus nuclear localization signal (NLS) of Skn-1a.
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Skn-1a

Actin

1

Figure 2. Western blot analysis of the fusion proteins. We transfected the
constructs and western blot analysis was performed. Typical experiment
was shown in the figure. 1, no transfection; 2, pEGFP, basic construct;
3, enhanced green fluorescent protein (EGFP)-Skn-1a 279-285, the shortest
EGFP construct; 4, EGFP-Skn-1a 207-287, the longest EGFP construct.
Actin, Anti-f-actin antibodies were used as control.

confirm production of the EGFP fusion protein. The result of
western blot analysis revealed that each construct exhibited
a band with an estimated size (Fig. 2). Typical positive cells
are shown in Fig. 3. The nuclear fluorescence signal was
clearly stronger than the cytoplasmic fluorescence signal.
Results of the immunofluorescence experiments showed that
the rates of nuclear translocation of the fusion proteins from
pEGFP-Skn-la 258-287, 269-287, 273-287, 279-287 and
279-285 were almost identical (Fig. 4). On the other hand, rates
for the fusion proteins from the constructs 207-295 and 207-287
were relatively low. The control plasmid pEGFP had little or
no ability to enter the nucleus. We also examined the mutation
constructs pEGFP-Skn-1a 279-285m in which both Arg282
and Lys283 were replaced by alanines. The result showed the
rate to be identical to that of control pEGFP (data not shown).

Nuclear translocation of the EGFP-Skn-1a mutation proteins.
The amino acids Thr286 and Ser287 reside adjacent to the
NLS on its carboxy-terminal side. We examined their role

in Skn-la nuclear localization by generating three mutation
reporter constructs based on the pEGFP-Skn-1a 207-287
construct. Thr286 was replaced with alanine to generate the
construct pEGFP-Skn-1a 207-287ml, Ser287 with alanine
for the construct pEGFP-Skn-la 207-287m2, and both
Thr286 and Ser287 residues were replaced with alanine for
the construct pPEGFP-Skn-la 207-287m3 (Fig. 5). We then
compared the nuclear translocation rates of the pPEGFP-Skn-1a
mutation proteins. The nuclear translocation rates of the
pEGFP-Skn-1a207-287m1 andpEGFP-Skn-1a207-287m2 muta-
tion proteins were identical to that of pEGFP-Skn-1a 207-287,
whereas the pEGFP-Skn-1a 207-287m3 mutation protein
showed a significantly higher rate compared to the other three
constructs (Fig. 6).

Effect of PMA treatment on nuclear translocation. PMA
has been well characterized as a protein kinase C activator
as well as an inducer of late differentiation marker expression
and cornified envelope assembly in vitro. In the subsequent
series of experiments we examined the rate of nuclear trans-
location of the reporter proteins from pEGFP-Skn-1a 207-287,
pEGFP-Skn-la 207-287m1, pEGFP-Skn-la 207287m?2,
and pEGFP-Skn-1a 207-287m3 in NHEKSs treated for 24 h
with10-8-10-°*MPMA . Thenucleartranslocationratesof proteins
from pEGFP-Skn-1a 207-287, pEGFP-Skn-1a 207-287m1, and
pEGFP-Skn-1a 207-287m2 were enhanced by PMA. However,
the rate of the pEGFP-Skn-1a 207-287m3 mutation protein
was independent of PMA concentration, and following treat-
ment with 108 M PMA all four proteins showed essentially the
same translocation rate (Fig. 7).

Discussion

The transport of proteins between the nucleus and cytoplasm
occurs primarily through the nuclear pore complex where
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Figure 3. Nuclear translocation of enhanced green fluorescent protein (EGFP)-Skn-1a fusion proteins. We transfected the constructs into normal human
epidermal keratinocytes (NHEKS) and analyzed the EGFP fusion protein localization 24 h later by fluorescence microscopy. Typical positive cells for nuclear
translocation are shown. The specimen of pEGFP (A and B) shows no or few positive cells and (C) the majority of cells are positive in the sample of
pEGFP-Skn-1a 279-285. (D) Half of the cells are positive in pEGFP-Skn-1a 207-287.
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Figure 4. Rates of nuclear translocation of the enhanced green fluorescent
protein (EGFP)-Skn-1a deletion proteins in normal human epidermal
keratinocytes (NHEKSs). Several plasmid constructs, which express Skn-la
deletions as fusion proteins with EGFP were developed and transfected into
NHEKSs. EGFP-Skn-la deletion protein localization was analyzed using
fluorescence microscopy at 24 h following transfection. The total number
of cells expressing EGFP {A) and the number of the positive cells in which
EGFP was localized in the nucleus (B) were measured, and the rate of B/A
was calculated. The rate of nuclear translocation of each construct was
expressed as a percentage relative to that of EGFP-Skn-1a 279-285, which
contained the most minimum component. The indicated values show the
mean rate + SD.

proteins can enter the nucleus either by diffusion or by
signal-mediated transport (11). The structural constraints of
the nuclear pore complex established that only proteins with
a molecular mass of <40 kDa are able to enter the nucleus
by passive diffusion. However, many proteins are imported
by signal-mediated transfer, among them Skn-la, which is
~48 kDa in size (12). Based on previous observations, we
hypothesized that the regulation of nuclear localization of

Skn-1a serves as a molecular switch to control the transcrip-
tion of various epidermal genes.

The NLStradamus model predicts the sequence
GRKRKKR (2a279-285) to be the putative consensus NLS
of Skn-la (13). Therefore, we transiently expressed in kera-
tinocytes a number of EGFP fusion proteins containing the
putative NLS with deletions or mutations. The results clearly
demonstrate that Skn-la contains a functional NLS domain,
and that the smallest domain necessary for Skn-1la transport
is located within amino acids 279-285 (Fig. 2), suggesting
that this region of Skn-la functions as an NLS. Substitution
of alanines for both Arg282 and Lys283 eliminated NLS
activity of the sequence GRKRKKR (aa279-285). We also
found that the deletion proteins from the constructs 207-295
and 207-287 showed a relatively low rate compared with the
other shorter constructs, suggesting the presence of a region
spanning from 207-287 that potentially inhibits or counteracts
the NLS function. It is possible that Ser and Thr residues,
prone to phosphorylation, are present in the region 207-258.
The computer program NetPhos 2.0 (14), which is utilized to
identify potential phospholylation sites, showed that the value
of Ser230 was relatively as compared to that of Ser287. Thus,
studies targeting Ser230 are to be conducted.

The three POU transcription factors Oct-1, Oct-6, and
Skn-la are expressed in the epidermis. The corresponding NLS
regions of these human POU transcription factors Oct-1, Oct-6
and Skn-1a are GLSRRRKKRTSIET, AQGRKRKKRTSIEV,
VFGRKRKKRTSIET, respectively (the NSL sequence is
underlined) (7,15,16). Notably, all three POU factors contain the
identical TSIE amino acid sequence situated at the C-terminus
of the NLS. This binding suggests that this area may be
important in keratinocyte growth and differentiation. Findings
of previous studies have shown that the phosphorylation of
particular amino acids neighboring the NLS may regulate
NLS activity (17), and that the amino acid residues Thr and
Ser are potential candidates for undergoing phosphorylation.
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Figure 5. Schematic representation of the enhanced green fluorescent protein (EGFP)-Skn-la mutation reporter constructs. The fusion protein
EGFP-Skn-1a207-287 contains threonine (Thr) 286 and serine (Ser) 287, which reside adjacent to the nuclear localization signal (NLS) at the carboxy-terminal
side. EGFP-Skn-1a 207-287m1 encodes a mutation protein in which Thr286 is replaced with alanine; EGFP-Skn-1a 207-287m2 encodes a mutation protein
in which Ser287 is replaced with alanine; EGFP-Skn-1a 207-287m3 encodes a mutation protein in which both Thr286 and Ser287 are replaced with alanines.
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Figure 6. Rates of nuclear translocation of the mutant constructs. We
generated enhanced green fluorescent protein (EGFP)-Skn-1a mutation
constructs, then transfected them into normal human epidermal keratino-
cytes (NHEKSs), and analyzed the translocation rates. The indicated values
are the mean translocation rate + SD. Significant differences ("p<0.01) were
found between 207-287 and m3, m1 and m3, and m2 and m3.

Consequently, we generated three mutation reporter constructs
derived from EGFP-Skn-la 207-287, in which Thr286 was
replaced with alanine (EGFP-Skn-1a 207-287m1), Ser287 with
alanine (EGFP-Skn-1a207-287m2), or both Thr286 and Ser287
with alanine (EGFP-Skn-1a 207-287m3) and expressed them
in keratinocytes. Results of the present study demonstrate that
the nuclear translocation rate of construct m3 was higher than
those of EGFP-Skn-1a 207-287, and constructs ml and m2,
suggesting that Thr286 and Ser287 play modulating negative
roles in NLS function. We also hypothesize that the nuclear
accumulation of Skn-1a correlates with the dephosphorylation
of both Thr286 and Ser287.

In the presence of low calcium concentration in the
medium, keratinocytes are maintained phenotypically as
a basal cell-like population of undifferentiated cells. Under
these conditions, the proteins from EGFP-Skn-1a 207-287,
EGFP-Skn-1a 207-287m1 and EGFP-Skn-la 207-287m2
translocate to the nucleus with low efficiency, compared
to EGFP-Skn-la 207-287m3. PMA has been well char-
acterized as an activator of protein kinase C as well as an

100 - ©207-287 [ m2

B 3
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a0 -

20

Nuclear translocation rate (%)

o 10-8
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Figure 7. Effect of phorbol 12-myristate 13-acetate (PMA) treatment on the
nuclear translocation rate of enhanced green fluorescent protein (EGFP)
The extent of nuclear translocation of the deletion and mutation pro-
teins encoded by the EGFP-Skn-1a 207-287, EGFP-Skn-1a 207-287ml,
EGFP-Skn-1a 207-287m2 and EGFP-Skn-1a 207-287m3 constructs prior to
and following treatment with various concentrations of PMA. Prior to treat-
ment, the calcium concentration in the medium was adjusted to 0.03 mM to
maintain a basal cell-like phenotype of undifferentiated cells. The indicated
values are the mean translocation rate + SD.

inducer of late differentiation marker expression and corni-
fied envelope assembly in vitro. Therefore, we examined
the translocation rates of the mutation reporter proteins in
differentiated keratinocytes induced by PMA. As a result
of PMA treatment, the nuclear translocation rate of proteins
from EGFP-Skn-la 207-287, EGFP-Skn-1a 207-287ml,
and EGFP-Skn-la 207-287m2 increased. However, the
rate of EGFP-Skn-1a 207-287m3 was independent of PMA
concentration, and following 10®* M PMA treatment, all four
proteins showed essentially the same translocation rate. These
data indicate that Thr286 and Ser287 residues play a role in
keratinocyte differentiation, suggesting that the epidermal
differentiation signaling pathway, involving kinase and phos-
phatase activation, regulates the NLS activity of Skn-1a in the
epidermal keratinocytes.
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Results of the present study suggest that the transcriptional
regulation of various epidermal genes provides a differenti-
ation-specific phenotype of the epidermis. At present, the
precise mechanism of transcription factor nuclear transloca-
tion in keratinocytes remains to be characterized. Further
characterization of the transportation mechanisms may facili-
tate an understanding of signal transduction into the nucleus.
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Spinal Cord Regeneration with Olfactory Mucosa Autografts
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The efficacy of olfactory mucosa autografts for chronic spinal cord injury has been previously reported. The
new voluntary activity in response to voluntary effort has been documented by EMG, but the emergence of
motor evoked potentials, which reflects the status of electrophysiological conductivity including the corticospinal
pathway after olfactory mucosa autograft treatment, has not been ascertained. We report herein, the emergence
of motor evoked potentials after olfactory mucosa autograft.
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Fig.1 The location of olfac-
tory mucosa which was
removed and trans-
planted
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A:T1 weighted MR Image of
thoracic spinal cord injury.

B : Gd-enhanced image on T1 weighted MR
image.
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A Removal of intra-spinal cord scav tissue.
B : Minced olfactory mucosa.

Transplantation of minced olfactory mucosa.
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