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effects that significantly contribute to tissue repair in injured livers [2].
MSCs can be isolated from various adult connective tissues, includ-
ing bone marrow and adipose tissues, the placenta, amniotic fluid,
and umbilical cord blood [3, 4]. MSCs initially attracted research
interest due to their ability to differentiate into cells of the meso-
dermal lineage. However, in recent years, greater attention has
been devoted to exploring their capacity to secrete cytokines and
growth factors [2, 5-7]. To date, numerous animal studies have
demonstrated that MSCs are therapeutically beneficial for the
treatment of liver diseases.

Several animal models for acute liver disease have been proposed,
and these models have provided a great deal of insight with respect
to evaluating the therapeutic efficacy of MSCs for these diseases.
The most widely used model of acute liver disease is the carbon
tetrachloride (CCly) treatment model [8-13]. In this model, hepa-
titis is induced by reactive metabolic trichloromethyl radicals
(-CCl;) and peroxytrichloromethyl radicals (-OOCClI;), which are
mainly metabolized from CCl, by cytochrome P450 2E1 (CYP2EL)
[14]. Because CYP2EL is preferentially localized in the pericentral
zone of the liver acinus, the main sites of liver injury in the CCly-
induced model are these pericentral regions. Similarly, acetamino-
phen (AAP) can also be used to generate an acute hepatitis model
in rodents [15]. An overdose of AAP results in the generation of
N-acetyl-p-benzoquinoneimine by CYP2E1l [16] and thereby
produces hepatocyte necrosis. In contrast, concanavalin A (ConA)
causes acute hepatitis through an excessive auto-immune reaction
induced by the overproduction of various cytokines, such as tumor
necrosis factor-a and interferon-y [17]. It has been reported that the
immunosuppressive effects of MSCs can improve ConA-induced
acute hepatitis [18, 19]. The co-administration of lipopolysaccharide,
a component of gram-negative cell walls, and D-galactosamine,
another hepatotoxin, has also been used for the induction of acute
hepatitis in mice [20].

Using the CCly-induced hepatitis model, we have demon-
strated that human adipose tissue-derived MSCs (hADSCs) signifi-
cantly contribute to tissue repair in acute hepatitis. Our research
group has previously reported that hADSC-derived hepatocyte-
like cells (hADSC-Heps) could be generated from hADSCs [9, 11]
stimulated with growth factors that induce the differentiation of
embryonic stem (ES) cells into hepatocyte-like cells [21].
Importantly, we confirmed that transplanted hADSC-Heps ame-
liorated liver injury in the CCly-induced mouse hepatitis model
[9, 11]. Interestingly, however, we observed that in this model,
undifferentiated hADSCs produced greater therapeutic effects
than hADSC-Heps [10]. This finding has provided support for the
notion that the therapeutic effects of hADSCs are mainly produced
by the paracrine factors secreted by these cells rather than MSC
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functions related to the repopulation of the liver mass. In this
chapter, we describe a method to evaluate the therapeutic efficacy
of the systemic administration of hADSCs in the CClg-induced
acute hepatitis mouse model [10].

2 Materials

2.1 Animals

2.2 Isolation
and Gulturing
of hADSCs

2.3 Routine
Culturing of hADSCs

2.4 Systemic
Administration

of hADSCs in the CCly-
Induced Mouse Model
of Acute Liver Disease

Six-week-old female BALB/c nude mice (CLEA Japan Inc,
Tokyo, Japan) were used in this study (see Note 1).

1. 0.15 %.type I collagenase in Dulbecco’s phosphate-buffered
saline without calcium and magnesium (PBS(-)) (see Note 2).

2. Sterilized surgical scissors. ,
3. Water bath equipped with a heating circulator.

4. Dulbecco’s modified Eagle’s medium (DMEM; high glucose,
Invitrogen).

. Fetal bovine seirum (FBS).

. 160 mM NH,CI.

. 40 pm cell strainer (BD).

. Hemocytometer.

. MesenPRO RS™ Medium (Invitrogen).

10. Antibiotic-Antimycotic (Invitrogen).

11. GlutaMAX (Invitrogen).

12. CellBIND™ Surface 100 mm dish (Corning).

O o N ON !

. MesenPRO RS™ Medium (Invitrogen).

. Antibiotic-Antimycotic (Invitrogen).

. GlutaMAX (Invitrogen).

. CellBIND™ Surface 100 mm dish (Corning).
. Accutase.

. PBS(-).

QN UL o N e

. Carbon tetrachloride (CCly).
. Olive oil.

. 26-G needle.

. 1 mL syringe.

. 27-G needle.

. Mouse holder for intravenous injections.

N O U W N

. 40 pm cell strainer.
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2.5 Sampling 1. Isoflurane.
of Serum and Liver 2. 24-G needle.
Tisste 3. 1.5 mL tube,
4. PBS(~) containing 10 % formalin.
2.6 I;lisiolagical 1. Hematoxylin.
Analyses of Mouse 2. Bosin.
l(.:lv;rTSectn;nsf:{er 3. Anti-human leukocyte antigen (FILA) class I antibody (clone
ell fransplamtatiorn W6,/32; Sigma, 1:250).
4. Alexa Fluor 594 (Invitrogen).
3 Methods
3.1 Isolation This portion of the methods section is based on a protocol that was
and Culturing ‘previously published by our laboratory [22].
of hADSCs

1.

Use surgical scissors to mince adipose tissue into pieces thatare
less than 3 mm in size. Collect these tissue pieces into a tube,
add an equal volume of PBS(-), and mix vigorously at room
temperature. :

. Let the mixture stand at room temperature until it separates

into two phases.

. Collect the upper phase, which contains stem cells, adipocytes,

blood, and PBS(-), into a new tube, and wash this phase three
times with fresh PBS(-). Discard the lower phase.

. Add an equal volume of PBS(~) containing 0.15 % type I

collagenase (thus achieving a final collagenase concentration of
0.075 %), and shake the resulting mixture for 30 min in a
37 °C water bath.

. Add an equal volume of DMEM containing 10 % FBS, shake

the resulting mixture well, and allow this mixture to incubate
for 10 min. The mixture will separate into two phases during
this incubation.

. Discard the upper phase. Centrifuge the lower phase at 280x 4

for 5 min at room temperature.

. Resuspend the cellular pellet in 5 mL of 160 mM N.I—L}Cl over

the course of 3 min. Filter the resulting mixture through a
40 pm cell strainer into a new tube containing 5 mL DMEM
with 10 % FBS.

. Centrifuge at 280 x4 for 5 min at room temperature.
. Dissolve the cell pellet in MesenPRO RS™ complete medium

(see Note 3), and seed the cells onto CellBIND™ Surface
100 mm dishes at 1.0-5.0 x 10* cells/cm? (see Note 4).
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Culturing of hADSCs

3.3 Intravenous
Administration

of hADSCs in the CCl-

Induced Mouse Model
of Acute Liver Disease

3.4 Blood and Tissue
Sampling
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When cells reach 70-90 % confluence, passage them as follows.

1.
2.

10.
11.

12.

13.

14.

Wash the cells twice in PBS(-).

Add 1 mL accutase to each 100 mm dish. Incubate each dish
for 5 min at 37 °C.

. Tap the dish, use 5 mL/dish of MesenPRO RS™ complete

medium to collect cells into a tube, and centrifuge cells at
220xg for 5 min at room temperature.

. Resuspend the cells in MesenPRO RS™ complete medium,

count the cell number, and seed the cells into new CellBIND™
dishes at a concentration of 5 x 10° cells/cm?.

. To ensure the acquisition of sufficient numbers of cells, plate

hADSCs 2-5 days prior to the intravenous injection of these
cells into mice. '

. Prepare diluted CCl; solution by mixing one volume CCly

with nine volumes olive oil.

. Intraperitoneally inject mice with 100 pL diluted CCly

solution/20 g body weight (10 pL. CCl,/20 g body weight).

. To establish a sham operation, intraperitoneally inject mice

with 100 pL olive 0il /20 g body weight.

. Twenty-four hours after CCly injection, perform the intravenous

injection of hADSCs as follows.

. Wash the cells twice in PBS(-).
. Add 1 mL accutase per 100 mm dish, and incubate dishes at

37 °C for 5 min.

. After tapping the dishes, use 5 mL/dish of MesenPRO RS™

complete medium to collect cells into a tube.

. Remove cell aggregates by filtering the cell suspension through

a 40 pm cell strainer into a new tube.
Centrifuge the cells at 220 x g for 5 min at room temperature.

Resuspend these cells in 0.5-1 mL PBS(-), and count the
number of cells obtained.

Use PBS(~) to dilute the cell suspension to 7.5x10° cells/mL, and
store the suspension on ice until it is injected into mice (see Note 5).
Load the hADSC suspension into a 1 mL syringe and equip
this syringe with a 27-G needle (see Note 6).

Slowly inject 200 pL ADSC suspension/mouse (1.5x106
cells/mouse) into the tail veins of the mice (see Notes 7 and 8).

. Use isoflurane to anesthetize mice 24 h after the injection of

hADSCs.

. Open the chest of each mouse with surgical scissors to expose

the heart.

18



62 Takeshi Katsuda et al.

3.

4.

O o N O

11.

3.5 Histological 1.

Analyses
of Liver Tissue

Insert a syringe with a 24-G needle into the left ventricle.
Slowly collect blood into the syringe (see Note 9).

After collecting this blood sample, extract the liver of the
mouse. Wash the liver once in PBS(-), and fix the extracted
liver by soaking it in 10 % formalin.

. Collect blood into a 1.5 mL tube and incubate this tube at

room temperature for 30 min.

. Incubate the tube at 4 °C for 1 h.

. Centrifuge the tube at 2,200 x4 for 20 min at 4 °C.
. Transfer the supernatant into a new tube.

. Centrifuge this tube at 2,200 x g for 5 min at 4 °C.
10.

Carefully collect the supernatant (serum) and transfer it into a
new tube (see Note 10).

Use serum samples for blood tests, or store these samples at
-20 °C until use (see Note 11).

Fix the collected liver tissue in PBS(~) containing 10 % formalin,
and prepare a paraffin block. Use a general sectioning proce-
dure to obtain 3-5 pm sections.

. Utilize a generally accepted procedure to perform hematoxylin

and cosin (HE) staining (see Note 12).

. To detect human hADSCs in the livers of immunodeficient

mice, perform immunofluorescent staining of mouse liver tissue
using an anti-HLA-1 antibody (see Note 13).

4 Notes

. Animals are maintained in an isolator unit at a constant

temperature of 20 °C and subjected to a 12 h light—dark cycle.
Mice receive a standard sterilized diet and water ad libitum. All
experiments were performed in accordance with national laws
and institutional regulations.

. Dissolve 0.015 g collagenase in 10 mL PBS(-) by layering the

powder on the surface of the liquid to avoid clumping.. After
the powder has completely dissolved, sterilize the solution by
filtration through a 0.22 pm filter.

. Prepare MesenPRO RS™ complete medium by supplementing

500 mL of basal medium with 10 mL growth supplement,
5 mL Antibiotic-Antimycotic, and 5 mL GlutaMAX.

. The cells exhibit a spindle-shaped morphology that is character-

istic of MSCs (Fig. 1a) and express CD105 (endoglin) (Fig. 1b).
CD105, which is a component of the receptor complex of trans-
forming growth factor (T'GF)-B, is involved in various cellular
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Fig. 1 Characterization of isolated hADSCs. (a ) Phase contrast images of isolated hADSCs indicate the spindle-
shaped morpho!ogy of these cells, which is a characteristic feature of MSCs. Scale bar: 200 um. (b) hADSCs
are positive for CD105 (green), an |mp0rtant molecule for maintaining MSC characteristics [9]. Nuclei are
counterstained with Hoechst 33342 (blue). Scale bar: 100 um. (c) Alkaline phosphatase staining reveals the
osteogenic differentiation of hADSCs. Scale bar: 100 pm. (d) Oil red O staining reveals the adipogenic dif-
ferentiation of hADSCs. Scale bar: 100 um. (g) Alcian blue staining reveals the chondrogenic differentiation
of hADSCs. Scale bar: 50 pm ‘

events, including proliferation, differentiation and migration.
The cultured cells are also multipotent. In particular, these cells
can differentiate into adipocytes, osteoblasts, and chondrocytes
(Fig. 1c—e). In accordance with the manufacturer’s instructions
the following commercial kits are used for the differentiation of
hADSCs into three mesodermal lineages: hMSC Mesenchymal
Stem Cell Adipogenic Differentiation Medium (Lonza), hMSC
Mesenchymal Stem Cell Chondrocyte Differentiation Medium
(Lonza), and hMSC Mesenchymal Stem Cell Osteogenic
Differentiation Medium (Lonza). Surface marker characteriza-
tion by flow cytometry indicates that these cells are positive for
CD105, CD73, CD90, and CD44 but negative for CD45,
CD31, and CD34 [23].

5. hADSCs are likely to aggregate at room temperature. This
aggregation may cause pulmonary embolisms in mice injected
with these cells.
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Fig. 2 Therapeutic efficacy of systemically transplanted hADSCs in the CCl4-
induced acute hepatitis mouse model. (a) Biochemical analysis of mouse blood
serum samples for the liver injury markers GPT/ALT (leff) and GOT/AST (right).
Immunodeficient mice received an intraperitoneal injection of either olive oil
(a control for the CCl, injection) or 10 ulL GCl,/20 g body weight. At 24 h after this
injection, the CCls-injected mice received an intravenous injection of either
PBS(-) (a control for hADSC administration) or 1.5 x 10® hADSCs/mouse. Data
are expressed as means+S.D. and subjected to analysis using the Bonferroni
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6. When loading cells into a 1 mL syringe, thoroughly mix the cell
suspension by pipetting because the cells will tend to fall to the
bottom wall of the tube. Do not attach a needle to the syringe
prior to loading the cells because the use of a syringe with an
attached needle may damage the cells.

7. In our experience, a tail vein injection of more than 2x10°
cells/mouse is associated with an increased risk of pulmonary
embolism.

8. If more than 5 min are required to complete an injection,
reloading of the cell suspension is recommended to avoid
precipitation of cells.

9. Rapid drawing of the syringe may cause hemolysis.

10. Leave a small portion of the supernatant in the tube to ensure
that the serum samples are not contaminated by the pellet.

11. In our laboratory, we use the DRI-CHEM system (Fuji) to
measure blood markers of liver injury, such as serum levels of
GPT/ALT, GOT/AST, ammonia, uric acid, and blood urea
nitrogen. We have observed significant improvement in liver
injury markers, particularly with respect to GPT/ALT and
GOT/AST levels (Fig. 2a). '

12. This staining reveals that hADSC administration produces sig-
nificant morphological changes in hepatocytes in non-necrotic
regions (Fig. 2b). Relative to injured livers from control mice,
injured livers from mice that received hADSCs exhibit lower
levels of vacuolar degeneration caused by the dilatation of
mitochondria and the rough endoplasmic reticulum.

13. We detected hADSCs within the injured mouse liver 24 h after
these cells were injected into the mice. HLA-1 positive cells
were found in various areas of the examined mouse livers,
‘including the parenchyma, vessels, and bile ducts (Fig. 2c).

Fig. 2 (continued) correction; n=3. (*p<0.05). (b) Histological analysis of CCls-
injured liver sections. This figure presents HE-stained images of mouse livers
24 h after an intravenous injection of either PBS(-) (/ef or 1.5 x 108 hADSCs/
mouse {right). These mice received an intraperitoneal injection of CCl, 24 h prior
1o the adminisiration of hADSCs. Scale bars: 100 pm. (¢) Immunohistochemical
analyses for human leukocyte antigen 1 (HLA-1)-positive cells in mouse liver
sections after the administration of hADSCs. HLA-1-positive cells are present in
different areas of the liver, including the parenchyma (P), vessels (V), and bile
duct (BD). The left side of this figure presents the results of HE staining for these
areas of the examined liver sections. Scale bars: 500 pm. This figure is reproduced
from ref. 10 "
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Abstract

Stem cell therapy, including mesenchymal stem cell (MSC) therapy, is a promising
thempeuhc option for treating several diseases. Adipose tissue- derived mesenchymal
stem cells (AT-MSCs) have been identified as a candidate for stem cell 1hempy
Sources of MSCs include bone marrow, umblhcul cord, amniofic ﬂuxd and cdlpose .
fissue. Adipose tissue can be easily harvested using prccedures that are mlnlmally :
invasive compared with those used to obtain the other sources, and it is suitable for
regenerative medicine treatments.

End-stage cirrhosis and chronic liver failure are life-threatening liver diseases. -
Liver transplantation is an effective therapy for end-stage liver disease, but most :
patients are unable to undergo liver transplantation because of the limited supply
of donors, the complex surgical procedure, rejection, pre-ex?sﬁng disease recurrence, .
and high costs. :

AT-MSCs are a promising candidate for regenerative medicine to freat liver .
cirrhosis. Over the past decade, the literature on nén clinical studies and clinical trials
for liver diseases has been accumulating, and we can speculaie on the efficacy and
safety of MSC therapy. The mechanisms of the curative effects of AT- MSCs have been

 clarified insufficiently. However, a large number of reports mdlcafe that the hepmo«
protective effect of AT-MSCs is relqted to a paracrine effect of soluble mediators
rather than the dlfferenha’non potency of the cells. In this review, we summanze the
efficacy and safefy of AT-MSC use and the current preclinical studies and clinical trials
of AT-MSCs.

ABBREVIATIONS Hepatocyte Growth Factor; HLA: Human Leukocyte Antigen;
HSCs: Hepatic Stellate Cells; IL: Interleukin; MELD: Model

AT-MSCs: Adipose-Tissue derived Mesenchymal Stem Cells; g5 End-Stage Liver Disease; MMP: Matrix Metalloproteinase;
BM-MSCs: Bone Marrow-derived Mesenchymal Stem Cells; MSCs: Mesenchymal Stem Cells; NASH: Non-Alcoholic
CCl,;: Carbon Tetrachloride; ECM: Extracellular Matrix; HGF:  Steatohepatitis; PDGF-f: Platelet-Derived Growth Factor-B;

Cite this article: Hayato K, Rie T, Takeshi K, Shumpei 1, Tsuyoshi I, et al. (2014) Adipose tissue-derived mesenchymal stem cells in regenerative medicine treat-
ment for liver cirrhosis — focused on efficacy and safety in preclinical and clinical studies. JSM Regen Med 2(1): 1012.
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TGF-B: Transforming Growth Factor-B; TIMP: Tissue Inhibitor
of Matrix Metalloproteinase; UC-MSCs: Umblhcal Cord-derived
Mesenchymal Stem Cells;

INTRODUCTION-

End-stage cirrhosis and chronic liver failure are life-
threatening liver diseases. The most effective therapy for patients
with advanced cirrhosis is liver transplantation. However, most
patients are unable to undergo liver transplantation because of
the limited availability of donors, the complex surgical pracedure,
rejection, pre-existing liver disease recurrence, and high costs

[1,2]. :

Stem cell therapies, including those using mesenchymal stem
cells (MSCs), are promising for the treatment of end-stage liver
disease [3]. The tissue origins of MSCs include bone marrow [4],
umbilical cord [5], amniotic fluid [6,7], and adipose tissue [8,9].

Adipose tissue can be easily harvested through a less invasive
procedure than used to obtain MSCs from other sources, and it is
a promising source of MSCs to be used as a regenerative medicine
treatment for various diseases, including hepatic failure [10-12].
There is accumulating evidence for hepato-curative effects of
adipose tissue-derived mesenchymal stem cells (AT-MSCs). In
this review, we summarize the efficacy and safety of AT-MSC use
and the clinical trials of AT-MSCs,

AT-MSCs

MSCs are a promising candidate for regenerative medicine.
According to recommendation, International Society. for Cell
Therapy, the criteria to define human MSCs are that they must
adhere to plastic in standard culture conditions and that the
cells must express the markers CD105, CD90 and CD73 but
not the markers CD45, CD34, CD14, CD11b, CD79a, CD19 and
human leukocyte antigen (HLA) -DR. Moreover, the cells must
have osteogenic, adipogenic and chondrogenic differentiation
potential under standard in vitro differentiation conditions [13].
Bone marrow was the first organ reported to be a source of MSCs,
but the isolation procedure for bone marrow is the most invasive
procedure of all of the MSC sources.

" In particular, it is thought that AT-MSCs are ideal for
developiflg regenerative medicine. The advantages of using
adipose tissue as a source of MSCs include its abundance and
easy access for harvesting [10,14]. Furthermore, a comparative
analysis of MSCs from bone marrow, umbilical cord and adipose
tissue has been reported [15]. According to this report, adipose
tissue contains MSCs at the highest frequency, and there are no
morphological or immune phenotypic differences among bone
marrow, umbilical cord and‘adipose tissue as sources.

Many reports indicate that AT-MSCs have more therapeutic
effects than other sources cf MSCs. MSCs have immunomodulatory
effects on various immune cells such as T-cells [16], B-cells [17],
natural killer cells [18] and dendritic cells [19]. These properties
of MSCs make it possible to control the autoimmune diseases
and graft-versus-host-disease [20]. Many studies indicate that
AT-MSCs have more pronounced immunomodulatory effects
compared with other MSCs sources such as bone marrow and
umbilical cord [21,22]. Furthermore, other pre-clinical studies
demonstrated that treatment of AT-MSCs are more effective

on hindlimb ischemia [23], wound healing [24] and spinal cord
injury [25] than bone-marrow derived MSCs (BM-MSCs).

Pathogenesis of liver cirrhosis

Liver cirrhosis is characterized by extensive fibrosis caused
by chronic hepatic injury. The major causes of liver fibrosis
are infection with hepatitis B virus, infection with hepatitis C
virus, alcoholic steatohepatitis and nonalcoholic steatohepatitis
(NASH). Liver fibrosis is the excessive accumulation of
extracellular matrix (ECM) in the space of Disse following both
the increased synthesis and decreased degeneration of ECM
[26,27].

Hepatic stellate cells (HSCs) are the key source of ECM
synthesis in the damaged liver. Quiescent HSCs, which synthesize

‘a small amount of ECM, are activated by soluble mediators and

differentiate into myofibroblasts, which are the main source
of ECM. It is well known that augmented tissue inhibitor of
matrix- metalloproteinase (TIMP1) expression derived from
hepatic myofibroblasts plays a pivotal role in tipping the balance
between the production and the degradation of ECM components
[28]. TIMP1 promotes the accumulation of ECM in damaged liver
through the inhibition of matrix metalloproteinases (MMPs), a
family of enzymes that degrade ECM components.

HSCs are activated by soluble mediators, such as transforming
growth factor-B (TGF-B) [29,30] and platelet-derived growth
factor-B (PDGF-8) [31]. TGF-B is considered to play a pivotal role
in the progression of liver fibrosis through the augmentation
of ECM synthesis by HSCs. In addition, TGF-$ suppresses ECM
degeneration through not only the blockade of MMP expression
but also the facilitation of TIMP1 expression [29]. In contrast,
it is thought that PDGF-B is the most potent mitogen for HSCs.
PDGF-B is upregulated in the fibrotic liver, and PDGF-8 inhibition
attenuates liver fibrosis in vivo [31] (Figure 1).
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Therapeutic potential of AT-MSCs

Many pre-clinical studies have demonstrated that AT-MSCs
have a hepato-curative effect in animal models of acute and
chronic liver diseases [32-43]. AT-MSCs attenuate impaired liver
function and tissue damage in rodent models of acute hepatitis
induced by carbon tetrachloride (CCl) [32], concapavalin A
[33,34], acetaminophen [35], ischemia reperfusion [36,37] and
combination of retrorsin and allylalcohol [38]. Furthermore,
AT-MSCs ameliorate the liver dysfunction and the histological
changes that occur with the fibrogenesis induced by CCl, [39,40],
thioacetamide [41] and NASH [42] in mice. It has also been
reported that AT-MSCs have therapeutic efficacy in the acute-on-
chronic liver failure rabbit model [43].

The mechanisms of the protective effects of AT-MSCs on
hepatic injury are not fully understood, but they can be ascribed
to several possible mechanisms. However, there is still debate
about these potential mechanisms. MSCs have a homing capacity
to injured organs [44,45]. MSCs home to the endothelial cells
through interactions with integrins and vascular cell adhesion
molecule-1 [46]. Additionally, MSCs display rolling and adhesion
behavior on endothelial cells, where CXC-chemokine receptors-4
and its ligand stromal-derived factor-1 play a crucial role in
this behavior [47]. MSCs then migrate across the endothelium
and invade the injured organ. Tracking AT-MSCs with an in
vivo imaging system has revealed that AT-MSCs accumulate in
damaged livers in mice [14]. :

Many studies have demonstrated that MSCs secrete various
molecules, such as cytokines, chemokines and growth factors
[48]. AT-MSCs secrete many soluble factors, such as interleukin
(IL) -1RA, IL-6, IL-8, hepatocyte growth factor (HGF), nerve
growth factor, monocyte chemoattractant protein-1, granulocyte
colony-stimulating  factor and  granulocyte-macrophage
colony-stimulating factor. AT-MSCs secrete these factors more
abundantly than either BM-MSCs or normal human dermal
fibroblasts [22]. In particular, it is thought that HGF has hepato-
protective effects through the inhibition of HSC activation [49].
HGF has prevéntive and therapeutic effects on liver cirrhosis
in rats through growth inhibition and apoptosis induction in
myofibroblasts that are activated in cirrhosis. HGF also has a
suppressive effect on collagen I and 1V synthesis in HSCs [50].
Furthermore, HGF enhances MMP expression and activity [51].

In the case of BM-MSCs, TIMP1 and MMP expression is
affected by BM-MSC administration in liver fibrosis models.
According to these studies, the application of BM-MSCs
suppresses the upregulated expression of TIMP1 in mice with
liver fibrosis [52,53]. In contrast, MMP expression is promoted
by the administration of BM-MSCs in liver fibrosis models [53-
55]. AT-MSCs are also expected to regulate TIMP1 and MMP
expression in cirrhosis. ' '

Taken together, it is suggested that AT-MSCs home to
damaged livers, where they secrete various molecules, such as
HGF. These molecules suppress the activation of myofibreblasts

in fibrotic livers, resulting in the degeneration of ECM, which -

most likely occurs through the suppression of TIMP1 expression
and the promotion of MMP expression.

Safety issues of AT-MSCs

Preclinical toxicity and tumorigenicity tests of AT-MSCs
conducted under Good Laboratory Practice conditions have

‘been reported [56]. Toxicity symptoms were found not to occur

for 13 weeks in mice, even at the highest dose of AT-MSCs

(2.5%10°% cells/kg) administered via the tail vein. Similarly,

with a subcutaneous injection at the same dose, no evidence of -
tumorigenicity was found for 26 weeks using the toxicity test in
immunodeficient mice. For large animals, a 6-week toxicity study
using an intravenous administration route for 2x10¢ and 1x107
cells/kg umbilical cord-derived MSCs (UC-MSCs) in cynomolgus
monkeys has been reported, and this report suggested that
the transplantation of UC-MSCs does not affect the general
health of cynomolgus monkeys [57]. Moreover, the intravenous
infusion of AT-MSCs in cats has no complications during or after
administration [58].

In contrast, several reports have indicated that transplanted
cells may be entrapped in the lungs during their first pass through
systemic‘o'rgans. The intravenous injection of neural progenitor
stem cells results in death immediately after administration to
mice [59]. Another study has reported thatblood microcirculation
is interrupted in mice when AT-MSCs are injected into the aorta
owing to the large cell diameter [60]. The tissue factor has a
critical role in promoting MSC-mediated coagulation in mice,
and its expression likely leads to thromboembolism. An anti-
coagulant agent has also been suggested to be useful for avoiding
embolism [61]. Recently, another group has indicated that cell
size and infusion velocity are critical factors for developing safe
protocols for intracarotid stem cell transplantation in rats [62].

AT-MSCs have advantageous characteristics that .allow
allogeneic transplantation without immune rejection. AT-
MSCs are immunoprivileged because they have intermediate
expression levels of HLA-I and undetectable expression levels of
HLA-II and because they do not express co-stimulatory molecules,
such as CD80, CD86 and CD40 [63,64].

In summary, most of the pre-clinical toxicity reports
indicate no side effects resulting from the administration of
MSCs, including AT-MSCs. However, there is a risk of embolism
induced by the intravenous injection of MSCs in accordance with
the studies using rodents. Hence, we should be careful to avoid
embolism when clinical trials are conducted.

Clinical trials

In this review, we summarized some of the clinical trials in
which MSCs have been used to treat liver cirrhosis. In the clinical
trial database (ClinicalTrials.Gov), 47 protocols using MSCs
to treat patients with liver cirrhosis are ongoing in the clinical
setting (Table 1). Most of these trials are using BM-MSCs or UC-
MSCs.

Clinical trials of BM-MSC administration to treat patients with
liver failure have been reported. Kharaziha P et al. conducted
clinical trials using BM-MSC administration to treat several
patients with end-stage liver disease, including hepatitis B
and hepatitis C induced disease and alcoholic and cryptogenic
cirrhosis [65]. The augmented Model for End-Stage Liver Disease
(MELD) score and prothrombin activity in these patients were
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Table 1: A summary of the clinical trials of MSCs in cirrhosis.

adipose Cirrhosis - 4 NCT01062750
Alcoholic cirrhosis 2 11 NCT01741090 [67]
bone marrow | Chronic hepatitis Binduced liver failure | 1/2 Tcrzif;‘:j"iosj NCT00956891 [66]
ClrrhOSIS(HePaUtlS B, He;{atltls C, 172 8 NCT00420134 [65]
_ ... Alcoholic, cryptogenic) B ) SR
Primary Biliary Cirrhosis 1/2 7 NCT01662973 [71]
. . . - Treatment: 30
umbsilical cord Cirrhosis{Chronic Hepatitis B) 1/2 Control: 15 NCT01220492 [69]
o1 . ) Treatment: 24 )
Acute-on-chronic liver failure 1/2 Control: 19 NCT01218464 {70}

Abbreviations: MSCs: Mesenchymal Stem Cells

decreased by treatment with BM-MSCs. Peng L et al. and Jang YO
etal. reported a curative effect when BM-MSCs were used to treat

chronic hepatitis B-induced liver failure and alcoholic cirrhosis -

[66,67]. Terai et al. reported that bone marrow cell infusions
caused a significant amelioration of serum levels of albumin and
total protein, and they reported that the Child-Pugh scores in
these patients were not adversely affected [68].

Several clinical trials using UC-MSCs to treat cirrhotic patients
have been performed. Zhang Z et al. administered UC-MSCs to
chronic hepatitis B patients with decompensated liver cirrhosis
and ascites [69], and they reported a reduction in ascites volume
as well as an improvement in liver functions and MELD scores
resulting from treatment with UC-MSCs. Other studies have
shown that UC-MSCs improve the survival rate, MELD score and
various liver functions in acute-on-chronic liver failure patients
[70].

A clinical trial using adipose tissue-derived stromal cells
to treat four patients with eligible-liver cirrhosis has recently
started. This is the first clinical trial using AT-MSCs in cirrhotic
patients. In this trial, patients will receive autologous adipose
tissue stromal cells through intrahepatic arterial administration,
and the endpoint for this trial is safety (ClinicalTrials.Gov
NCT01062750).

CONCLUSION

Stem cell therapies, including those using MSCs, are promising
alternatives to liver transplantation. AT-MSCs are especially
promising because adipose tissue is an abundant and easily
accessible source in the body. There is accumu]atirig evidence
that AT-MSCs have curative effects on acute and chronic liver
failure in animal models. In addition, many toxicological studies
have confirmed the safety of AT-MSCs.

Whereas clinical studies of BM-MSC and UC-MSC treatments
for patients with serious liver disease have been conducted,
clinical trials using AT-MSCs have not yet been conducted,
although clinical trials using AT-MSCs are anticipated. According
to the clinical trials using BM-MSCs and UC-MSCs, these cells are
effective for treating patients with severe liver disease and do not
have obvious side effects. AT-MSCs may also have therapeutic
potential for liver cirrhosis.

In conclusion, AT-MSCs are a promising regenerative
medicine candidate for treating liver cirrhosis. Researchers are
exploring the clinical potential of AT-MSCs while considering the
safety issues:
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