研究成果の刊行に関する一覧表

研究成果の刊行に関する一覧表(研究代表者:関矢一郎)

書籍

著者氏名	論文タイトル名	書籍全体の 編集者名	書	籍	名	出版社名	出版地	出版年	ページ

雑誌

発表者氏名	論文タイトル名	発表誌名	巻号	ページ	出版年
Sekiya I, Muneta T, Horie M, Koga H.	Arthroscopic Transplantation of Synovial Stem Cells Improves Clinical Outcomes in Knees with Cartilage Defects.	Clin Orthop Relat Res.		Published online 30 April	2015
Nakagawa Y, Muneta T, Kondo S, Mizuno M, Takakuda K, Ichinose S, Tabuchi T, Koga H, Tsuji K, <u>Sekiya</u> <u>I</u> .	Synovial mesenchymal stem cells promote healing after meniscal repair in microminipigs.	Osteoarthritis Cartilage.		Epub ahead of print	2015
Matsukura Y, Muneta T, Tsuji K, Miyatake K, Yamada J, Abula K, Koga H, Tomita M, <u>Sekiya I</u> .	Mouse synovial mesenchymal stem cells increase in yield with knee inflammation.	J Orthop Res.	33(2)	246-253	2015
M, Koga H,	Repetitive allogeneic intraarticular injections of synovial mesenchymal stem cells promote meniscus regeneration in a porcine massive meniscus defect model.	Osteoarthr. Cartil.	22(7)	941-950	2014

Okuno M, Muneta	Meniscus regeneration by	J. Orthop.	32(7)	928-936	2014
T, Koga H, Ozeki	syngeneic, minor mismatched, and	Res.			
N, Nakagawa Y,	major mismatched transplantation				
Tsuji K, Yoshiya	of synovial mesenchymal stem				
S, <u>Sekiya I</u> .	cells in a rat model.				

国内雑誌

発表者氏名	論文タイトル名	発表誌名	巻号	ページ	出版年
<u>関矢一郎</u> ,宗田 大.	骨関節の再生医療の現状と展望	日本整形外科学会雑誌	89(1)	8-14	2015
関矢一郎, 梅原寿 太郎, 黒田良祐, 古賀英之.	【中高年齢者の半月板変性】中 高年齢者の半月板変性	Bone Joint Nerve	4(1)	147-161	2014
<u>関矢一郎</u> , 宗田 大.	【中高年齢者の半月板変性】 (Part5) 展望 変性半月板に対 する細胞治療(基礎と今後の展 開)	Bone Joint Nerve	4(1)	141-146	2014
古賀英之,宗田 大, <u>関矢一郎</u> .	【中高年齢者の半月板変性】 (Part4) 外側半月板に対する治療 逸脱外側半月板への対応 逸脱外側半月板に対する鏡視下 centralization 法	Bone Joint Nerve	4(1)	115-120	2014
関矢一郎	滑膜幹細胞による軟骨再生医療 の開発	今日の移植	27(1)	53-60	2014

二村昭元, <u>関矢一郎</u> ,宗田大.	【手指の変形性関節症】変形性 手関節症(hand OA) に対する軟 骨再生の可能性 滑膜間葉系幹 細胞による膝関節軟骨再生を例 として		51(2)	191-199	2014
小田邉浩二, <u>関矢</u> 一郎,宗田大.	【高齢者医療における再生医療の可能性】間葉系幹細胞を用いた運動器再生医療		52(3)	273-277	2014
齋藤知行, 脇谷滋之, <u>関矢一郎</u> , 岩崎倫政.	軟骨再生と将来展望	Arthritis-運動 器疾患と炎 症-	11(3)	191-200	2014
	運動器再生医療研究の最先端滑 膜間葉系幹細胞を用いる軟骨再 生医療の手順		88(4)	212-215	2014
	整形外科最新トピックス 滑膜 幹細胞による軟骨再生医療	整形外科 Surgical Technique	4(3)	385-390	2014
小田邉浩二, 宗田 大, <u>関矢一郎</u> .	【関節軟骨修復の現状と実際】 滑膜由来間葉系幹細胞を用いた 関節軟骨修復		57(9)	1089- 1096	2014

初鹿大祐, <u>関矢</u> 一	整形トピックス滑膜幹細胞の関	整形外科	65(10)	1068	2014
<u>郎</u> , 宗田大.	節内投与は家兎半月板前方1/2				
	切除後の半月板再生を促進する				
小田邊洪一 悶ケ	 【半月(板) 損傷の治療-現状と	問節外利	33(9)	970-976	2014
			33(9)	970-970	2014
<u>一郎</u> , 宗田大.	未来-】治療の未来 半月板損傷				
	に対する滑膜幹細胞を用いた再				
	生医療				

研究成果の刊行に関する一覧表(研究分担者:宗田大)

書籍

著者氏名	論文タイトル名	書籍全体の 編集者名	書	籍	名	出版社名	出版地	出版年	ページ

雑誌

発表者氏名	論文タイトル名	発表誌名	巻号	ページ	出版年
Otabe K, Nakahara	K, Nakahara Transcription factor Mohawk		33(1)	1-8	2015
H, Hasegawa A,	controls tenogenic differentiation				
Matsukawa T,	of bone marrow mesenchymal				
Ayabe F, Onizuka	stem cells in vitro and in vivo.				
N, Inui M, Takada					
S, Ito Y, Sekiya I,					
Muneta T, Lotz M,					
Asahara H.					

国内雑誌

発表者氏名	論文タイトル名	発表誌名	巻号	ページ	出版年
中川裕介,関矢一	T1rhoマッピングにおける半月	別冊整形外	67	36-41	2015
郎 ,川端賢一 ,近	板変性の評価	科			
藤伸平, <u>宗田</u>					
<u>大</u> .					
<u>宗田大</u> ,関矢一	【中高年齢者の半月板変性】	Bone Joint	4(1)	35-39	2014
郎.	(Part1) 基礎 半月板変性と変	Nerve			
	形性膝関節症(半月板の逸脱を				
	含めてのReview)				

研究成果の刊行に関する一覧表(研究分担者:森尾友宏)

書籍

著者氏名	論文タイトル名	書籍全体の 編集者名	書籍名	出版社名	出版地	出版年	ページ
森尾友宏、	再生医療に関す		再生医療規制の	情報機構	東京	2015	18-42
吉村圭司	る新しい規制と		動向と製品開発				
	既存規制の違い		及び産業化の注				
	と注意点		意点				

国内雑誌

発表者氏名	発表者氏名 論文タイトル名		巻号	ページ	出版年
木村秀樹,池田裕	免疫細胞療法細胞培養ガイド	医薬品医療機	45	411-433	2014
明, 岡正朗, 鈴木弘	ライン	器レギュラト			
行, 谷憲三朗, 徳久		リーサイエン			
剛史,中面哲也,森		ス			
尾友宏, 山口佳之,					
阿曽沼元博, 河上					
裕, 紀ノ岡正博, 澤					
芳樹, 清水則夫					

研究成果の刊行に関する一覧表(研究分担者:清水則夫)

書籍

著者氏名	論文タイトル名	書籍全体の 編集者名	書	籍	名	出版社名	出版地	出版年	ページ
清水則夫、	再生医療等細胞	紀ノ岡正博	再生医	療の	の細胞	シーエムシ	東京	2014	51-62
渡邊 健、	製剤の品質評価		培養技	技術。	ヒ産業	一出版			
高橋秀行、	法 : ウイルス・マ		展開						
外丸靖浩、	イコプラズマ試								
森尾友宏	験								

雑誌

発表者氏名	論文タイトル名	発表誌名	巻号	ページ	出版年
K, Selvarajan V, Huang G, Choo SN, Miyoshi H, <u>Shimizu N</u> , Reghunathan R,	lymphoproliferative disorder in children and young adults has similar molecular signature to extranodal nasal NK/T-cell lymphoma but shows distinctive stem cell-like phenotype.	Luek Lymphoma	21	1-8	2015
Yagasaki H, Shichino H, <u>Shimizu N,</u> Ohye T, Kurahashi H, Yoshikawa T, Takahashi S.	Nine-year follow-up in a child with chromosomal integration of human herpesvirus 6 transmitted from an unrelated donor through the Japan Marrow Donor Program.	Infect Dis.	17	160-161	2015

Yoshimori M, Imadome K, Komatsu H, Wang L, Saitoh Y, Yamaoka S, Fukuda T, Kurata M, Koyama T, Shimizu N, Fujiwara S,	CD137 Expression Is Induced by Epstein-Barr Virus Infection through LMP1 in T or NK Cells and Mediates Survival Promoting Signals.	PLoS One	9	e112564	2014
Tachikawa R, Tomii K, Seo R, Nagata K, Otsuka K, Nakagawa A, Otsuka K, Hashimoto H, Watanabe K, Shimizu N.	Detection of herpes viruses by multiplex and real-time polymerase chain reaction in bronchoalveolar lavage fluid of patients with acute lung injury or acute respiratory destress syndrome.		87	279-286	2014
Endo A, Watanabe K, Ohya T, Matsubara T. Shimizu N, Kurahashi H, Yoshikawa T, Katano H, Inoue N, Imai K, Takagi M, Morio	Molecular and virological evidence of viral activation from chromosomally integrated HHV-6A in a patient with X-SCID.	Clin Infect Dis.	59	545-548	2014
Fujiwara S, Kimura H, Imadome K, Arai A, Kodama E, Morio T, <u>Shimizu N</u> , Wakiguchi H.	Current research on chronic active Epstein-Barr virus infection in Japan.	Pediatr Int.	56	159-166	2014

研究成果の刊行に関する一覧表(研究分担者:赤澤智宏)

書籍

著者氏名	論文タイトル名	書籍全体の 編集者名	書	籍	名	出版社名	出版地	出版年	ページ

雑誌

論文タイトル名	発表誌名	巻号	ページ	出版年
High capacity of purified	Inflammation	35(2)	78-85	2015
mesenchymal stem cells for	and			
cartilage regeneration.	Regeneration			
Teneurin-4, a transmembrane	J. Orthop. Res.	46	1029-1031	2014
protein, is a novel regulator that				
suppresses chondrogenic				
differentiation.				
	High capacity of purified mesenchymal stem cells for cartilage regeneration. Teneurin-4, a transmembrane protein, is a novel regulator that suppresses chondrogenic	High capacity of purified mesenchymal stem cells for and cartilage regeneration. Regeneration Teneurin-4, a transmembrane protein, is a novel regulator that suppresses chondrogenic	High capacity of purified mesenchymal stem cells for cartilage regeneration. Teneurin-4, a transmembrane protein, is a novel regulator that suppresses chondrogenic Inflammation 35(2) Regeneration J. Orthop. Res. 46	High capacity of purified mesenchymal stem cells for cartilage regeneration. Teneurin-4, a transmembrane protein, is a novel regulator that suppresses chondrogenic Inflammation 35(2) 78-85 Regeneration J. Orthop. Res. 46 1029-1031