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Abstract

Purpose: Previous studies suggest that compression and stretching of the corticospinal tract (CST) potentially cause
treatable gait disturbance in patients with idiopathic normal pressure hydrocephalus (iNPH). Measurement of axon diameter
with diffusion MRI has recently been used to investigate microstructural alterations in neurological diseases. In this study,
we investigated alterations in the axon diameter and intra-axonal fraction of the CST in iNPH by g-space imaging (QSI)
analysis.

Methods: Nineteen patients with iINPH and 10 age-matched controls were recruited. QS| data were obtained with a 3-T
system by using a single-shot echo planar imaging sequence with the diffusion gradient applied parallel to the antero-
posterior axis. By using a two-component low-q fit model, the root mean square displacements of intra-axonal space (=
axon diameter) and intra-axonal volume fraction of the CST were calculated at the levels of the internal capsule and body of
the lateral ventricle, respectively.

Results: Wilcoxon's rank-sum test revealed a significant increase in CST intra-axonal volume fraction at the paraventricular
level in patients (p<<0.001), whereas no significant difference was observed in the axon diameter. At the level of the internal
capsule, neither axon diameter nor intra-axonal volume fraction differed significantly between the two groups.

Conclusion: Our results suggest that in patients with iNPH, the CST does not undergo irreversible axonal damage but is
rather compressed and/or stretched owing to pressure from the enlarged ventricle. These analyses of axon diameter and
intra-axonal fraction yield insights into microstructural alterations of the CST in iNPH.
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weighted images [7,8]. Previous studies conducted with DTI
revealed increases of fractional anisotropy (FA) and axial diffusivity
values in the CST in patients with iNPH [9-17], which tended to
return to normal after placement of a ventriculoperitoneal (VP)
shunt [9-12]. The increases in FA and axial diffusivity have been
suggested to result from ventricular enlargement that mechanically
compresses the tract and yields more directional water diffusion
along it. Diffusion MRI is expected to become a non-invasive
method for diagnosing iNPH and predicting the response to
surgery [12,17].

Q-space imaging (QSI), a diffusion MRI technique that does
not assume that the displacement probability of diffusing water
molecules has a Gaussian distribution, can provide quantitative
tissue architecture information at cellular dimensions [18-22].

Introduction

Idiopathic normal pressure hydrocephalus (iNPH) is a clinical
entity of unknown cause and is characterized by the triad of gait
disturbance, cognitive deterioration, and urinary incontinence [1].
It is also associated with ventricular enlargement, flattening of
high-convexity sulci, and periventricular T2-weighted image
hyperintensity in the absence of elevated cerebrospinal fluid
(CSF) pressure [2]. Gait disturbance is the most frequent symptom
of iINPH [3] and is treated by CSF shunting [4]. Although the
etiology of gait disturbance in iNPH is not completely understood,
a plausible explanation is that the corticospinal tract (CST) is
distorted by expansion of the lateral ventricles [1,5,6].

Diffusion tensor imaging (DTT) has been applied to neurological

and psychological diseases and is useful to detect brain abnormal-
itles that can not be recognized by conventional T1- or T2-
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Recently, analysis of axon diameter of neural fibers by using
diffusion MRI is becoming a topic for investigation of microstruc-
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tural alteration in neurological discase [23-28], although assess-
ment of axonal architecture usually requires high gradient
amplitudes and long scanning times, which are not clinically
applicable. A two-component low-q fit model for QSI analysis,
proposed by Ong et al. [29], enables measurement of the axon
diameters of neural fibers with a reasonable scanning time. Briefly,
QSI provides a molecular displacement probability density
function (PDF), which reflects the axonal architecture, such as
axon membranes and myelin sheath acting as barriers to diffusing
molecules. In the white matter, the dominant diffusion barrier is
the axonal membrane, and the spacing between barriers can be
regarded as mean axonal diameter [19]. A two-component low-q
fit model used in this study has the following two merits; 1) it
accounts for signal from extra- and intra-axonal spaces and has
better correlations with pathological findings than a single-
component model, 2) it does not require very high gradient
amplitudes [29]. The limitation of this method is that it requires
prior knowledge of the fiber orientation, because the diffusion
gradient must be applied perpendicular to the fiber direction.

The purpose of this study is to investigate alterations in the
axonal architecture of the GST in patients with iNPH by using a
two-component low-q fit analysis of QSI.

Materials and Methods

Ethics Statement

This study was conducted in accordance with the Declaration of
Helsinki and approved by the Institutional Review Board of
Juntendo University Hospital and all persons gave their written
informed consent prior to their inclusion in the study.

Patients

Nineteen patients with INPH (10 males and 9 females; 74.3£6.2
years old) and 10 age-matched control subjects (3 males and 7
females; 75.8%5.2 years old) were recruited. Diagnosis of iNPH
was made according to the diagnostic criteria of probable iNPH
[30]. Those who had a history of ncurological disease or any
significant findings (as observed on routine MR images) that might
affect the brain were excluded. Normal control subjects were
required to be >60 years of age and have no neurological or
psychological symptoms, history of neurologic diseases, or
apparent abnormalities observed on conventional MR images.

QS! data acquisition and processing

QSI data were obtained with a 3-T unit (Achieva, Philips
Healthcare, Best, The Netherlands) by using a single-shot echo
planar imaging (EPI) sequence. The patient was positioned so that
the anterior commissure—posterior commissure (AC-PC) line is
parallel to the scanner’s x-y plane. The scan parameters were:
repetition rate/echo time (TR/TE) =4500/99 ms, field of view
(FOV) =240%240 mm?, matrix size =96x96, slice thickness =
5 mm, 10 axial sections including the level of internal capsule,
number of excitations (NEX) = 2, half-Fourier factor =0.667, 16
b-values (0, 1000, 2000, ... 15000 s/ mm?, applied in sequential
order), and acquisition time =828 s. The gradient duration (9)
and time between the two leading edges of the diffusion gradient
(A) were 39.3 and 48.7 ms, respectively. We did not apply any
distortion corrections, because correction was difficult especially at
high b values and resulted in severe signal defect in some of the
patients.

The two-component low-q fit method for axon diameter
analysis necessitates a diffusion gradient perpendicular to the fiber
tract to be measured. Ideally, the appropriate direction of diffusion
gradient can be determined in each patient by performing
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tractography of the CST, though it is not realistic in clinical
examinations. Instead, we applied diffusion gradient parallel to the
antero-posterior axis of the scanner’s coordinate system, as the
known course of GST [52,53] is substantially perpendicular to the
scanner’s x-y plane. Examples of the acquired images are shown in
Figure 1. By applying the diffusion gradient parallel to the antero-
posterior axis, the CST could be identified as a hyperintense tract
running from the precentral gyrus to the cerebral peduncle
through the posterior limb of the internal capsule [31]. Each ROI
was placed manually so that it includes the brightly-appearing
CST, using b= 1000~4000 s/mm® images. The cranial and
caudal sections were also used as references for continuity of the
tract. Measurements were performed at two levels. The first
section was selected so that it contains the posterior limb of the
internal capsule. The second one was selected as two or three
sections cranial to the first one, where the GST runs closest to the
lateral ventricle. By using in-house software developed in Matlab
(R2011b; MathWorks, Natick, MA, USA), the root mean square
displacements (RMSDs) of the intra-axonal space (= axon
diameter) and intra-axonal volume fraction of the CST were
calculated by fitting the echo attenuations (normalized to the
maximum value at the q=0) to equation (1) with a nonlinear
least squares algorithm: E(g)=(1-fj) exp(—2m°q*ZeA)H exp
(—27m%q*Z(%) ...(1) where f is the relaxation-weighted intra-axonal
volume fraction, and Zp and Z; are the RMSDs of diffusing
molecules in the extra- and intra-axonal spaces, respectively.

Statistical analysis

Statistical analyses were performed by using JMP software (ver.
10.0.2; SAS Institute Inc. Cary, NC, USA). The axon diameter
and intra-axonal volume fraction values of the GST from both
hemispheres were compared between the patients and controls.
To minimize type I errors with multiple comparisons, Bonferroni’s
correction was applied. The significance level (p=0.05) was
therefore reduced to an adjusted p level of 0.006.

Results

Excellent fitting was obtained in all ROIs (R?>0.95). Shapiro-
Wilk’s test was performed to test the hypothesis that the data
satisfied Gaussian distribution (the significance level was set at
p=0.05). As it was revealed that the assumption of Gaussian
distribution was not satisfied in the measurements of axon
diameter at the internal capsule level (p=0.004), Wilcoxon’s
rank-sum test was used for the following group analyses. At the
paraventricular level, the GST intra-axonal volume fraction was
significantly higher in patients with iNPH than in the controls
(right, 0.43+0.04 for the controls, 0.5320.05 for the patients,
$=10.0002; left, 0.4320.06 for the controls, 0.54£0.06 for the
patients, p=0.0005), whereas no significant difference was
observed in the CST axon diameter. At the level of the internal
capsule, no significant differences were observed between the two
groups in either axon diameter or intra-axonal volume fraction
(Table 1, Figs. 2, 3). There were no statistically significant
differences in ROI sizes between the patients and the controls
(Student’s t-test; the internal capsule level, 43.6+4.8 mm? for the
controls ard 43.3%7.3 mm® for the patients, p=0.83; the
paraventricular level, 43.0%9.6 mm? for the controls and
41.9%7.4 mm? for the patients, p = 0.66)

Discussion

A two-component low-q fit analysis of QSI revealed that the
CST intra-axonal volume fraction in areas near the ventricles was
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Figure 1. Examples of the acquired diffusion weighted images.
doi:10.1371/journal.pone.0103842.g001

increased in iNPH patients compared with controls, whereas the
CST axon diameter was unaltered. Neither GST axon diameter
nor intra-axonal volume fraction differed significantly at the level
of the internal capsule. Our results are in line with previous DTI
studies showing increased diffusion anisotropy of the CST in
iNPH, presumably due to compaction of neuronal fibers [9-17].
The increase in CST intra-axonal volume fraction was limited to
areas near the lateral ventricle in our study, suggesting that it
results from compression by the enlarged ventricles. The unaltered
axon diameter of the GST suggests that the iNPH patients
involved in this study did not have irreversible axonal damage of
the GST.

The exact pathogenesis of the gait disturbance in iNPH is not
entirely understood. Though our results suggest that the axons are
densely packed in the CST with reduced extra-axonal space, there
is no readily available explanation why such situation results in the
characteristic gait disturbance in iNPH. A classical hypothesis that
remains plausible is that the CST is compressed and/or deformed
because of enlargement of the lateral ventricles [1,5,6]. Other
pathological changes observed in the brains of patients with iNPH,
such as ischemia and gliosis due to transependymal diapedesis of

Axon Diameter and Density Analysis of Corticospinal Tract in iNPH

b=14000

the CSF, may to some extent be related to gait disturbance [32—
36]. However, the reversibility of symptoms after shunt surgery
even after a long period suggests that irreversible axonal damage is
unlikely to be the sole cause of gait disturbance [4]. The
“compression hypothesis” is also supported by the fact that the
fibers of the legs are closest in proximity to the lateral ventricles
[37-39]; this explains why gait disturbance is the most prominent
neurological feature in iNPH. Moreover, a detailed tract-specific
analysis of the CST demonstrated that the increase in FA was
limited to areas near the lateral ventricle [15], an observation
consistent with CST compression by the ventricular enlargement.

Analyses of the axon diameter and axon density by using
diffusion MRI could have a significant impact on our understand-
ing of white matter architecture and connectivity, neuroanatom-
ical changes that occur in white matter disorders, and changes that
occur in white matter during normal and abnormal development.
These indices are more straightforward and easier to interpret
than other diffusion metrics, such as the mean diffusivity,
fractional anisotropy, directional diffusivity, and directional
kurtosis, each of which must be interpreted in combination with
one or more of the others to understand the microstructural

PLOS ONE | www.plosone.org

Table 1. Results of the measurement of CST axon diameter and intra-axonal volume fraction.
controls iNPH patients
right left right left
Internal capsule level
axon diameter (um) 2.07%+0.35 2.00%0.31 2.00x=0.53 2.16+0.28
intra-axonal volume fraction 0.47+0.05 0.46+0.06 0.49+0.09 0.53+0.08
Paraventricular level
axon diameter (um) 2.09+0.12 2.04+0.14 2.10x0.16 2.11+0.15
intra-axonal volume fraction 0.43+0.04 0.43+0.06 0.53x0.05 0.54+0.06
doi:10.1371/journal.pone.0103842.t001
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Figure 2. Examples of axon diameter maps (top row) and intra-axonal volume fraction maps (middle row). ROIs are shown in the raw

diffusion image (bottom row, b =2000 s/mm?).
doi:10.1371/journal.pone.0103842.g002

changes [40,41]. Because axon diameter determines conduction
velocity, this metric and the axon density provide information
about the role and performance of white matter pathways [42—44].
Axon diameter analysis would also provide a means of testing
hypotheses that assume changes in the diameter distribution in
diseases such as amyotrophic lateral sclerosis [45], multiple
sclerosis [46], and autism [47].

The present results need to be interpreted carefully and
hopefully validated by more dedicated experiments, because the
short gradient pulse (SGP) approximation (A>>3) was not
satisfied in this study. In principal, SGP approximation needs to
be fulfilled for accurate compartment size measurement by QSI.
However, with clinical scanners, high g-values can only be
obtained with long diffusion gradient pulses because of the
relatively weak gradients [20,48,49]. The previous experimental
studies reported that the diffraction minima is pushed towards
higher q values and the extracted compartment size becomes
smaller than the real size when the SGP approximation is violated
(A/8~1) [50]. Though the situation becomes more complicated
when there are more than two compartments [50], we speculate
that the intra-axonal volume fraction in this study is larger than
the real value, as the echo attenuation curve vs q values shifts to
the right. Mathematical calibration with the ideal A/3 settings
[50], or the use of a double-pulsed gradient sequence [51], may be
useful to overcome this issue.

The other limitations to this study include the following. First,
interpretation of the increase in intra-axonal volume fraction is

PLOS ONE | www.plosone.org

somewhat ambiguous as it is not directly equal to axonal
density. Though we speculate the increased intra-axonal volume
fraction reflects that the neural fibers are densely packed with
reduced extra-axonal space, other conditions, such as changes in
the distribution of axon diameter (i.e, increase of large- and
small-diameter axons with few middle-sized axons), may yield
similar results. In addition, the intra-axonal volume fraction
obtained by the two-component low-q fit method is not
completely proven to correlate with that obtained from
pathological analyses [29]. Second, the determination of
diffusion gradient direction was approximative, and it could
have been slightly different from what it should be (perpendic-
ular to the CST). Also, previous DTI studies in iNPH have
typically reported increased FA in the CST and decreased FA in
the corpus callosum, suggesting regionally dependent micro-
structural alterations [9,11,13,15]. Therefore, our results
require validation by an orientationally invariant method for
measuring the axon diameter [25,54]. Lastly, owing to the small
sample size and lack of post-operative imaging, the clinical
relevance of the QSI measures, such as in monitoring the effect
of surgery or pre-operatively predicting the response to surgery,
could not be established.

Conclusions

In this study, an analysis of axon diameter and intra-axonal
volume fraction demonstrated that in patients with iNPH, the

August 2014 | Volume 9 | Issue 8 | 103842
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Figure 3. Boxplot comparing the CST axon diameter and intra-axonal volume fraction between the controls and iNPH patients.
Statistical analyses revealed a significant increase in CST intra-axonal volume fraction at the paraventricular level in the patients, whereas no
significant difference was observed in the axon diameter. At the level of the internal capsule, neither axon diameter nor intra-axonal volume fraction
differed significantly between the two groups. * The significance level was set at p=0.006 (Bonferroni’s correction for multiple comparison).
doi:10.1371/journal.pone.0103842.g003

CST is compressed by the ventricular enlargement but does not microstructural alterations in iNPH. Their potential use in
undergo irreversible axonal damage. The axon diameter and predicting the response to surgery or in post-operative monitoring
intra-axonal volume fraction obtained by QSI yield insights into requires further investigation.
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THE INTERVERTEBRAL DISC (IVD) consists of the
nucleus pulposus (NP} in the core and the annulus
fibrosus (AF) at the periphery. The NP is rich in pro-
teoglycans. Proteoglycans interact with hyaluronic

- acid to form proteoglycan aggregates that are nega-

tively charged and hydrophilic, and which are
designed to draw and retain water (1). The AF is com-
posed predominantly of type I collagen organized in
dense concentric lamellae forming a fibrous collagen
network that maintains the shape of the disc (2).

It has been reported that the spine becomes shorter
during the day and recovers during the night (3). This
phenomenon has been thought to result from a
decrease in disc hydration with daily compression (4).
This hypothesis has been supported by several inves-
tigators studying morphological aspects of the IVDs,
which function to distribute hydraulic pressure under
compressive loads (5,6).

Several studies have identified diurnal IVD changes
in vivo using magnetic resonance (MR) imaging. Previ-
ous investigators reported a decrease in IVD volume
(7), and a decrease in NP T2 values (8,9) after a diur-
nal workload. In addition to morphologic MR imaging,
diffusion-weighted imaging (DWI) has also been
applied to measure IVD diurnal changes of molecular
water diffusion as the apparent diffusion coefficient
(ADC) (9). DWI is expected to reflect a microscopic
restriction of water molecules and, thereby, micro-
structural changes such as matrix composition
(water, proteoglycan, and collagen) and matrix integ-
rity (9-11).

Conventional DWI analysis is based on an assump-
tion that the water molecules follow a Gaussian distri-
bution. However, human tissue including the IVD is a
complex and restricted environment that hinders the
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Estimating Diurnal Changes in IVD Microstructure

Table 1.
Morning and Evening T2 Values*

Morning Evening P value
ROI 1 67.6+10.5 74.0*+14.5 0.08
ROI 2 160.2 2:53.4 157.0 = 55.6 0.81
ROI3 226.5+83.8 175.8 + 49.5 < 0.01*
ROl 4 146.8 = 51.9 1441 + 49.4 0.69
ROI'5 52879 49.9*7.2 0.18

*Shown are the results of the T2 value (ms) paired t-test analysis
separated for region-of-interest localization. Data are displayed as
the mean = standard deviation. There was a significant decrease in
the T2 value in the middle of the nucleus pulposus (ROI 3) in the
evening (* < 0.05). No significant differences between the morning
and the evening were observed in other areas.

distribution of water molecules, resulting in distributions
that are far from Gaussian (12). Diffusion signal decay is
affected by numerous factors such as water restriction
and intra- and extracellular water exchange, as well as
variation in tissue compartment sizes. Therefore, different
approaches that do not rely on the previously mentioned
assumption are required to address all of the factors
affecting the signal in diffusion-weighted sequences.

Q-space imaging (QSI) analysis is a more advanced
form of diffusion analysis and uses a different approach
to measure water molecule diffusion (13,14). In contrast
to conventional DWI, @QSI does not assume a Gaussian
shape for the underlying probability density function
(PDF) of water molecule diffusion. It has shown promise
for evaluating the microstructure of tissues in vivo (15—
18) because it can provide additional diffusion metrics,
namely the root mean square displacement (RMSD) and
apparent kurtosis coefficient (AKC) (19-22), which give
in vivo microstructural information that complements
the ADC values. For example, increased ADC can indi-
cate either decreased viscosity of the tissue or spatial
dilatation of the water movement space (23). It is diffi-
cult to distinguish between these phenomena when
using ADC values only. However, the RMSD values
reflect the real extent of water molecule movement
(13,14).'We, therefore, hypothesized that QSI analysis
would be able to provide information about IVD diurnal
microstructural changes beyond that provided by con-
ventional DWI metrics based on an assumption of a
Gaussian shape and model of water molecules.

The purpose of this study is to investigate the use of
RMSD and AKC metrics of QSI data to estimate IVD
composition diurnal changes.

MATERIALS AND METHODS
Subjects

We investigated 15 male subjects between the ages of
25 and 39 years (mean, 27.3), with a body mass index
ranging from 20.06 to 25.56 kg/m” (mean, 22.50). We
obtained institutional review board ethics approval
before initiating the study. All subjects gave written
informed consent. Subjects were included if they had
no episodes of lower back or radicular pain in the last
6 months. None of the subjects had previous spine
surgery, contraindications for MRI, or any previously
diagnosed abnormalities of the lumbar spine. They
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were investigated once in the morning less than 30
min alter rising and a second time in the evening after
at least 10 h of normal physical activity (office work].

Image Acquisition

All images were acquired using 3 Tesla (T) MR (Signa
HDx ver. 14.0; General Electric, Waukesha, WI). After
fast spin-echo (FSE) T2-weighted sagittal and axial
imaging, QSI and T2 mapping data were acquired in
the axial plane of the IVD between the fourth and fifth
lumbar vertebrae (L4/5 disc).

FSE T2-weighted images were acquired according to
our routine protocol for clinical spine MRI. Imaging
parameters for FSE T2-weighted sagittal images were
as follows: repetition time (TR): 2740 [ms]; echo time
(TE): 106.6 [ms]; number of excitations (NEX): 1.5;
field of view (FOV): 28 [cm]; matrix size: 512 x 256;
and slice thickness: 3.0 [mm]; imaging time approxi-
mately 2.5 min. Imaging parameters for FSE T2-
weighted axial images were as follows: TR: 5000 [ms];
TE: 105.1 [ms]; NEX: 0.5; FOV: 25.6 [cm]; matrix size:
256 x 256; and slice thickness: 4.0 [mm]; imaging
time approximately 1.5 min. T2-weighted images were
not only used for anatomical reference but for the vis-
ual Pfirrmann grading of IVDs (24), which was per-
formed by two radiologists (M.K. and A.K., 5 and 17
years of experience, respectively) in consensus.

QSI was performed by using a spin-echo diffusion-
weighted echo-planar imaging sequence with the fol-
lowing parameters: TR: 5000 [ms]; TE: 99.6 [ms]; NEX:
3; FOV: 25.6 [cm]; matrix size: 128 x 128; slice thick-
ness: 4.0 [mm]; imaging time approximately 7.5 min;
and 11 b values (0, 40, 160, 360, 640, 1000, 1440,
1960, 2560, 3240, 4000 [s/mm?]) with diffusion encod-
ing in three directions (in the x, y, and z directions,) for
every b value. The data from the three directions were
acquired separately and then averaged. Corresponding
q values for each b value were 59.5, 119.0, 178.6,
238.1, 297.6, 357.1, 416.7, 476.92, 535.7, and 595.2
cm™!, respectively. Gradient length (§) and the time
between the two leading edges of the diffusion gradient
{(A) were 33.9 and 39.9 ms, respectively.

A multiecho spin echo sequence was performed in
the axial plane for T2 mapping data acquisition with
the following parameters: TR: 1200 [ms]; TE: 7.9,

Table 2.
Morning and Evening ADC Values™

Morning Evening P value -
ROl 1 0.80=0.18 0.84+0.25 0.58
ROI 2 1.46 +0.27 1.45+0.25 0.75
ROI 3 1.69 = 0.29 1.56 +0.32 < 0.01*
ROI 4 1.44+0.28 1.45+0.30 0.61
RO! 5 0.90 = 0.25 0.85+0.21 0.40

*Shown are the results of the ADC value (10™° mm®/s) paired t-
test analysis separated for region-of-interest localization. Data are
presented as the mean = standard deviation. There was a signifi-
cant decrease in the ADC value in the middle of the nucleus pulpo-
sus (ROl 3) in the evening (*<0.05). No significant differences
between the morning and the evening were observed in other
areas.
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Table 3. Table 4.
Morning and Evening RMSD Values Morning and Evening AKC Values

Morning Evening P value Morning Evening P value
ROI 1 24.4+1.0 24511 0.70 ROI 1 3.42 = 0.73 3.27 =0.86 0.38
ROl 2 37.8+5.2 36.9+5.3 0.51 ROI 2 0.71£0.14 0.76 £ 0.20 0.34
ROI 3 452+29 40.0x3.0 < 0.01* ROI3 0.58 = 0.04 0.67 +0.08 < 0.01*
ROl 4 39.6+5:0 39.9+4.6 0.49 ROI 4 0.74=0.27 0.69+0.13 0.23
ROI 5 26.6 3.0 25747 0.35 ROI 5 2.86 = 0.82 2.76 £0.82 0.42

*The results of the RMSD value (um) paired t-test analysis sepa-
rated for region-of-interest localization are presented. Data are dis-
played as the mean = standard deviation. There was a significant
decrease in the RMSD value in the middle of the nucleus pulposus
(ROl 38) in the evening (*<0.05). No significant differences
between the morning and the evening were observed in other
areas.

15.8, 23.8, 31.7, 39.6, 47.5, 55.4, 63.4 [ms]; NEX:
0.5; FOV: 22 [cm]; matrix size: 256 x 256; slice thick-
ness: 5.0 [mm]; imaging time approximately 2.5 min.
This is one of the most common types of sequence for
human in vivo spine T2 mapping and was used in a
similar manner by other investigators as well (25).

Region of Interest Settings

We decided to measure five equally sized circular regions
of interest (ROIs) on the central slice of the axial plane to
allow us to evaluate the ROIs in a standardized and
reproducible way in accordance with previously pub-
lished literature (Fig. 1) (9). Each ROI measured 20% of
the midline disc diameter (4-6 mm). The ROIs were man-
ually drawn by a radiologist (M.K., 5 years of experience)
using T2-weighted axial and sagittal images as an ana-
tomical reference. Structures outside of the IVD, such as
cerebrospinal fluid and retroperitoneal tissue, were
carefully avoided. It is challenging to clearly define what
tissue each ROI represents within the IVD because the
transition from AF to NP tissue is usually gradual; how-
ever, the most anterior and most posterior ROIs (ROI 1
and ROI 5) were interpreted to represent anterior and
posterior AF tissue, respectively. The ROIs in between
were interpreted to represent nucleus tissue (ROI 2,
anterior NP; ROI 3, middle NP; ROI 4, posterior NP).

Imaging Analysis

T2 maps were created with Functool software (Advant-
age Windows Workstation, General Electric), and T2
values were measured using the free software Image J
(available at: rsbweb.nih.gov/ij/).

Q-space analyses were performed using the free
software dTV II FZR and Volume-One 1.72 (Image
Computing and Analysis Laboratory, Department of
Radiology, The University of Tokyo Hospital, Tokyo,
Japan; available at: http://www.ut-radiology.u-
min.jp/people/masutani/dTV.htm and http://
www.volume-one.org/, respectively).

ADC maps (Fig. 2a) based on the conventional
mono-exponential model were calculated first. ADC
could be calculated by using part of the g-space data
because the QSI data included multiple sets of b
value data.

*The results of the AKC value paired t-test analysis separated for
region-of-interest localization are shown. Data are presented as
the mean = standard deviation. There was a significant increase in
the AKC value in the middle of the nucleus pulposus (ROI3) in the
evening (* < 0.05). No significant differences between the morning
and the evening were observed in other areas.

Next, the full widths at half maximum (FWHM) of
PDF (Fig. 2b) and mean AKC maps (Fig. 2c) were
obtained. Detailed new diffusion metrics and their cal-
culation procedures were as previously described (15-
22.26). Briefly, the key principle in g-space analysis is
that a Fourier transformation of the signal attenua-
tion with respect to q (or the b value) provides the
PDF for diffusion by using multiple q values (16). The
shape of the computed PDF can be characterized by
the FWHM and the maximum height of the curve. In
the specific case of an unrestricted Gaussian diffu-
sion, the diffusion constant D and the RMSD for one

Figure 1. Positioning of the regions of interest (ROIs). The
T2-weighted sagittal (a) and axial (b) images were used as
anatomical references. Five equally sized circular ROIs (b)
were manually drawn on the central slice of the axial planes
(a, solid line} by a radiologist (M.K.}, and were copied on the
T2 maps and g-space images. Each ROI measured 20% of
the midline disc diameter in the axial plane. The most ante-
rior and most posterior ROIs (ROI 1 and ROI 5) were inter-
preted as anterior and posterior AF tissue, respectively. The
ROIs in between were interpreted as nucleus tissue (ROI 2,
anterior NP; ROI 3, middle NP; ROI 4, posterior NP}.
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Figure 2. Diffusion metric maps: ADC (a); full width at half maximum of probability density function (b); AKC (c) of the IVD
in the axial plane, acquired in the morning from one of the subjects (23-year-old male; body mass index, 21.8).

dimensional diffusion can be computed from the
FWHM. Mean RMSD was calculated from the FWHM
values (RMSD =0.425 x FWHM) (17,18). Moreover, the
AKC for a single direction can be determined by acquir-
ing data at three or more b values (including b =0) and
fitting them to Eq. [1] as described previously (19):

In[S(b)]=In[S(0)]-bD app +1/6b XD app xKapp  [1]

where Dy, is the apparent diffusion coefficient for the
given direction and K, is the apparent kurtosis coef-
ficient, which is dimensionless.

Statistical Analysis

The data were analyzed using JMP 9.0.0 software
(SAS Institute, Cary, NC). Paired t-tests were applied

for assessing significant changes in T2 values and dif-
fusion values (ADC, RMSD, and AKC) between the
morning and the evening. A P value <0.05 was con-
sidered to be significant.

RESULTS

The consensus panel classified the L4/5 discs of all sub-
jects as Pfirrmann grade I, meaning there were no
degenerative changes (24). T2, ADC, RMSD, and AKC
values within each ROI were recorded (data are pre-
sented as mean = standard deviation [SD]) in the morn-
ing and in the evening. These values are shown in Tables
1-4 and Figure 3. T2, ADC, and RMSD values showed a
significant decrease in the evening (175.8 =49.5 ms,
1.56+0.32 10°mm?/s and 40.0+3.0 um,



1212
400
@ 300
E
S 200
g
N
"‘1oo—§!
8 &
0
g g2 g g2 2 2g2e
E § E § E § E 5§ £ %
g 3 2 s 8 5 € % g @
- R . S
A A
a
55.0
— 50.01
£
= 45.0
(]
2 4001
>
ass.o
£ 3001 ;
C2x0{s = B
20.0 e T e e
E 5 E S E§ E 5 E §
g 2 2 % € © £ & £ B
- O I e R
eggggggees
C

Figure 3. Box plots of T2 (a), ADC (b}, RMSD (c}, and AKC (d) values within each ROI in

Boxes represent the 25th and 75th percentile.

respectively; P< 0.05) for all values when compared with
the morning values (226.5*83.8 ms, 1.69*0.29
10®mm?/s and 45.2 + 2.9 um, respectively; P< 0.05) in
ROI 3 (representing the middle of the nucleus pulposus).
In contrast, the AKC value in ROI 3 showed a significant
increase in the evening (0.67 = 0.08), when compared
with the morning value (0.58 = 0.04). No significant dif-
ferences were observed between the morning and eve-
ning in the remaining ROIs.

DISCUSSION

In the present study, changes in T2 values and diffu-
sion metrics of QSI data in IVDs before and after a
diurnal load cycle were investigated. T2, ADC, and
RMSD metrics in the evening were significantly lower
than those in the morning, while the AKC value
showed a significant increase in the evening, com-
pared with the morning in the middle of the NP. No
significant differences were observed between the
morning and the evening in other areas.

Our finding of decreased T2 values after a diurnal
load in the middle of the NP is consistent with those
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of previous reports (8.9). Only Ludescher et al
reported on the diurnal ADC value changes of IVD
using a 1.5T scanner, which revealed an decrease in
the AF and no significant change in the NP (9). How-
ever, ADC values from all lumbar IVDs were averaged
and analyzed together in their study, and they did not
conduct subanalysis at each disc level or in each ROI
position (e.g., anterior AF versus posterior AF).
Because the compressive force distribution during
daily activity should vary according to the disc level
and position within each IVD, diurnal changes of dif-
fusion metrics should be analyzed individually.

Our results showed decreased ADC and RMSD val-
ues and increased AKC values in the middle of the NP
after a diurnal load. Water molecule diffusion is
restricted in a complex manner by several factors
such as the extracellular matrix (e.g., collagen fibers
and proteoglycan) in the IVDs. In general, RMSD is
not influenced by the viscosity of water, but by the
space for free water movement (13,14). AKC describes
the deviation of the water diffusion pattern within a
voxel from a Gaussian distribution, which is thought
to reflect the changes in microstructural complexity.
Our results suggest that compressive forces occurring
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during the day cause narrowing of the space for free
water movement and a generally higher degree of
microstructural complexity, which we are unable to
assess with conventional quantitative MR measure-
ments such as T2 or ADC. Diffusion metrics obtained
from QSI data may provide additional information
with regards to the diurnal microstructural changes
occurring in the IVDs, such as matrix composition
and integrity.

Several other factors are known to influence IVD
quantitative MR measurements, namely, age-related
changes and degenerative changes. Previous studies
revealed decreasing T2 and ADC values of the NP with
increasing age or with progression in the Pfirrmann
grade (10,11,24). Karakida et al also found that no
significant diurnal T2 value changes could be
observed in degenerated discs (8), and they specu-
lated that proteoglycan reduction in the NP with age
and disc degeneration reduces not only the capability
of holding fluid in the disc, but also the ability to
recover the amount of fluid from daily compression
force. In the present study, we controlled the age of
subjects (mean age of the subjects was 27.3 years),
and the degenerative grade of the IVDs (all IVDs
included in the study were classified as Pfirrmann
grade I, meaning no degenerative changes). Therefore,
diurnal changes were investigated with minimal con-
founding factors. The young and homogenous back-
ground of our study group did provide an advantage
to minimize potential confounding factors; however,
future QSI studies should include assessment of age-
related and degenerative changes and various IVD
pathologies. QSI may also be applied to assessment of
articular cartilage changes. Studies evaluating disc
and cartilage changes with different amounts of work-
load and mechanical stress (e.g., exercise in athletes)
with QSI are also awaited. In particular, the potential
of QSI as a biomarker for detecting early structural
disturbances, when these changes are not visible with
conventional MR imaging and before clinical symp-
toms become evident, should be investigated as well.

One potential limitation of this study is the rela-
tively low maximum b value (b=4000 s/mm?) that we
used to calculate RMSD using g-space analysis. How-
ever, using higher b values (or q values) leads to fatal
image degradation. We, therefore, decided to evaluate
the changes in the RMSD values, rather than the
absolute values themselves. Another limitation is par-
tial volume which could have effected on the measure-
ments especially at peripheral part of lumbar disc.
However, during ROI selections, structures outside of
the IVD, such as cerebrospinal fluid and retroperito-
neal tissue, were carefully avoided.

In conclusion, the RMSD and AKC values obtained
from @QSI analysis may be sensitive biomarkers for
IVD- diurnal microstructural changes, namely the
space for free water movement and microstructural
complexity, in which we are unable to assess with
conventional diffusion-weighted imaging metrics
based on an assumption of a Gaussian shape and
model of water molecules. Potentially, this technique
can become an appropriate tool to allow characteriza-
tion of IVD microstructural integrity.
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Abstract

Objective: We describe a new false positive (FP) reduction method based on surface features in our computerized
detection system for lung nodules and evaluate the method using clinical chest computed tomography (CT) scans.

Methods: In our detection method, nodule candidates are extracted using volumetric curvature-based thresholding and
region growing. For various sizes of nodules, we adopt multiscale integration based on Hessian eigenvalues. For each
nodule candidate, two surface features are calculated to differentiate nodules and FPs at vessel bifurcations. These features
are fed into a quadratic classifier based on the Mahalanobis distance ratio.

Results: In an experimental study involving 16 chest CT scans, the average number of FPs was reduced from 107.5 to 14.1
per case at 90% sensitivity.

Conclusions: This proposed FP reduction method is effective in removing FPs at vessel bifurcations.

Key words
Surface feature, Vessel bifurcation, Lung nodule, Chest CT, Computer-assisted detection

1 Introduction

Lung cancer is one of the most difficult cancers to cure, and early detection is necessary to improve patient outcomes 2.,
Chest computed tomography (CT) can help detect lung cancer at an earlier stage than chest radiography B3] The recent
development of multidetector-row CT (MDCT) has allowed the acquisition of thin-section images of a whole lung during
a single breath hold . However, due to the large number of images generated by chest MDCT examination, reading by
radiologists is time-consuming and may result in missed nodules. Therefore, computer-assisted detection (CAD) systems
for lung nodules in chest CT images have been developed to assist radiologists.

A number of research groups have reported a variety of CAD systems for detecting lung nodules in chest CT images,
including multiple grayscale thresholding 1561 Jocal density maximum algorithm ', fuzzy clustering (8], genetic algorithm
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