51.

52.

Shemesh N, Ozarslan E, Basser PJ, Cohen Y (2009) Measuring small
compartmental dimensions with low-q angular double-PGSE NMR: The effect
of experimental parameters on signal decay. Journal of Magnetic Resonance
198: 15-23.

Kunimatsu A, Acki S, Masutani Y, Abe O, Mori H, et al. (2003) Three-
dimensional white matter tractography by diffusion tensor imaging in ischaemic
stroke involving the corticospinal tract. Neuroradiology 45: 532-535.

PLOS ONE | www.plosone.org

53.

Axon Diameter and Density Analysis of Corticospinal Tract in iNPH

Yamada K, Kizu O, Kubota T, Ito H, Matsushima S, et al. (2007) The
pyramidal tract has a predictable course through the centrum semiovale: a
diffusion-tensor based tractography study. Journal of Magnetic Resonance
Imaging 26: 519-524.

. Barazany D, Jones D, Assaf Y (2011) AxCaliber 3D. Proc Int Soc Magn Reson

Med 19: 76.

August 2014 | Volume 9 | Issue 8 | 103842



JOURNAL OF MAGNETIC RESONANCE IMAGING 40:1208-1214 (2014)

Original Research

Non-Gaussian Diffusion-Weighted Imaging for
Assessing Diurnal Changes in Intervertebral Disc

Microstructure

Masaki Katsura, MD, PhD,"* Yuichi Suzuki, PhD,? Junichi Hata, PhD,?
Masaaki Hori, MD, PhD,® Hiroki Sasaki, MD, PhD," Hiroyuki Akai, MD, PhD,’
Harushi Mori, MD," Akira Kunimatsu, MD, PhD," Yoshitaka Masutani, PhD,’
Shigeki Aoki, MD, PhD,® and Kuni Ohtomo, MD, PhD'

values obtamed from3
for IVD. dlurnal xmcro—‘

!Department of Radiology, Graduate School of Medicine, The Univer-
sity of Tokyo, Tokyo, Japan.

?Department of Radiological Technology, The University of Tokyo
Hospital, Tokyo, Japan.

3Department of Radiology, School of Medicine, Juntendo University,
Tokyo. Japan.

Presented in part at the 21st Annual Meeting of the International
Society of Magnetic Resonance in Medicine, April 20-26, 2013, Salt
Lake City, USA.

*Address reprint requests to: M.K., Department of Radiology, Gradu-
ate School of Medicine, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-8655, Japan.

E-mail: mkatsura-tky@umin.ac.jp

Received October 8, 2012; Accepted September 11, 2013.

DOI 10.1002 /jmri.24459

View this article online at wileyonlinelibrary.com.

© 2013 Wiley Periodicals, Inc.

":Key Words non Gaussmn dlfquIOD Weldhted 1magmg q—

© 2013 Wlley Penodmals, Inc 4

THE INTERVERTEBRAL DISC (IVD) consists of the
nucleus pulposus (NP} in the core and the annulus
fibrosus (AF) at the periphery. The NP is rich in pro-
teoglycans. Proteoglycans interact with hyaluronic
acid to form proteoglycan aggregates that are nega-
tively charged and hydrophilic, and which are
designed to draw and retain water (1). The AF is com-
posed predominantly of type I collagen organized in
dense concentric lamellae forming a fibrous collagen
network that maintains the shape of the disc (2).

It has been reported that the spine becomes shorter
during the day and recovers during the night (3). This
phenomenon has been thought to result from a
decrease in disc hydration with daily compression (4).
This hypothesis has been supported by several inves-
tigators studying morphological aspects of the IVDs,
which function to distribute hydraulic pressure under
compressive loads (5,6). ‘

Several studies have identified diurnal IVD changes
in vivo using magnetic resonance (MR) imaging. Previ-
ous investigators reported a decrease in IVD volume
(7), and a decrease in NP T2 values (8,9) after a diur-
nal workload. In addition to morphologic MR imaging,
diffusion-weighted imaging (DWI)} has also been
applied to measure IVD diurnal changes of molecular
water diffusion as the apparent diffusion coefficient
(ADC) (9). DWI is expected to reflect a microscopic
restriction of water molecules and, thereby, micro-
structural changes such as matrix composition
(water, proteoglycan, and collagen) and matrxx integ-
rity (9-11).

Conventional DWI analysis is based on an assump-
tion that the water molecules follow a Gaussian distri-
bution. However, human tissue including the IVD is a
complex and restricted environment that hinders the
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Table 1.
Morning and Evening T2 Values®

Morning Evening P value
ROI 1 67.6 £10.5 74.0x14.5 0.08
ROl 2 160.2 2 53.4 157.0 £ 55.6 0.81
ROI 3 226.5:+83.8 175.8249.5 < 0.01*
ROI 4 146.8 = 51.9 144.1 2494 0.69
ROI 5 52.8:7.9 49972 0.18

*Shown are the results of the T2 value (ms) paired t-test analysis
separated for region-of-interest localization. Data are displayed as
the mean + standard deviation. There was a significant decrease in
the T2 value in the middle of the nucleus pulposus (ROI 3) in the
evening (* < 0.05). No significant differences between the morning
and the evening were observed in other areas.

distribution of water molecules, resulting in distributions
that are far from Gaussian (12). Diffusion signal decay is
affected by numerous factors such as water restriction
and intra- and extracellular water exchange, as well as
variation in tissue compartment sizes. Therefore, different
approaches that do not rely on the previously mentioned
assumption are required to address all of the factors
affecting the signal in diffusion-weighted sequences.

Q-space imaging (QSI) analysis is a more advanced
form of diffusion analysis and uses a different approach
to measure water molecule diffusion (13,14)}. In contrast
to conventional DWI, @SI does not assume a Gaussian
shape for the underlying probability density function
(PDF) of water molecule diffusion. It has shown promise
for evaluating the microstructure of tissues in vivo (15~
18) because it can provide additional diffusion metrics,
namely the root mean square displacement (RMSD) and
apparent kurtosis coefficient (AKC) (19-22), which give
in vivo microstructural information that complements
the ADC values. For example, increased ADC can indi-
cate either decreased viscosity of the tissue or spatial
dilatation of the water movement space (23). It is diffi-
cult to distinguish between these phenomena when
using ADC values only. However, the RMSD values
reflect the real extent of water molecule movement
(13,14). We, therefore, hypothesized that QSI analysis
would be able to provide information about IVD diurnal
microstructural changes beyond that provided by con-
ventional DWI metrics based on an assumption of a
Gaussian shape and model of water molecules.

The purpose of this study is to investigate the use of
RMSD and AKC metrics of QSI data to estimate IVD
composition diurnal changes.

MATERIALS AND METHODS
Subjects

We investigated 15 male subjects between the ages of
25 and 39 years (mean, 27.3), with a body mass index
ranging from 20.06 to 25.56 kg/m? (mean, 22.50). We
obtained institutional review board ethics approval
before initiating the study. All subjects gave written
informed consent. Subjects were included if they had
no episodes of lower back or radicular pain in the last
6 months. None of the subjects had previous spine
surgery, contraindications for MRI, or any previously
diagnosed abnormalities of the lumbar spine. They
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were investigated once in the morning less than 30
min after rising and a second time in the evening after
at least 10 h of normal physical activity (office work).

Image Acquisition

All itnages were acquired using 3 Tesla (T) MR (Signa
HDx ver. 14.0: General Electric, Waukesha, WI). After
fast spin-echo (FSE) T2-weighted sagittal and axial
imaging, QSI and T2 mapping data were acquired in
the axial plane of the IVD between the fourth and fifth
lumbar vertebrae (L4/5 disc).

FSE T2-weighted images were acquired according to
our routine protocol for clinical spine MRI. Imaging
parameters for FSE T2-weighted sagittal images were
as follows: repetition time (TR}): 2740 [ms]: echo time
(TE): 106.6 [ms]: number of excitations (NEX): 1.5;
field of view (FOV): 28 [em]; matrix size: 512 x 256;
and slice thickness: 3.0 [mm]; imaging time approxi-
mately 2.5 min. Imaging parameters for FSE T2-
weighted axial images were as follows: TR: 5000 [ms]:
TE: 105.1 [ms]; NEX: 0.5; FOV: 25.6 [cm]; matrix size:
256 x 256; and slice thickness: 4.0 [mm]; imaging
time approximately 1.5 min. T2-weighted images were
not only used for anatomical reference but for the vis-
ual Plrrmann grading of IVDs (24), which was per-

formed by two radiologists (M.K. and A.K., 5 and 17

years of experience, respectively) in consensus.

QSI was performed by using a spin-echo diffusion-
weighted echo-planar imaging sequence with the fol-
lowing parameters: TR: 5000 [ms]; TE: 99.6 [ms]; NEX:
3; FOV: 25.6 [cm]: matrix size: 128 x 128; slice thick-
ness: 4.0 [mm]; imaging time approximately 7.5 min;
and 11 b values (0, 40, 160, 360, 640, 1000, 1440,
1960, 2560, 3240, 4000 [s/mm?]) with diffusion encod-
ing in three directions (in the x, y, and z directions,} for
every b value. The data from the three directions were
acquired separately and then averaged. Corresponding
q values for each b value were 59.5, 119.0, 178.6,
238.1, 297.6, 357.1, 416.7, 476.92, 535.7, and 595.2
cm™!, respectively. Gradient length (8) and the time
between the two leading edges of the diffusion gradient
(A) were 33.9 and 39.9 ms, respectively.

A multiecho spin echo sequence was performed in
the axial plane for T2 mapping data acquisition with
the following parameters: TR: 1200 [ms]; TE: 7.9,

Table 2.
Morning and Evening ADC Values”

Morning Evening P value
ROI 1 0.80x0.18 0.84+0.25 0.58
ROI 2 1.46 +0.27 1.45+0.25 0.75
ROI 3 1.69=0.29 1.56 = 0.32 < 0.01*
ROI 4 1.44 +0.28 1.45+0.30 0.61
ROl 5 0.90+0.25 © 0.85+0.21 0.40

*Shown are the results of the ADC value (10~° mm?/s) paired t-
test analysis separated for region-of-interest localization. Data are
presented as the mean = standard deviation. There was a signifi-
cant decrease in the ADC value in the middie of the nucleus pulpo-
sus (ROl 3) in the evening (*<0.05). No significant differences
between the morning and the evening were observed in other
areas.
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Table 3. Table 4.
Morning and Evening RMSD Values Morning and Evening AKC Values

Morning Evening P value Morning Evening P value
ROl 1 24.4+1.0 245+141 0.70 ROI 1 3.42+0.73 3.27 = 0.86 0.38
ROI 2 37.8+5.2 36.9+5.3 0.51 ROI 2 0.71+0.14 0.76 = 0.20 0.34
ROI 3 45.2+29 40.0x3.0 < 0.01* ROI3 0.58 + 0.04 0.67 = 0.08 < 0.01*
ROI 4 39.5=5.0 39.9x46 0.49 ROI 4 0.74 =0.27 0.69+0.13 0.23
ROl 5 26.6 3.0 257 +=1.7 0.35 ROI 5 2.86+0.82 2.76 £0.82 0.42

*The results of the RMSD value (um) paired t-test analysis sepa-
rated for region-of-interest localization are presented. Data are dis-
played as the mean = standard deviation. There was a significant
decrease in the RMSD value in the middle of the nucleus pulposus
(ROl 3) in the evening (*<0.05). No significant differences
between the morning and the evening were observed in other
areas.

15.8, 23.8, 31.7, 39.6, 47.5, 55.4, 63.4 [ms]; NEX:
0.5; FOV: 22 [cm]; matrix size: 256 x 256: slice thick-
ness: 5.0 [mm]; imaging time approximately 2.5 min.
This is one of the most common types of sequence for
human in vivo spine T2 mapping and was used in a
similar manner by other investigators as well (25).

Region of Interest Settings

We decided to measure five equally sized circular regions
of interest (ROIs) on the central slice of the axial plane to
allow us to evaluate the ROIs in a standardized and
reproducible way in accordance with previously pub-
lished literature (Fig. 1) (9). Each ROI measured 20% of
the midline disc diameter (4-6 mm). The ROIs were man-
ually drawn by a radiologist (M.K., 5 years of experience)
using T2-weighted axial and sagittal images as an ana-
tomical reference. Structures outside of the IVD, such as
cerebrospinal fluid and retroperitoneal tissue, were
carefully avoided. It is challenging to clearly define what
tissue each ROI represents within the IVD because the
transition from AF to NP tissue is usually gradual; how-
ever, the most anterior and most posterior ROIs (ROI 1
and ROI 5) were interpreted to represent anterior and
posterior AF tissue, respectively. The ROIs in between
were interpreted to represent nucleus tissue (ROI 2,
anterior NP; ROI 3, middle NP; ROI 4, posterior NP).

Imaging Analysis

T2 maps were created with Functool software (Advant-
age Windows Workstation, General Electric), and T2
values were measured using the free software Image J
(available at: rsbweb.nih.gov/ij/).

Q-space analyses were performed using the free
software dTV II FZR and Volume-One 1.72 (Image
Computing and Analysis Laboratory, Department of
Radiology, The University of Tokyo Hospital, Tokyo,
Japan; available at: http://www.ut-radiology.u-
min.jp/people/masutani/dTV.htm and http://
www.volume-one.org/, respectively).

ADC maps (Fig. 2a) based on the conventional
mono-exponential model were calculated first. ADC
could be calculated by using part of the g-space data
because the QSI data included multiple sets of b
value data.

*The results of the AKC value paired t-test analysis separated for
region-of-interest localization are shown. Data are presented as
the mean = standard deviation. There was a significant increase in
the AKC value in the middle of the nucleus pulposus (ROI3) in the
evening (* < 0.05). No significant differences between the morning
and the evening were observed in other areas.

Next, the full widths at half maximum (FWHM) of
PDF (Fig. 2b) and mean AKC maps (Fig. 2c) were
obtained. Detailed new diffusion metrics and their cal-
culation procedures were as previously described (15—
22,26). Briefly, the key principle in g-space analysis is
that a Fourier transformation of the signal attenua-
tion with respect to q (or the b value) provides the
PDF for diffusion by using multiple q values (16). The
shape of the computed PDF can be characterized by
the FWHM and the maximum height of the curve. In
the specific case of an unrestricted Gaussian diffu-
sion, the diffusion constant D and the RMSD for one

Figure 1. Positioning of the regions of interest (ROIs). The
T2-weighted sagittal (a) and axial (b) images were used as
anatomical references. Five equally sized circular ROIs (b)
were manually drawn on the central slice of the axial planes
(a. solid line} by a radiologist (M.K.}, and were copied on the
T2 maps and g-space images. Each ROI measured 20% of
the midline disc diameter in the axial plane. The most ante-
rior and most posterior ROIs (ROI 1 and ROI 5) were inter-
preted as anterior and posterior AF tissue, respectively. The
ROIs in between were interpreted as nucleus tissue (ROI 2,
anterior NP; ROI 3, middle NP; ROI 4, posterior NP).
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Figure 2. Diffusion metric maps: ADC (a): full width at half maximum of probability density function (b); AKC (c) of the IVD
in the axial plane, acquired in the morning from one of the subjects (23-year-old male: body mass index, 21.8).

dimensional diffusion can be computed from the
FWHM. Mean RMSD was calculated from the FWHM
values (RMSD =0.425 x FWHM) (17,18). Moreover, the
AKC for a single direction can be determined by acquir-
ing data at three or more b values (including b = 0) and
fitting them to Eq. [1] as described previously (19):

In[S(b)]=In[S(0)]-bD app +1/6bZxD app xKapp  [1]

where Dy, is the apparent diffusion coefficient for the
given direction and K, is the apparent kurtosis coef-
ficient, which is dimensionless.

Statistical Analysis

The data were analyzed using JMP 9.0.0 software
(SAS Institute, Cary, NC). Paired t-tests were applied

for assessing significant changes in T2 values and dif-
fusion values (ADC, RMSD, and AKC) between the
morning and the evening. A P value <0.05 was con-
sidered to be significant.

RESULTS

The consensus panel classified the L4/5 discs of all sub-
jects as Pfirrmann grade I, meaning there were no
degenerative changes (24). T2, ADC, RMSD, and AKC
values within each ROI were recorded (data are pre-
sented as mean * standard deviation [SD]) in the morn-
ing and in the evening. These values are shown in Tables
1-4 and Figure 3. T2, ADC, and RMSD values showed a
significant decrease in the evening (175.8 £49.5 ms.
1.56+0.32 10°mm?/s and 40.0=3.0 pm,
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Figure 3. Box plots of T2 (a}, ADC (b}, RMSD (c}. and AKC (d) values within each ROI in

Boxes represent the 25th and 75th percentile.

respectively; P< 0.05) for all values when compared with
the morning values (226.5+83.8 ms, 1.69*=0.29
10~°mm?/s and 45.2 + 2.9 um, respectively; P< 0.05) in
ROI 3 (representing the middle of the nucleus pulposus).
In contrast, the AKC value in ROI 3 showed a significant
increase in the evening (0.67 = 0.08), when compared
with the morning value (0.58 = 0.04). No significant dif-
ferences were observed between the morning and eve-
ning in the remaining ROIs.

DISCUSSION

In the present study, changes in T2 values and diffu-
sion metrics of QSI data in IVDs before and after a
diurnal load cycle were investigated. T2, ADC, and
RMSD metrics in the evening were significantly lower
than those in the morning, while the AKC value
showed a significant increase in the evening, com-
pared with the morning in the middle of the NP. No
significant differences were observed between the
morning and the evening in other areas.

Our finding of decreased T2 values after a diurnal
load in the middle of the NP is consistent with those
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of previous reports (8,9). Only Ludescher et al
reported on the diurnal ADC value changes of IVD
using a 1.5T scanner, which revealed an decrease in
the AF and no significant change in the NP (9). How-
ever, ADC values from all lumbar IVDs were averaged
and analyzed together in their study, and they did not
conduct subanalysis at each disc level or in each ROI
position (e.g., anterior AF versus posterior AF).
Because the compressive force distribution during
daily activity should vary according to the disc level
and position within each IVD, diurnal changes of dif-
fusion metrics should be analyzed individually.

Our results showed decreased ADC and RMSD val-
ues and increased AKC values in the middle of the NP
after a diurnal load. Water molecule diffusion is
restricted in a complex manner by several factors
such as the extracellular matrix (e.g., collagen fibers
and proteoglycan) in the IVDs. In general. RMSD is
not influenced by the viscosity of water, but by the
space for free water movement (13,14). AKC describes
the deviation of the water diffusion pattern within a
voxel from a Gaussian distribution, which is thought
to reflect the changes in microstructural complexity.
Our results suggest that compressive forces occurring



Estimating Diurnal Changes in IVD Microstructure

during the day cause narrowing of the space for free
water movement and a generally higher degree of
microstructural complexity, which we are unable to
assess with conventional quantitative MR measure-
ments such as T2 or ADC. Diffusion metrics obtained
from QSI data may provide additional information
with regards to the diurnal microstructural changes
occurring in the IVDs, such as matrix composition
and integrity.

Several other factors are known to influence IVD
quantitative MR measurements, namely, age-related
changes and degenerative changes. Previous studies
revealed decreasing T2 and ADC values of the NP with
increasing age or with progression in the Pfirrmann
grade (10,11,24). Karakida et al also found that no
significant diurnal T2 value changes could be
observed in degenerated discs (8), and they specu-
lated that proteoglycan reduction in the NP with age
and disc degeneration reduces not only the capability
of holding fluid in the disc, but also the ability to
recover the amount of fluid from daily compression
force. In the present study, we controlled the age of
subjects (mean age of the subjects was 27.3 years),
and the degenerative grade of the IVDs (all IVDs
included in the study were classified as Pfirrmann
grade I, meaning no degenerative changes). Therefore,
diurnal changes were investigated with minimal con-
founding factors. The young and homogenous back-
ground of our study group did provide an advantage
to minimize potential confounding factors; however,
future QSI studies should include assessment of age-
related and degenerative changes and various IVD
pathologies. QSI may also be applied to assessment of
articular cartilage changes. Studies evaluating disc
and cartilage changes with different amounts of work-
load and mechanical stress {e.g., exercise in athletes)
with @SI are also awaited. In particular, the potential
of QSI as a biomarker for detecting early structural
disturbances, when these changes are not visible with
conventional MR imaging and before clinical symp-
toms become evident, should be investigated as well.

One potential limitation of this study is the rela-
tively low maximum b value (b =4000 s/mm?) that we
used to calculate RMSD using g-space analysis. How-
ever, using higher b values (or q values) leads to fatal
image degradation. We, therefore, decided to evaluate
the changes in the RMSD values, rather than the
absolute values themselves. Another limitation is par-
tial volume which could have effected on the measure-
ments especially at peripheral part of lumbar disc.
However, during ROI selections, structures outside of
the IVD, such as cerebrospinal fluid and retroperito-
neal tissue, were carefully avoided.

In conclusion, the RMSD and AKC values obtained
from Q@QSI analysis may be sensitive biomarkers for
IVD diurnal microstructural changes, namely the
space for free water movement and microstructural
complexity, in which we are unable to assess with
conventional diffusion-weighted imaging metrics
based on an assumption of a Gaussian shape and
model of water molecules. Potentially, this technique
can become an appropriate tool to allow characteriza-
tion of IVD microstructural integrity.
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Abstract

Objective: We describe a new false positive (FP) reduction method based on surface features in our computerized
detection system for lung nodules and evaluate the method using clinical chest computed tomography (CT) scans.

Methods: In our detection method, nodule candidates are extracted using volumetric curvature-based thresholding and
region growing. For various sizes of nodules, we adopt multiscale integration based on Hessian eigenvalues. For each
nodule candidate, two surface features are calculated to differentiate nodules and FPs at vessel bifurcations. These features
are fed into a quadratic classifier based on the Mahalanobis distance ratio.

Results: In an experimental study involving 16 chest CT scans, the average number of FPs was reduced from 107.5 to 14.1
per case at 90% sensitivity.

Conclusions: This proposed FP reduction method is effective in removing FPs at vessel bifurcations.

Key words
Surface feature, Vessel bifurcation, Lung nodule, Chest CT, Computer-assisted detection

i1 Introduction

Lung cancer is one of the most difficult cancers to cure, and early detection is necessary to improve patient outcomes 21,
Chest computed tomography (CT) can help detect lung cancer at an earlier stage than chest radiography . The recent
development of multidetector-row CT (MDCT) has allowed the acquisition of thin-section images of a whole lung during
a single breath hold . However, due to the large number of images generated by chest MDCT examination, reading by
radiologists is time-consuming and may result in missed nodules. Therefore, computer-assisted detection (CAD) systems
for lung nodules in chest CT images have been developed to assist radiologists.

A number of research groups have reported a variety of CAD systems for detecting lung nodules in chest CT images,
including multiple grayscale thresholding (561 Jocal density maximum algorithm [, fuzzy clustering '*, genetic algorithm
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template matching of Gaussian spheres and discs "), filters enhancing spherical structures , curved surface
morphology analysis ", and volumetric curvature-based thresholding and region growing "*. Commercial CAD systems
for detecting lung nodules in chest CT images have also been developed, including the ImageChecker CT Lung system
(R2 Technology Inc., Sunnyvale, CA, USA), Lung VCAR (GE Healthcare Technologies, Waukesha, WI, USA), and
Syngo Lung CAD (Siemens Medical Solutions, Erlangen, Germany).

Although these CAD systems detect lung nodules with high sensitivity, results may include false positives (FPs). These
typically occur at vessel bifurcations, sharply curved vessels, artifacts due to respiratory or cardiac motion, abnormalities
on the pleura (scars and fluid build-up), and so forth "'\, Among these, vessel bifurcations are of particular importance,
and reducing FPs occurring at vessel bifurcations would considerably improve the detection performance. In our CAD
system for lung nodules ), for example, almost half the FPs occur at vessel bifurcations.

In this paper, we propose a new FP reduction method based on surface features in our CAD system for lung nodules. We
then evaluate the method using 16 clinical cases.

2 Methods

2.1 Overview of detection method

Figure 1 shows a flowchart of our detection method, which consists of three steps: preprocessing, nodule candidate
extraction, and FP reduction. The preprocessing step involves isotropic resampling, lung segmentation, binarization of the
lung volume, and surface extraction from the binarized lung volume. The nodule candidate extraction step involves
thresholding based on the shape index value and shape-index-based region growing % For various sizes of nodules, we
adopted multiscale integration based on Hessian eigenvalues. Finally, the FP reduction step defines two surface features
and calculates them for each nodule candidate. These feature values are fed into a quadratic classifier based on the
Mabhalanobis distance ratio.

Chest CT images

Isotropic resampling l

Surface
extraction

Binarization within lung \folumel

1

! N
! 1
! '
! 1
! \
1 .

! ! Lung segmentation | |
! |
! |
! |
1

1 1

[ Nodule candidate extraction |

-———>l False positive reduction l

Figure 1. Flowchart of the detection method Detected nodule

2.2 Preprocessing

Chest CT images are resampled using trilinear interpolation to obtain the isotropic volume. The resampled voxel size
is equal to the pixel size of the CT slice. After that, lung segmentation is carried out. The processing procedures of lung
segmentation are described as follows:

1) The initial lung mask L, is extracted as a set of connected voxels with CT values lower than -600 HU.

2) A gray-scale histogram of the voxels in L;,; is generated, and the peak CT value in the histogram 7.« is obtained.

3) The initial mask for the trachea and large airways is extracted as the set of connected voxels with CT values lower
than T,.q +50 HU and smoothed by opening with a spherical kernel of 2.5-voxel radius.
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4) The final mask for the trachea and large airways is obtained as a superiormost connected component and dilated
by a spherical kernel of 2.5-voxel radius.

5) After the removal of the mask for the trachea and large airways from the initial lung mask, closing with a
spherical kernel of 5-voxel radius is applied to the masks for the left and right lungs to include lung nodules and
pulmonary vessels.

6) Removal of the mask for the bones from the masks for the left and right lungs is carried out. The mask for the
bones is extracted as the largest connected component with CT values higher than 100 HU, and then closing with
a spherical kernel of 2.5-voxel radius and dilation with a spherical kernel of 1.5-voxel radius are carried out.

7) The lung volume L is obtained as the intersection voxels between the chest CT volume and the masks for the left
and right lungs.

After lung segmentation, binarization within L is carried out again to extract the region of nodules and vessels. The
binarized lung volume Ly;, is given by:

Ly, = {p | I(X)2 TCT’peL} (1)

where /(x) is the CT value (HU) of voxel p and x is the 3D coordinate for the position of voxel p. T¢ris the threshold for the
extraction of vessels and nodules. Moreover, the surface areas of vessels and nodules Ly are extracted using:

Lsf =L, - (Lbin ° KI.O) 2

where o defines erosion and K ¢ is a spherical kernel of 1-voxel radius.

2.3 Extraction of nodule candidates

The shape index is calculated at the voxels of Ly, using original CT values. The shape index S(x, o) is defined as
follows 122

_1 1 o)tk (x0)
S(x,a)—2 ”arCtankl(X,O')—kz(x,o') 3)

k(x,0)= H(x,0)+H*(x,0) - K(X,0) @
ky(x,0)= H(x,0)—H*(x,0)- K(x,0)

where k; and k, are principal curvatures (k; > k,), H is the mean curvature, K is the Gaussian curvature, and o (voxel) is the
standard deviation of the Gaussian filter. S ranges from 0 to 1. Figure 2 shows the relation between the S value and shape
type. The S values of the voxels of a typical nodule range from 0.8 to 1.0, showing a peak or dome, whereas those of a
vessel range from 0.5 to 0.75, showing a ridge or saddle. Therefore, thresholding based on the S value differentiates
nodules and vessels.

vV & Y 2 O

pit valley saddle ridge peak
saddle saddle
trough valley ridge dome

0 0.0625 0.1875 0.3125 0.4375 0.5625 0.6875 0.8125 0.9375 1

Figure 2. Relation between shape index value and shape type
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Figure 3 shows the relationship between o/R.; and the mean S value in two isolated nodules, where R, is the volume-
equivalent spherical radius for the nodule. If o is smaller than R,z the mean S value of nodules corresponding to the shape
type of the nodule represents the “peak” value. In contrast, if o is larger than R,z the mean S value is markedly degraded
due to the smoothing effect of the Gaussian filter. We observed a similar tendency in 12 other isolated nodules. Multiscale
integration ** is desirable to obtain an appropriate shape index value because various sizes of nodules exist in chest CT

images.

09 p

Mean S value

Figure 3. (A) Relationship between o/R,;and mean
Svalue (R, volume-equivalent spherical radius for
nodule). (B) Axial section of nodule 1 (R.;= 2.0
voxels). (C) Axial section of nodule 2 (R = 2.7 05 .
voxels). A ol Ry

(@] )'! WI *x

—e—nodule 1
—e=nodule 2
L ot

i
2
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In this paper, we adopted multiscale integration based on Hessian eigenvalues (2425 o obtain Sop(x). The Hessian at voxel
p is given as follows:

I, (XQO') I (x.a) I (x,O')
HE.0)=| 1,60) 1,60) 1.6.0) s)
I (x,a) 1{‘,(x,0') lx(x,a)

where the partial second derivatives of /(x) are represented by expressions such as:

L&) Zo)16) ©
6o 2 a@)+16) ™)

G(o) is a 3D Gaussian function with standard deviation o. Let the eigenvalues of H be 4;, A, and A; (| 41| = |4, = | 43]). On
the basis of these eigenvalues, a local pattern is classified as a plate-like, line-like, or blob-like structure. Table 1
summarizes the relation between A, A, and A; for different structures. Given that the CT values of nodules and vessels are
higher than those of the pulmonary parenchyma, the sign of 4, at a voxel within a nodule or vessel is generally negative. In
our multiscale integration, Hessian eigenvalues are calculated for several values of o, and o,,(X) is determined as follows:

Ot (x): arg ;nin@f’ A4 (x, 0')) ®)

where yis a parameter for normalization **°!, Then, S,,,(x) is calculated as follows:

So @)= 5.7, ) ©)

After calculating S,,,, the sets of connected voxels with signals higher than a given threshold of shape index value Sp;g; are
extracted. Sy is set to higher than 0.8 to reduce the influence of artifacts. Small components under a volume threshold
T, are then removed. If 7y, is set too high, FPs caused by the artifacts as well as true nodules with a small size or
nonspherical shape are removed. Finally, shape-index-based region growing is carried out in L;. The termination
criterion for region growing is set to Sy, < S, < 1.0. S, is set to a value that differentiates nodules from vessels, and Sy,
< Shigh-
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Table 1. Local pattern in relation to Hessian eigenvalues

Structure M A2 A3
No noticeable structure ° ° °
. bright - ° °
Plate-like
dark —+ ® ®
L bright - - .
Line-like
dark —+ + 'Y
bright — - -
Blob-like
dark + + o+

o: small eigenvalue, +: significant positive value, —: significant negative value.

2.4 FP reduction

In this section, we describe our FP reduction scheme developed for FPs at vessel bifurcations and its theoretical basis with
examples of synthetic data analysis.

In the literature, curvature and Hessian eigenvalues, both based on second derivatives of a volumetric image function, are
often employed for lung nodule detection & ' 121415201 These two features have a certain relationship, derived from the
fact that the principal curvatures in Equation 4 are calculated from the rotation transformation and eigenvalue analysis of
the Hessian ?". It is known that FPs in the detection of nodule-like structures based on curvature and Hessian eigenvalues
also have a similar tendency.

Figure 4A shows synthetic volume data used to simulate a vessel bifurcation with Gaussian noise. The intensity levels of
the vessel (foreground) and background were set to -200 and -900 HU, respectively, and the standard deviation of the
Gaussian noise was 50. Figure 4B shows the shape index image. As shown in Figure 4B, the S,,, value at the center of the
vessel bifurcation is high. Figure 4C shows the region of the nodule candidate obtained by our method.

o Ul

Figure 4. Examples of synthetic data analysis. (A) Synthetic volume data of vessel bifurcation with Gaussian noise, in
which the vessel and background intensities are set to -200 and -900 HU, respectively, and the standard deviation of the
Gaussian noise is 50. (B) Shape index image of A, in which a higher shape index is shown by a lighter gray-scale value.
(C) Region of nodule candidate obtained by our method. (D) Enhanced image obtained by the dot-enhancement filter.
(E) Isosurface of the Gaussian-smoothed image of the synthetic data (threshold: -700 HU). (F) Isosurface of the
Gaussian-smoothed image of the synthetic data (threshold: -600 HU).

A similar result can be obtained using a Hessian-eigenvalue-based detection scheme. Figure 4D shows a dot-enhanced
image applied to the image in Figure 4A based on Hessian eigenvalues %1, The filter is defined as follows:
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) |4 Al if 4 <0, 2, <0, 4, <0

0 otherwise

Zplob (X (10)
As shown in Figure 4D, the center of the vessel bifurcation is enhanced by the filter, thereby yielding an FP due to its
misclassification as a blob-like structure (see Table 1).

FPs at vessel bifurcations are inevitable in the detection of nodule-like structures using second-derivative-based features.
This is a by-product of the Gaussian convolution employed for scale-matching. It is easily confirmed that Gaussian
filtering forms or enhances a blob-like isosurface inside a vessel bifurcation (see Figures 4E and 4F). Without Gaussian
filtering, however, it is impossible to obtain scale-matched features of target objects such as vessels and nodules. To
remove these FPs, we utilize the spatial relationship between vessels and FPs based on the fact that the FP volume is
limited to the center of a bifurcation, as shown in Figures 4B and 4D.

We first define the surface exposure ratio Rgi: and surface area to volume ratio Ry and calculate these features for each
nodule candidate. Let ¢(i) denote the voxel set in the ith nodule candidate. Rg(7) and Rg(i) are defined by:

R\-,.,-(i)=%(§i)~) (11)

~ Al
Ry ()= ,—8 (12)

where A(7) is the number of voxels of the surface area in ¢(7), that is, the number of voxels in ¢(7) — (¢(i) o Ky o). F(i) is the
number of voxels included in (/) and N,(7) is the number of intersection voxels of Ly and ¢(i). In the case of FPs at a vessel
bifurcation, ¢ exists only at the center of the bifurcation (see Figures 5A-5C), while region Ly exists only at the surface of
the vessel (see Figure 5D). Therefore, Ry, is small since N, is much smaller than 4. Rg; = 0.28 and Rg-= 0.79 for the nodule
candidate shown in Figure 5C. In contrast, in the case of a nodule, ¢ includes almost the whole area of the nodule (see
Figures 5E-5H). Therefore, Ry is close to 1.0 since N, is almost equal to 4. Rgz = 1.0 and Rg = 0.61 for the nodule
candidate shown by Figure 5G. Figure 6A shows the Ry - Ry feature space for true positives (TPs) and FPs at the vessel
bifurcation; as shown in this figure, it is expected that FPs at vessel bifurcations will be removed by using a classifier
consisting of Rgz and Ryy.

E

Figure 5. Examples of synthetic data analysis. (A) 3D volume rendering of a synthetic image of a vessel bifurcation using
the same image parameters as in Figure 4A. (B) Image of an axial section of A. (C) Region of a nodule candidate obtained
by our method. (D) Result of surface extraction. (E) 3D volume rendering of a synthetic image of a nodule with Gaussian
noise, in which the nodule and background intensities are set to -200 and -900 HU, respectively, and the standard deviation
of the Gaussian noise is 50. (F) Image of an axial section of E. (G) Region of nodule candidate obtained by our method.
(H) Result of surface extraction.
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The obtained values of Rgz and Rgy are fed into a quadratic classifier based on the Mahalanobis distance. From the
Mahalanobis distance D; (j = TP, FP), ¢ is classified as belonging to either the TP or FP class. The Mahalanobis distance

ratio Ry, is defined as follows:

D

= T RP
RM -

DTP

13)

If R/ is below a certain threshold, ¢ is classified as an FP and removed from the final results.

Figure 6. Rgy - Rgp feature space for
Ter = =700, Tgze = 16, Spign = 0.9, and
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3 Results

This study was approved by the ethical review board of our institute. We evaluated the proposed FP reduction method
using 16 chest CT scans acquired by MDCT scanners (Aquilion 16 or Aquilion 64, Toshiba, Tokyo, Japan). Each slice has
a matrix size of 512 x 512 with a pixel size 0of 0.683 or 0.781 mm. The reconstruction interval is 1.0 mm. Two experienced
radiologists identified 82 true nodules ranging from 3.0 mm to 12.5 mm in diameter. The nodules include four types of
patterns: noncalcified solid, calcified solid, mixed ground-glass opacity (GGO), and pure GGO. Each CT scan included
at least one true nodule. The performance of the detection method was evaluated using a leave-one-out cross-validation
method.

In the extraction of nodule candidates, 7y was experimentally set to -700 in order to detect all the identified true nodules.
The range of ¢ in multiscale integration was experimentally set to {1, 2, 3, 4, 5} in consideration of the extraction
performance, as discussed later. Sy, Spgn, and ywere experimentally set to 0.8, 0.9, and 1.5, respectively.

Table 2 shows the FP reduction performance of our detection method at 80% and 90% sensitivities. As shown in Table 2,
the number of FPs with 7., = 16 was 14.1 per case at 90% sensitivity and 4.8 per case at 80% sensitivity. The number of
FPs in the step for nodule candidate extraction with 7., = 16 was 107.5 per case without false negatives (FNs). Figure 7
shows the free-response receiver operating characteristic (FROC) curves for different 7, values.

100 -

Sensitivity [%]

----- Tsize=12
ize=16|

0 : i 1
0] 5 10 15

Number of false positives per case

20
Figure 7. FROC curves for different 7., values
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Table 2. FP reduction performance of our detection method

7 Sensitivity (%)

55 80 90
12 53 16.8
16 4.8 14.1
20 5.4 25:1

Figure 8 shows an example of a detection result using our detection method, revealing a marked reduction in FPs. Figure 9
shows an example of residual FPs in our detection method. Figure 9A shows the case of an aneurysm-like structure. Figure
9B shows the case of a mucus plug in a bronchus. Figure 10 shows an example of an FN in our detection method, which is

the case of a juxtapleural nodule. A juxtapleural nodule is defined as a nodule having part of its circumference abutting a
(28]

pleural surface, i.e., a chest wall, diaphragm, mediastinum, or fissure

Figure 8. Example of detection result using
our detection method. (A) Result of nodule
candidate extraction with 7,., = 16. (B)
Result of FP reduction at 90% sensitivity.
White regions with a yellow arrow indicate
true nodules, and white regions without a left nest isn

yellow arrow show FPs.

Figure 9. Example of residual FPs in our
detection method. (A) Case of aneurysm-
like structure. (B) Case of mucus plug in a
bronchus. The top row shows the axial
section and the bottom row shows the 3D
volume rendering.

Figure 10. Example of FN in our detection
method in the case of a juxtapleural nodule.
The left image shows the axial section and the

right image shows the 3D volume rendering.
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4 Discussion

In this paper, we propose a surface-feature-based FP reduction method for eliminating FPs at vessel bifurcations. In our
clinical study, the proposed method greatly contributed to reducing the number of FPs, from 107.5 to 14.1 per case at 90%
sensitivity.

Many FPs with a low Ry value occur in other regions, such as vessel crossings or bifurcations of the bronchial wall
(see Figure 6B). Consequently, our proposed method is also effective in removing FPs in other regions with low Ry values
(see Figures 7 and 8). In addition, the proposed method is useful as an FP reduction method in Hessian-eigenvalue-based
lung nodule detection (see Figure 4).

We experimentally set 77 = -700 to detect all the identified nodules. The appropriate 7¢r value depends on the data set. In
particular, the existence of pure GGO nodules in data sets greatly affects the appropriate value of 7¢-rsince GGO is defined
as a hazily increased attenuation of the lung observed on CT images with preservation of the bronchiole and vascular
margins 3%,

We experimentally set the range of ¢ in multiscale integration to {1, 2, 3, 4, 5}, although the maximum value of o is
smaller than the maximum radius of a nodule. If o, is smaller than the radius of a nodule, the shape index of the nodule is
an appropriate value corresponding to the shape type (see Figure 3). Similar methods for multiscale integration based on
Hessian eigenvalues have been reported by Li ez al. ' and Sato et al. ), in which the set of o was selected such that
o/ o, was approximately constant (o < op+1). We also investigated the set of oof {1, 1.5, 2.25, 3.375, 5} and found that
the shape index decreased markedly on the surface of nodules because of the overscaling of &,,. Moreover, the selected o
had a tendency to overscale with increasing . To avoid the overscaling of o, we therefore set 7= 1.5.

If Ty is set too low, FPs with a small size are extracted as nodule candidates and fed into the classifier for FP reduction,
and the number of FPs increases at 90% sensitivity (see Table 2 and Figure 7). On the other hand, if Ty, is set too high,
small or nonspherical true nodules are removed in nodule candidate extraction. Consequently, the value of T, affects
the overall performance of our detection method. Further improvement of our proposed method will require additional
features for the effective removal of small FPs.

The removal of the residual FPs, as shown in Figure 9, is difficult owing to their nodule-like structure. The shapes of these
FPs are similar to those of TPs and their Rge values are close to 1.0. However, radiologists can differentiate between such
FPs and true nodules by considering adjacent anatomical structures such as vessels and bronchi. Further improvement of
our proposed FP reduction method will require additional features based on adjacent anatomical structures.

TPs with a low Rgz value result in FNs, as shown in Figure 6. The Ry value is affected by the attachment of adjacent
structures. The N, values of nodules attached to adjacent structures are smaller than those of isolated nodules since the
attachment is not extracted as part of the region L. Hence, the Rz values of nodules attached to adjacent structures are
smaller than those of isolated nodules. In particular, the degradation of the Rgs value typically occurs in the case of
juxtapleural nodules, as shown in Figure 10. To further reduce FPs without eliminating TPs, we are currently developing
an FP reduction method based on dual classifiers for juxtapleural and nonpleural nodules. The results of preliminary
experiments indicate that dual classifiers have the potential to improve the performance of FP reduction.

We conclude that the surface-feature-based FP reduction method is effective in removing FPs at vessel bifurcations.
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Establishment of Standardized Procedures to Obtain Informed Consent for Submission of Sample
Examination Data before Starting Trials

Naoko YAMADA, Yasue TAMAMI, Kaori WATANABE, Chieko TODA, Atsushi AOKI, Shuichi KAWARAZAKI,
Tetsuya UEDA, Tsutomu YAMAZAKI and Yoshihiro ARAKAWA

Clinical Rescarch Support Center, The University of Tokyo Hospital, Japan

An increasing number of clinical trials recently require the submission of examination data as sample to check the
feasibility of the study before the trials are started. However, procedures to obtain informed consent have not been
standardized. Therefore, we investigated various procedures by reviewing past cases and guidelines on research
ethics and personal information protection. Based on this review, we developed the procedures for four types of
study classified according to the prospective nature and degree of invasiveness of the examination. In type A, when
the sample data is prospective and requires implementation of invasive examination not conducted as part of routine
medical care, written informed consent is mandatory and each examination must be approved by the institutional
review board (IRB). In type B, when the sample data is prospective and requires implementation of less invasive or
non-invasive examination not conducted as part of routine medical care, use of pre-approved template of written
informed consent that includes explanations of foreseeable risks and inconveniences accompanying the
examination is required. In type C, when the sample data is prospective and uses results of examination conducted
as part of routine medical care, informed consent can be obtained either orally or in writing at the discretion of the
investigator. In type D, when the sample data uses preexisting medical data, ¢fforts have 1o be made to obtain oral
informed consent as far as possible. However, if informed consent is not possible, individual informed consent can
be omitted but general notice should be given to patients regarding use of their medical records for purposes
including answering inquires on medical services from other medical institutions. This classification system, which
includes flowcharts and templates for informed consent, has been approved by the IRB at the University of Tokyo
Hospital and will facilitate proper handling of sample data.

Key words: clinical trials, sample data, informed consent, ethical guidelines, privacy protection
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