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Osteochondral Repair Using a Scaffold-Free
Tissue-Engineered Construct Derived
from Synovial Mesenchymal Stem Cells
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For an ideal osteochondral repair, it is important to facilitate zonal restoration of the subchondral bone and the
cartilage, layer by layer. Specifically, restoration of the osteochondral junction and secure integration with
adjacent cartilage could be considered key factors. The purpose of the present study was to investigate the
feasibility of a combined material comprising a scaffold-free tissue-engineered construct (TEC) derived from
synovial mesenchymal stem cells (MSCs) and a hydroxyapatite (HA) artificial bone using a rabbit os-
teochondral defect model. Osteochondral defects were created on the femoral groove of skeletally mature
rabbits. The TEC and HA artificial bone were hybridized to develop a combined implant just before use, which
was then implanted into defects (N=23). In the control group, HA alone was implanted (N=18). Histological
evaluation and micro-indentation testing was performed for the evaluation of repair tissue. Normal knees were
used as an additional control group for biomechanical testing (N=5). At hybridization, the TEC rapidly
attached onto the surface of HA artificial bone block, which was implantable to osteochondral defects. Os-
teochondral defects treated with the combined implants exhibited more rapid subchondral bone repair coupled
with the development of cartilaginous tissue with good tissue integration to the adjacent host cartilage when
assessed at 6 months post implantation. Conversely, the control group exhibited delayed subchondral bone
repair. In addition, the repair cartilaginous tissue in this group had poor integration to adjacent cartilage and
contained clustered chondrocytes, suggesting an early osteoarthritis (OA)-like degenerative change at 6 months
post implantation. Biomechanically, the osteochondral repair tissue treated with the combined implants at
6 months restored tissue stiffness, similar to normal osteochondral tissue. The combined implants significantly
accelerated and improved osteochondral repair. Specifically, earlier restoration of subchondral bone, as well as
good tissue integration of repair cartilage to adjacent host tissue could be clinically relevant in terms of the
acceleration of postoperative rehabilitation and longer-term durability of repaired articular surface in patients
with osteochondral lesions, including those with OA. In addition, the combined implant could be considered a
promising MSC-based bio-implant with regard to safety and cost-effectiveness, considering that the TEC is a
scaffold-free implant and HA artificial bone has been widely used in clinical practice.
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Introduction

OSTEOARTHRITIS (OA) is a common disease that causes
joint pain, joint deformity, and functional disability,
and it could potentially affect the quality of life of elderly
populations worldwide.! There are several clinical options
for the treatment of OA such as total joint replacement,
osteotomy, and osteochondral transplantation, according to
the severity of the joint destruction. Moreover, several bi-
ological approaches such as the use of biologics and tissue-
engineered materials have been recently evaluated.>™

For an ideal repair of osetochondral lesions with the in-
volvement of subchondral bone pathology, it is important to
regenerate subchondral bone, and to facilitate zonal restoration
of cartilage and subchondral bone, layer by layer>™® As a
strategy to regenerate these structures layer by layer, biphasic
or triphasic constructs have been developed.”'” These con-
structs have been reported to contribute to good osteochondral
repair in vivo, while there are still several concerns associated
with the complicated process of manufacturing implants such
as cell seeding, cell differentiation and combining materials,
and the long-term safety of these constructs due to the in-
volvement of chemical- or animal-derived materials. There-
fore, a novel construct that overcomes such potential problems
is preferable for clinical applications. The process of manu-
facturing implants should be simplified. The use of chemical-
or animal-free materials could be considered an ideal method
to meet such requirements.

Artificial bones generated from hydroxyapatite (HA) or
beta-tricalcium phosphate (B-TCP) have been widely used for
clinical treatment of bone defects after fractures or after re-
section of bone tumors.'®° We have developed a novel fully
interconnected HA artificial bone with a sufficient initial
strength, as well as an excellent bone-formation capacity,lg’21
and previously reported the feasibility of this implant to re-
pair subchondral bone.'® In addition, we have developed a
scaffold-free three-dimensional tissue-engineered construct (TEC)
composed of allogenic mesenchymal stem cells (MSCs) de-
rived from the synovium and extracellular matrices (ECMs)
synthesized by the cells,”* and demonstrated the feasibility of
the resultant TEC to facilitate cartilage repair in a large ani-
mal model.?>** These TEC are developed without an artificial
scaffold, and, thus, their implantation could eliminate or mini-
mize the risk of potential side effects induced by extrinsic
chemical or biological materials. Furthermore, such TEC are
highly adherent to cartilage matrix, and secure integration of
the TEC to adjacent cartilage tissue is observed after implan-
tation.”>*> Therefore, combined constructs of TEC and the
fully interconnected HA-based artificial bone may effectively
repair an osteochondal lesion with zonal restoration. The
purpose of the present study was to test this hypothesis using a
rabbit osteochondral defect model.

Materials and Methods

All procedures of this study followed the Declaration of
Helsinki principles.
Harvest of synovial tissue and isolation of the cells

All animal experiments were approved by the Animal
Laboratory of our institute. Rabbit synovial membranes
were obtained aseptically from the knee joints of skeletal
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mature (24 weeks of age) female rabbits within 12h of
death. The cell isolation protocol was essentially that which
was previously used for the isolation of human synovial-
derived MSC.** Briefly, synovial membrane specimens
were rinsed with sterile phosphate-buffered saline (PBS),
minced meticulously, and digested with 0.4% collagenase
X1 (Sigma-Aldrich, St. Louis, MO) for 2h at 37°C. After
neutralization of the collagenase with growth medium
containing high-glucose Dulbecco’s modified Eagle’s me-
dium (HG-DMEM; Wako, Osaka, Japan) that was sup-
plemented with 10% fetal bovine serum (FBS; HyClone,
Logan, UT) and 1% penicillin/streptomycin (Gibco BRL,
Life Technologies, Inc., Carlsbad, CA), the cells were col-
lected by centrifugation, washed with PBS, re-suspended in
growth medium, and plated in culture dishes with growth
media mentioned earlier. The characteristics of the rabbit
cells were similar to those of the human synovium-derived
MSC with regard to morphology, growth characteristics, and
multipotent differentiation capacitg (to osteogenic, chon-
drogenic, and adipogenic lineages).”>® For expansion, cells
were cultured in the growth medium at 37°C in a humidified
atmosphere of 5% CO,. The medium was replaced once per
week. After 7-10 days of primary culture, when the cells
reached confluence, they were washed twice with PBS,
harvested by treatment with trypsin-EDTA (0.25% trypsin
and 1mM EDTA; Gibco BRL, Life Technologies, Inc.),
and replated at 1:3 dilutions for the first subculture. Cell
passages were continued in the same manner with 1:3 di-
lutions when cultures reached near confluence. Cells at
passages 3—7 were used in the present studies.

Development of the TECs

Synovial MSCs were plated on six-well plates (9.6 cm?)
at a density of 4.0x 10° cells/cm® in growth medium con-
taining 0.2 mM ascorbate-2-phosphate (Asc-2P), an optimal
concentration from earlier studies.”** Within a day, the
cells became confluent. After an additional 7-14 days in
culture, a complex of the cultured cells and the ECM syn-
thesized by the cells was detached from the culture dish by
the application of shear stress using gentle pipetting. The
detached monolayer complex was left in suspension to form
a three-dimensional structure by active tissue contraction,
and kept in cultured medium until implantation. This tissue
was termed a basic scaffold-free three-dimensional TEC.
Such TECs were sufficiently strong to be sustained against
surgical handling as shown in our previous study.?

Development of the combined implant made
of the TEC and artificial bone

A fully interconnected porous synthetic HA [Smm in
diameter, 4 mm in height (NEOBONE®; MMT Co. Ltd.,
Osaka, Japan)] was prepared as an artificial bone. The HA
ceramics have 75% porosity and an interconnected porous
structure, with more than 90% of the pores being connected
by channels that are large enough for cells or tissue to
penetrate. The surfaces of the pores are very smooth and the
HA particles are tightly bound together, which provides a
rather high mechanical compressive strength of about
10 MPa despite the porosity of this substance. This material
displays good osteoconduction and bone ingrowth in ani-
mals and is also in clinical use.'®'%-*!
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MSC-BASED BIOIMPLANT IN OSTEOCHONDRAL REPAIR

We prepared individual TEC to be hybridized with an
artificial bone. TEC were detached from culture dishes just
before the animal surgery, and combined with the artificial
bone without any adhesive, to create a biphasic construct
(Fig. 1a). The TEC immediately bonded to the surface of the
artificial bone block and developed a stable complex that
was maintained throughout the experiment.

Implantation of the combined implants
fo osteochondral defects

Forty one skeletal mature New Zealand White rabbits
were kept in individual cages and had free access to food
pellets and water. The rabbits were anesthetized by an in-
travenous injection of ImL of pentobarbital [SOmg/mL
(Nembutal®; Dainippon Pharmaceutical Co. Ltd., Osaka,
Japan)] and an intramuscular injection of 1 mL of xylazine
hydrochloride [25mg/mL (Seractal®; Bayer, Germany)].
After shaving, disinfection, and draping, a straight 3 cm-
long medial parapatellar incision was made over the right
knee; the patella was gently dislocated laterally; and the
femoral groove was exposed. Full-thickness articular os-
teochondral defects, 5 mm in diameter and 6 mm in depth,
were created mechanically in the femoral groove of the right
distal femur using a drill at moderate speed, while irrigating
the site with a room temperature saline solution, so as to
prevent thermal damage to the surrounding bone and carti-
lage (Fig. 1b). The TEC and artificial bone was combined
just before implantation as described earlier, and then, the
combined constructs were implanted into the defects in 23
right knees by a press-fit technique (TEC group). In the
control defect group, the defects were implanted with the
artificial HA bone alone for 18 right knees (Fig. 1c). All
animals were immobilized for 7 days, and euthanized under
anesthesia at 1, 2, and 6 months after surgery. The distal
femur of the animals, including the grafted site (18 speci-
mens from the TEC group and 13 specimens from the
control group), was used for histological analysis. The other
specimens (five specimens from the TEC group and five
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specimens from the control group) were subjected to bio-
mechanical testing. Five left knees were used as untreated
normal controls for the biomechanical testing.

Histological evaluation of repaired tissue

For histological evaluation, tissue was fixed with 10%
neutral buffered formalin, decalcified with K-CX (Falma,
Tokyo, Japan), and embedded in paraffin, and 3 um sections
were prepared. The sections were stained with hematoxylin
and eosin (H&E) and Toluidine Blue staining.

The histology of repaired tissue at 1, 2, and 6 months was
evaluated by the modified O’ Driscoll score for cartilage and
subchondral bone repair.27"29 The category ‘“Toluidine Blue
staining” was substituted for *‘Safranin O staining.” More-
over, new criteria categories ‘“‘cellular morphology” and
“exposure of subchondral bone” were implemented in ad-
dition to the categories associated with subchondral bone
repair. With regard to the ““cellular morphology’” category,
normal subchondral bone repair was given a score of 2, a
repair tissue mixed with cartilage-like tissue was a score of
1, and a repair tissue mixed with fibrous tissue was a score
of 0. With regard to the “‘exposure of subchondral bone”
category, no subchondral bone exposure was a score of 2,
subchondral bone exposure at one side of the borders be-
tween repair tissue and adjacent cartilage was a score of 1,
and subchondral bone exposure at both sides was a score of
0. The repair tissue was divided into three parts of 2 mm
width, which consisted of the center area and both border
areas, and then each area was evaluated by the modified
O’Driscoll score. Based on these scores, each category was
evaluated for “‘overall evaluation,” which averaged the
center area and both border areas. Moreover, the score of
the central area as ‘“‘central area” was also evaluated,
and the average score of both border areas as ‘‘border area.”
The categories “‘bonding to adjacent cartilage,” “‘freedom
from degeneration of adjacent cartilage,”” and “‘exposure of
subchondral bone,” which do not involve spatial differ-
ences, were evaluated only as “‘overall evaluation.”

FIG. 1. (a) The combined implant gener-
ated with a tissue-engineered construct
(TEC) and an artificial bone. (b) Osteo-
chondral defects in the femoral groove of the
rabbit knee. (c) Schematic representation
of implanted materials in the control
(hydroxyapatite, HA-bone alone) and the
TEC-HA bone group. Color images avail-
able online at www.liebertpub.com/tea

G
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Biomechanical testing

Cylindrically shaped specimens that were 4mm in di-
ameter and 5 mm in depth were removed from the graft sites
of defects from both the TEC group and the control group.
Similarly, cylindrically shaped specimens were removed
from the central femoral groove of untreated normal knees.
Micro-indentation testing was performed on the specimens
using an Atomic Force Microscope (AFM) (Nanoscope Illa;
Veeco Instruments, Santa Barbara, CA) and a silicon nitride
probe (spring constant: 0.06 N/m, DNP-S; Veeco Instru-
ments). Each specimen was mounted on the sample stage of
the AFM and soaked in saline solution at room temperature.

SHIMOMURA ET AL.

Micro-indentation testing was performed on the specimens
at an indentation rate of 5.12 pm/s.

Statistical analysis

Statistical analysis was performed using analysis of vari-
ance followed by post-hoc testing for the postoperative
changes of total histological scores and biomechanical testing
(Figs. 6a, b and 7). The comparison of results for other pa-
rameters between the control and TEC groups was analyzed
by the Mann—-Whitney U test (Tables 1 and 2). The results are
presented as mean* SD. The data were analyzed with JMP 9
(SAS Institute, Cary, NC), and significance was set at p <0.05.

TABLE 1. HiSTOLOGICAL EVALUATION FOR CARTILAGE REPAIR

1 month postop

2 months postop

6 months postop

Histological
score Control TEC Control TEC Control TEC
description (N=4) (N=6) pvalue (N=4) (N=7) pvalue (N=5) (N=5) p value
Cellular morphology
Overall 0 1.22£0.50 0.0073 1.67£0.39 3.14+£0.63 0.0109 1.47+1.28 3.20+£0.30 0.0343
evaluation
Central area 0 0.33£0.82 04142 1.00£1.15 2.86+1.57 0.0716 1.60*£2.19 3.60+0.089 0.1202
Border area 0 1.67£0.52 0.0062 2 329+0.76 0.0152 140+1.14 3.00£0.71 0.0393
Toluidine Blue staining
Overall 0 0.92£0.37 0.0073 1.09%£042 2.14£0.51 0.0171 1.27%0.86 2.67£0.47 0.0196
evaluation
Central area 0 0.33+£0.52 0.2207 0.50+0.58 2.29%+1.11 0.0309 1.20+1.64* 3 0.0495
Border area 0 0.92+£0.38 0.0073 1.38%£048 2.07£0.61 0.0716 1.30+0.84 2.10+0.42 0.0827
Surface regularity
Overall 0.42£0.50 1.89+0.66 0.0131 1.83+£0.43 2.24+0.42 0.1420 1.20%£0.65 1.80£1.30 0.0731
evaluation
Central area 0.25+0.50 2.17+£0.75 0.0114 2.75+0.50 2.71+£0.49 0.9029 2.40£0.89 2.80+£0.45 0.4386
Border area 0.50x0.58 1.75+£0.69 0.0159 1.38+0.48 2.00%£0.58 0.0977 0.60+0.65 1.70£0.91 0.0723
Structural integrity
Overall 0.42+£0.50 1.5010.36 0.0131 1.09+0.42 1.52+0.38 0.1001 0.73+£0.43 1.53£0.38 0.0174
evaluation
Central area 0.50+0.58 1.83+0.41 0.0109 2 2 1.0000 1.60+0.89 2 0.3173
Border area 0.38+0.48 1.33£041 0.0201 0.63+0.63 1.29%0.57 0.1001 0.30+0.27 1.30+£0.57 0.0170
Thickness
Overall 0.50+£0.58 1.39%0.57 0.0765 1.83+£0.34 1.52+0.38 0.1862 0.80+0.65 1.40+£0.28 0.1071
evaluation
Central area 0.50+0.58 1.50+£0.55 0.0372 2 1.71£0.49 0.2598 1.20£1.10 1.80+£0.45 0.3662
Border area 0.50+0.58 1.33+£0.61 0.0765 1.75+0.50 1.43+£045 0.2621 0.60%0.55 1.20£0.27 0.0652
Bonding to adjacent cartilage
Overall 0.13£0.25 1.50%0.45 0.0089 0.38+0.48 1.64+0.48 0.0109 0.30+0.27 1.50+£0.61 0.0167
evaluation
Hypocellularity . :
Overall 1.00+£1.28 2.89+0.27 0.0121 3 3 1.0000 1.80+1.12 2.74+0.15 0.0837
evaluation
Central area 0.25+0.50 2.67+0.82 0.0078 3 3 1.0000 1.80£1.30 3 0.0539
Border area 1.25+1.50 3 0.0177 3 3 1.0000 1.80+1.15 2.60+£0.22 0.1797
Chondrocyte clustering
Overall 0 0.17+£0.41 0.4142 042+0.50 1.24+£0.46 0.0325 0.40+0.37 1.53+£0.30 0.0074
evaluation
Central area 0 0.17+£041 04142 0.25+£0.50 1.29+£0.76 0.0453 0.80%£0.84 2 0.0177
Border area 0 0.17£0.41 04142 0.510.58 1.21+£0.39 0.0482 0.20+£0.27 1.30+£0.45 0.0072
Freedom from degeneration of adjacent cartilage
Overall 2.88+0.25 3 0.2207 2.38+0.25 2.71£0.27 0.0763 1.60+0.22 2.40+£0.22 0.0073
evaluation
Total score 5.34+£2.59 14.22+£2.02 0.0103 13.67£2.10 19.16£2.33 0.0179 9.56%+5.17 19.03+£2.15 0.0119

Bold values show statistically significant differences between control group and TEC group.
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TABLE 2. HISTOLOGICAL EVALUATION FOR SUBCHONDRAL BONE REPAIR
1 month postop 2 months postop 6 months postop

Histological score Control TEC Control TEC Control TEC
description (N=4) (N=6) pvalue (N=4) (N=7) pvalue (N=5) (N=5) pvalue
Subchondral bone alignment

Overall evaluation 0 0 1.0000 0.67+£0.54 1.67£0.34 0.0144 0.73+£0.87 1.27+£0.43 0.3305

Central area 0 0 1.0000 0.25£0.50 1.57£0.79 0.0249 0.80+0.84 1.00+0.71 0.6501

Border area 0 0 1.0000 0.88£0.85 1.71£0.39 0.0904 0.70+£0.97 1.40+0.55 0.2328
Bone integration

Overall evaluation 0 0 1.0000 0.75+£0.57 1.79+£0.39 0.0130 1.47+0.84 1.87+0.18 0.4189

Central area 0 0 1.0000 0.25+0.50 1.43+0.98 0.0601 1.20+0.84 1.60+0.55 0.4189

Border area 0 0 1.0000 1.00£0.91 1.57+£0.79 0.2150 1.60+0.89 2 0.3173
Bone infiltration into defect area

Overall evaluation 0 0 1.0000 0.67+0.54 1.48+0.50 0.0437 1.60+0.55 1.80+0.18 0.7290

Central area 0 0 1.0000 0.25+0.50 1.29£0.95 0.0831 1.20+0.84 1.40+0.55 0.7290

Border area 0 0 1.0000 0.88+0.85 1.79+0.39 0.0629 1.80%0.45 2 0.3173
Tidemark continuity

Overall evaluation 0 0 1.0000 0 0.67+0.67 0.0763 0.40%£0.37 1.20+£0.38 0.0192

Central area 0 0 1.0000 0 0.86+1.07 0.1432 0.60+0.89 1.20+0.84 0.2685

Border area 0 0 1.0000 0 0.57+£0.53 0.0708 0.30+0.27 1.20+0.27 0.0071
Cellular morphology

Overall evaluation 0 0 1.0000 0.84+0.33 1.76+0.32 0.0104 1.47+0.51 1.60+£0.28 0.8266

Central area 0 0 1.0000 0.25+0.50 1.43£0.79 0.0355 1.00£1.00 1.40+£0.55 0.5023

Border area 0 0 1.0000 1.13£0.63 1.93£0.19 0.0281 1.70+0.45 1.70+0.45 1.0000
Exposure of subchondral bone

Overall evaluation 1.00£1.15 1.67+£0.52 0.2708 2 1.71+£0.49 0.2598 0.80+0.84 1.80£0.45 0.0539
Total score 1.00+1.15 1.67£0.52 02708 4.92+191 9.07+1.84 0.0140 6.47+3.20 9.54+£1.26 0.0937

Bold values show statistically significant differences between control group and TEC group.

Results
Macroscopic evaluation of repair tissue

At 1 month after surgery, bare artificial bones were ex-
posed at the surface of the implanted area in all subjects of
the control group (Fig. 2a, arrow heads). Conversely, the
defects were uniformly covered with repair tissue in the
TEC group. The periphery of the repair tissue was white and
in contrast, the center area was translucent (Fig. 2b). At 2

months after surgery, the defects were covered with a white
colored repair tissue in both groups. However, more precise
observation revealed that the repair tissue in the control
group exhibited surface cracks or subchondral bone expo-
sure between the repair tissue and the adjacent cartilage
(Fig. 2c, arrow heads). In the TEC group, although the
margin line was obvious, there were no overt cracks or
subchondral bone exposure detected within the repair tissue
(Fig. 2d). At 6 months post surgery, obvious cracks or

1 Month

2 Months

Control

TEC

6 Months

FIG. 2. Macroscopic view of repair tissues at
1, 2, and 6 months after surgery treated with
artificial HA bone alone (a, ¢, e, respectively) or
the TEC-HA combined implant (b, d, £, re-
spectively). At 1 month after surgery, bare ar-
tificial bones were exposed at the surface of the
implanted area in the control group (a). At 2 and
6 months, the control group showed obvious
cracks or subchondral bone exposure between
repair tissue and the adjacent cartilage (c, e,
arrow heads). Conversely, such defects were
covered with repair tissue in the TEC-HA group
out to 6 months (b, d, e). Color images available
online at www.liebertpub.com/tea

-174 -



6

subchondral bone exposure between repair tissue and the
adjacent cartilage were still observed in the control group
samples (Fig. 2e, arrow heads). In contrast, the repair tissue
in the TEC group consistently showed a continuous surface
beyond the surface of adjacent cartilage. The margin line
between the repair tissue and the adjacent cartilage was less
distinguishable (Fig. 2f).

Histological evaluation of repair tissue

At 1 month after surgery, bare artificial bone was ex-
posed partially at the surface of implanted area without
repair tissue in the control group (Fig. 3a, arrows). Con-
versely, the defects were consistently repaired with thick
fibrous tissues with good integration to the adjacent host
tissue in the TEC group (Fig. 3b). In higher magnification
views, new bone formation was observed at the bilateral
peripheral margin of implanted TEC adjacent to the sur-
rounding host bone marrow and the surface of the artificial
bone (Fig. 3¢, arrow heads). Notably, the development of
immature chondrogenic tissue with round-shaped cells in
lacuna were simultaneously observed within the implanted
TEC surrounding the area of new bone formation (Fig. 3d),
while fibrous tissue was observed in the center area of the
TEC (Fig. 3e).

SHIMOMURA ET AL.

At 2 months, defects were filled with a fibrous-like tissue
with moderate Toluidine blue staining, but bone formation
was rarely observed on the surface of the artificial bone in
the control group samples (Fig. 4a, b). In contrast, new bone
formation within the TEC further extended from the bi-
lateral peripheral border toward the central area on the
surface of the artificial bone (Fig. 4c, arrows). It should be
noted that the level of the upper surface of the newly
synthesized bone was similar to that of the adjacent unin-
jured subchondral bone (Fig. 4c, d, dotted lines). In higher
magnification views, there was poor integration of the re-
pair tissue with the adjacent host cartilage in the control
group samples (Fig. 4e). The repair tissue in the control
group contained round-shaped cells in lacuna, but with
weak Toluidine Blue-stained ECM, and, thus, the devel-
opment of chondrogenic tissue appeared insufficient or less
advanced (Fig. 4f, j). Conversely, the repair tissue in the
TEC group samples exhibited hyaline cartilage-like repair
(Fig. 4h, k) with good tissue integration to the adjacent
host cartilage (Fig. 4g). Similar to 1 month post implan-
tation, chondrogenic tissue with Toluidine Blue-positive
ECM was observed to have developed in contact with
newly synthesized bone (Fig. 4i).

At 6 months, osteochondral repair had progressed in the
control group (Fig. 5a, b); however, the repair tissue still

FIG. 3. Hematoxylin and eosin (H&E)
staining of repair tissues implanted with ar-
tificial bone alone (a) or the combined im-
plant (b). The osteochondral defects treated
with the combined implants were repaired
with a thick fibrous-like tissue. Arrows show
that bare artificial bone was exposed at the
surface of implanted area without repair
tissue in the control group (a). Bar=1mm.
Higher magnification views showed that
ossification was partially observed inside the
implanted TEC adjacent to host bone mar-
row on the surface of the artificial bone (c,
arrowheads). Bar= 100 pm. Notably, the
development of an immature chondrogenic
tissue with round-shaped cells in lacuna was
simultaneously observed within the im-
planted TEC surrounding the area of new
bone formation (d), while fibrous tissue was
observed in the center of the TEC (e).
Bar=20 pum. Color images available online
at www.liebertpub.com/tea
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Control

TEC

FIG. 4. Hematoxylin and eosin (H&E) staining and Toluidine Blue staining of repair tissues from defects treated with
artificial bone alone (a, b) or the combined implant (¢, d). Bar=1mm. Arrows show that new bone formation within the
TEC further extended from the bilateral peripheral border toward the central area on the surface of the artificial bone (c).
Light magnification view at the border (e, g), center (f, h) area of the repair tissue, and cartilage-like tissue in contact with
newly synthesized bone (i). Bar=100um. Note that the defect treated with the combined implant was repaired with
osteochondral tissue and exhibited good tissue integration to the adjacent host tissue. Higher magnification views at the
center area of the repair tissue (j, k). Bar=20 pm. Cellular morphology of defects treated with the combined implant shows
round-shaped cells in lacuna. Color images available online at www.liebertpub.com/tea

exhibited poor integration with the adjacent host cartilage
(Fig. 5a, arrows, e). In contrast, the TEC group samples
showed complete osteochondral repair (Fig. 5S¢, d), and good
tissue integration of the repair tissue to the adjacent host
tissue persisted (Fig. Sc, arrows, g). However, some subjects
exhibited overgrowth of the subchondral bone with the
thinning of cartilage (Fig. Sc, d). Higher magnification
views revealed that the repair tissue and the border with the
adjacent cartilage contained a number of cell clusters in the
control group, and the distribution of chondrocytes was
disorganized throughout the matrix (Fig. 5f, i, j), suggesting
the involvement of some pathological condition within the
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repair tissue and the adjacent host cartilage in this group.
Conversely, in the TEC group, the repair tissue exhibited
hyaline-like cartilage without cells in clusters, and the
chondrocytes were arranged in longitudinal columns in the
center area of the samples (Fig. 5h, k, 1).

Histological score for cartilage repair

The total histological scores for cartilage repair were
significantly higher in the TEC group samples compared
with those in the control group at 1 month (14.22+2.02 vs.
5.34+2.59, p=0.010), 2 months (19.16+2.33 vs. 13.67%
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Control

TEC

FIG.5. H&E staining and Toluidine Blue staining of repair tissues treated with artificial bone alone (a, b) or the combined
implant (¢, d). Bar=1mm. Light magnification view at the border (e, g, arrow) and center (f, h) area of the repair tissue.
Bar=100 pm. Note that the repair tissue in defects treated with the combined implant sustained good tissue integration to
the adjacent host tissue, while that of artificial bone alone showed poor integration. Higher magnification views at the border
(i, k) and center areas (j, I) of the repair tissue. Bar=20 um. Cellular morphology in defects treated with the combined
implant showed round-shaped cells in lacuna, while that in defects treated with artificial bone alone showed cell clustering
in lacuna. Color images available online at www.liebertpub.com/tea

2.10, p=0.018), and 6 months (19.03+2.15 vs. 9.56%5.17,
p=0.012) after surgery (Fig. 6a).

The categories “‘cellular morphology” and “‘toluidine blue
staining” in the TEC group were significantly higher than
those in the control group samples out to 6 months postsurgery,
and these results suggested the promotion of cartilage repair
with the combined implants. With regard to the category
“bonding to adjacent cartilage,” the histological scores in the
TEC group samples were significantly higher compared with

those in the control group throughout the studies. In addition, .

the category ““structural integrity,” especially the subcategory
“border area,” values for the TEC group were significantly
higher than those of the control group at 6 months, suggesting

that secure integration to adjacent host tissue contributed to the
proper development of the border area of the repair cartilage.
In contrast, the categories ‘“‘chondrocyte clustering” and
“freedom from degeneration of adjacent cartilage” showed
significantly lower scores in the control group at 6 months,
findings that suggest the involvement of a pathological process
within the repair tissue (Table 1).

Histological score for subchondral bone repair

At 1 month after surgery, subchondral bone repair was not
observed in either the TEC group or the control group.
Therefore, all categories except for the category ‘“‘exposure of
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