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Fig. 2 Arthroscopic view of the chondral surface of the central ridge
through the lateral suprapatellar portal at MPFL reconstruction
(a) and at second-look arthroscopy (b). A gross articular cartilage
fibrillation on the central ridge was seen, and the lesion was found to
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Fig. 3 Chondral status of the central ridge of the patella according to
ICRS grading at MPFL reconstruction and at second-look arthroscopy

and one knee from 2 to 1), and no cases showed deterio-
ration of chondral lesions (Fig. 2). There was a significant
difference between ICRS grade at MPFL reconstruction
and at second-look arthroscopy (Fig. 3). No significant
difference in Tegner score was found between improved
patients and non-improved patients. Of the six knees with
improvement in ICRS grading, 1 had normal trochlea, two
had type A trochlear dysplasia, two had type C, and one
had type D. In the lateral facet of the patella, only three
knees exhibited cartilage damage at MPFL reconstruction.
One knee improved from grade 4 to 2. There was no sig-
nificant change in chondral status for this location (Fig. 4).
The cartilaginous surface of the medial femoral condyle
was not damaged in most patients (Fig. 5). Only four knees

be deep to the subchondral bone on probing (a) A smooth
fibrocartilaginous tissue covered the surface of the central ridge
6 months after MPFL reconstruction (b)
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Fig. 4 Chondral status of the lateral facet of the patella according to
ICRS grading at MPFL reconstruction and at second-look arthroscopy

exhibited cartilaginous damage (grade 1 in one knee, grade
2 in two knees, and grade 4 in one knee) in the femoral
groove at MPFL reconstruction, while slight cartilaginous
deterioration was observed in six knees (five knees from
grade O to 1, one knee from grade O to 2) at second-look
arthroscopy without a significant difference (Fig. 6). In the
lateral femoral condyle, eight knees showed chondral
damage, but six knees displayed improvement in ICRS
grading at second-look arthroscopy (one knee from grade 3
to 0, one knee from grade 2 to 0, one knee from grade 2 to
1, and three knees from grade 1 to 0). There was no sig-
nificant change in grading observed at the second-look
arthroscopy (Fig. 7).
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Fig. 5 Chondral status of the medial femoral condyle according to
ICRS grading at MPFL reconstruction and at second-look arthroscopy
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Fig. 6 Chondral status of the femoral groove according to ICRS
grading at MPFL reconstruction and at second-look arthroscopy

Discussion
The most important finding in the present study was that no
significant deterioration of chondral status was observed

following MPFL reconstruction in most of the patellofe-
moral joint. The present results suggest that anatomical
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Fig. 7 Chondral status of the lateral femoral condyle according to
ICRS grading at MPFL reconstruction and at second-look arthroscopy

MPFL reconstruction is unlikely to generate abnormal pa-
tellofemoral contact pressure.

Most patients with recurrent patellar dislocation have
damaged cartilage in the patellofemoral joint, and contin-
ued patellar dislocations result in exacerbation of patellar
cartilage lesions [7]. The purposes of treating recurrent
patellar dislocation are not only to prevent further patellar
dislocation, but also to prevent the progression of patel-
lofemoral osteoarthritis. Long-term clinical results of the
Elmslie-Trillat procedure were worse because of the onset
or worsening of patellofemoral joint pain [17]. MPFL
reconstruction has thus become one of the most important
surgical techniques for treating recurrent patellar disloca-
tion in place of the tibial tubercle transfer technique.
Numerous reconstructive techniques have been reported to
restore the medial restraint of the patella. Various tendon
sources have been described including the hamstring [18],
semitendinosus [19], gracilis [20], partial patellar tendon
[21], quadriceps tendon [22], adductor tendon [23], and
allografts or artificial tendons [6]. In addition, a variety of
graft fixation techniques have been described [24]. Many
researchers have reported quite low rates of re-dislocation
after MPFL reconstruction [6, 13, 25], but whether MPFL
reconstruction could prevent patellofemoral osteoarthritis
is still unclear, and the optimal surgical treatment for
chronic patellar instability remains controversial. Nomura
et al. [6] reported no or only slight progression of osteo-
arthritis on radiographs 11.9 years after MPFL recon-
struction, but no studies have investigated the chondral
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surface of the patellofemoral joint after MPFL recon-
struction by second-look arthroscopy.

Several papers have been reported for cartilage lesions of
the patellofemoral joint in recurrent patellar dislocation [7,
26]. Nomura et al. [7] reported that the continuation of
patellar dislocation made the patellar cartilage lesions worse.
The mechanism for cartilage damage is thought to involve
the shear stress produced as the patellar dislocates and
reduces, and the medial facet and the central ridge of the
patella engage the lateral femoral condyle. The main reason
for the healing cartilage lesion on the central ridge after
MPFL reconstruction seems to be avoidance of further dis-
location by MPFL reconstruction. Before MPFL recon-
struction, the patella was laterally shifted in all patients.
After MPFL reconstruction, the patella was medialized to the
center of the trochlear groove. However, such medialization
of the patella by tightening of the medial structure might
generate increased joint pressure at the patellofemoral joint,
especially with high-graded trochlear dysplasia. In this ser-
ies, three of six patients with improvement of chondral
lesions had low-grade dysplasia, and the ratio was greater
when compared to the entire cohort. The present results
suggest that MPFL reconstruction could change the natural
course of patellofemoral osteoarthritis for patients with
recurrent patellar subluxation. However, fibrous cartilage
tissue might cover the region of chondral damage in most
cases. Because fibrous cartilage might be mechanically and
biologically different from native hyaline cartilage tissue,
longer follow-up with regard to the development of patel-
lofemoral osteoarthritis is necessary.

On the other hand, slight deterioration in the femoral
groove was observed in six knees without significance.
This fact indicates that MPFL reconstruction might gen-
erate a slight increases in joint pressure at the patellofe-
moral joint, particularly in the femoral groove, by reducing
the patella to the center on the femoral groove. Effects of
MPFL reconstruction on patellofemoral contact pressure
and kinematics have been investigated by several authors
[3, 22, 27-29]. While Bicos et al. [3] reported that overload
of the medial femoral trochlea was not noted with recon-
struction of the MPFL, Elias et al. [27] reported that small
errors in graft length and position could dramatically
increase the force and pressure applied to the medial pa-
tellofemoral cartilage in vitro. Servien et al. [30] reported
that only 65 % of femoral tunnels, the location of which
had been identified by visual inspection during surgery,
were located in a proper position after MPFL reconstruc-
tion. In the current case series, femoral tunnels were cre-
ated using intraoperative anatomical landmarks alone, and
non-anatomical placement of femoral tunnel might lead to
cases with a deteriorated chondral surface in the femoral
groove. Currently, all femoral drill positions are checked
on intraoperative lateral radiography to achieve anatomical

placement of the femoral drill hole [28, 31]. Moreover,
increased patellofemoral contact pressure could be avoided
by applying low loads to the graft [29], checking graft
isometricity [32], or adding lateral release, although further
examination of this issue is needed before such recom-
mendations can be applied clinically.

Several limitations in this study must be considered. First,
not all patients who underwent MPFL reconstruction were
examined in this series. Some potential for bias in patient
selection may thus exist, and the 32 knees investigated in the
present study might not have been representative of all 81
patients. Second, the stability and repeatability of the ICRS
score have been reported as satisfactory, and internal con-
sistency is adequate [33]. However, such a subjective eval-
vation method might influence the results, and objective
evaluation methods such as magnetic resonance imaging
should therefore be adopted. Third, a period of 1 year from
initial surgery to second-look arthroscopy might be too short
to detect the effects of MPFL reconstruction on the patel-
lofemoral cartilage. Longer follow-up with regard to the
development of patellofemoral osteoarthritis is necessary,
and further examination is needed for the establishment of an
optimal operation in order to prevent the onset of further
osteoarthritis.

In summary, according to short-term results, patellofe-
moral chondral status after isolated anatomical medial
patellofemoral ligament reconstruction was not altered at
second-look arthroscopy in most part of patellofemoral
joint. At the central ridge of the patella, significant
improvement of ICRS grading was observed. Chondral
injuries in general might not worsen after MPFL
reconstruction.
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The management of osteoarthritis (OA) remains challenging and controversial. Although several clinical op-
tions exist for the treatment of OA, regeneration of the damaged articular cartilage has proved difficult due to
the limited healing capacity. With the advancements in tissue engineering and cell-based technologies over the
past decade, new therapeutic options for patients with osteochondral lesions potentially exist. This review will
focus on the feasibility of tissue-engineered biphasic scaffolds, which can mimic the native osteochondral
complex, for osteochondral repair and highlight the recent development of these techniques toward tissue
regeneration. Moreover, basic anatomy, strategy for osteochondral repair, the design and fabrication methods of
scaffolds, as well as the choice of cells, growth factor, and materials will be discussed. Specifically, we focus on
the latest preclinical animal studies using large animals and clinical trials with high clinical relevance. In turn,
this will facilitate an understanding of the latest trends in osteochondral repair and contribute to the future
application of such clinical therapies in patients with OA.

Introduction in osteochondral repair and highlight recent advances in the

. . N biological repair of osteochondral lesions.
O STEOARTHRITIS (OA) is a common disease causing joint

pain, joint deformity, and functional disability. Overall,
as many as 40% of patients aged 65 years and older may
have symptomatic OA in large joints, consequently affecting The osteochondral complex consists of both the articular
the quality of life of elderly populations.'™ Current treat- cartilage and underlying subchondral bone. Biochemically,
ment strategies can be divided into nonsurgical (conserva- cartilage tissue largely comprises water, chondrocytes, type
tive) and surgical therapies according to the severity of II collagen, and proteoglycan.'> "> Cartilage can be differ-
OA* % In the early stage of OA, pharmacologic and/or entiated into four distinct zones: the superficial, middle,
physical therapies as conservative treatments are typically deep, and calcified cartilage zones (Fig. 1).'® Each zone is
selected for the purpose of reducing pain, and, in some defined by a particular composition and organization of cells
cases, attempting to delay the progressive structural deteri- and extracellular matrix (ECM) molecules. The differential
oration in affected joints. Surgical therapies such as joint proportions in ECM composition influence the mechanical
replacement and osteotomy are available for patients who properties of each zone of the cartilage. For example, the
fail to respond to more conservative measures. These superficial zone is strong in tension along the alignment of
treatments are well established and effective for reducing its collagen fibrils, thereby assisting in the resistance of
pain and improving quality of life. Regardless of the shear forces at the surface. By comparison, the deep zone
available therapeutic options, however, there is no method has a more compressive strain.
available that facilitates complete healing of the articular Bone is a complex tissue consisting of water, collagen
cartilage.””'* Recently, several biological approaches, such  type I, and hydroxyapatite (HA), with the two latter com-
as the use of tissue-engineered materials, have been tested to  ponents providing the tissue’s stiffness and compressive
overcome such potential problems. This review will focus strength.!31417 The compressive modulus of the sub-
on the feasibility of employing tissue-engineered materials chondral bone is higher than that of cartilage. The different

Anatomy of Cartilage and Subchondral Bone
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FIG. 1. Schematic drawing of the different zones of articular
cartilage and subchondral bone (Quoted and modified from ref
#16). Color images available online at www.liebertpub.com/teb

morphological compositions and mechanical properties
of bone and cartilage indicate the complexity of the tissue
interface.

The osteochondral interface is described by the interac-
tion of calcified cartilage and the underlying subchondral
bone.'® Structurally, collagen fibers extend from the deep
zone to the calcified cartilage through a wavy tidemark,
which enables the dispersal of force through the vertical
orientation of collagen fibrils.'"” However, despite the fact
that calcified cartilage is mineralized tissue, its mechanical
strength is lower than that of the subchondral bone.?® Cal-
cified cartilage is interdigitated with subchondral bone, but
fibers do not extend across the zone into the bone.'**' The
wavy tidemark and vertically oriented fibers at the tidemark,
as well as interdigitations present at the interface, may en-
able a reduction in stress concentrations, as well as a better
integration with the underlying subchondral bone.'*'?

An osteoarthritic joint is characterized by degenerative
changes, such as articular cartilage loss, subchondral bone
thickening, and osteophyte formation.”*2% The primary
morphologic changes include thinning, fissuring, and frag-
mentation of articular cartilage. With progression of the
disease comes a continuous loss of articular cartilage,
accompanied with a decrease of collagen type-II and
aggrecan,””*® leading to exposure of subchondral bone.
Secondary changes are frequently seen in the underlying
bone, such as fibrosis, cystic change, and new bone forma-
tion. These changes are considered to be triggered by a
multitude of factors, including aging, trauma, obesity, me-
chanical overload, congenital disorder, and infection, which
do not heal spontaneously once damaged.

Strategy for Osteochondral Repair

For an ideal repair of osteochondral lesions, it is impor-
tant to regenerate subchondral bone and to facilitate zonal
restoration of cartilage and subchondral bone, layer by layer,
mimicking the natural articular structure.”>° As a strategy
to regenerate these structures in a layer-by-layer fashion,
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biphasic or triphasic constructs have been developed due to
both mechanical and biological reasons, including the ac-
quisition of initial mechanical strength, mimicking a natural
articulate structure, a uniform tidemark at the osteochondral
junction, and integration of the biphasic implant with host
tissue to sustain biological function.”*** For satisfying the
biological requirements, an osteochondral implant should
ideally have a rigid osseous layer (to support the overlying
cartilage and integrate with the native bone) and a chondral
layer (to enable the seeding and proliferation of chon-
drocytes or mesenchymal stem cells (MSCs) and subsequent
deposition of cartilaginous ECM).

Design and Fabrication of Biphasic Scaffold

A successful tissue engineering approach for osteochon-
dral repair involves the design of a biphasic scaffold with
the potential to regenerate both cartilage and subchondral
bone. The fabrication of the majority of scaffolds is per-
formed through independent processes, by which different
scaffolds for the two sides are created and then combined, or
via a simultaneous process through which a single scaffold
is created and cultured simultaneously for both sides.'*** A
biphasic construct developed independently enables the
cultivation of both chondrogenic and osteogenic cells in
separate media and environmental conditions. However,
these constructs should be hybridized into a single com-
posite graft by connecting the two layers together. The po-
tential disadvantage of this approach might be the difficulty
of achieving a secure biological and mechanical integration
between the two layers.45 On the other hand, when the two
layers are hybridized before culture, a complicated system
will be required to promote osteo- and chondral differenti-
ation separately in each layer. Due to the difficulty of two
different cell cultures simultaneously, such predeveloped
biphasic constructs are mainly used as a cell-free scaffold.*!

Some research groups have raised the importance of an
intermediate layer between the cartilage and subchondral bone
layers to represent the tidemark or calcified cartilage; triphasic
scaffolds were, therefore, developed.3 137 However, the inter-
mediate layer has unique osteochondral characteristics owing
to the infiltration of blood vessels, and, thus, it may be difficult
to mimic the unique structure with currently available bio-
material technologies. In fact, the superiority of triphasic
scaffolds over biphasic ones for osteochondral repair has not
yet been demonstrated and requires further investigation.

Choice of Cells and Growth Factors

The most direct cell source may be the biopsy specimens
taken from the patients from whom mature osteoblasts and
chondrocytes may be obtained. However, since the number
of cells obtained is usually limited, it is typically not enough
to enable seeding onto the scaffolds. In addition, the ex-
pansion of primary cells may result in a loss of differenti-
ation capacity; for example, the expansion of articular
chondrocytes can lead to de-differentiation into fibro-
blasts.***® To overcome such potential problems with re-
gard to de-differentiation, a three-dimensional (3D) culture
can be used to retain the cellular phenotype and avoid de-
differentiation.** The most common method is the use of
various scaffolds to produce a 3D culture condition,*>*! and
it may be combined with the supplementation of growth
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factors,? the use of bioreactors,>> mechanical stimulation of
the cells,”> and the use of low oxygen tension>® during
cultivation. In addition, even if chondrocytes lose their
differentiated phenotype, de-differentiated chondrocytes can
regain their differentiated phenotype through the re-differ-
entiation process of cultivation in a 3D scaffold combined
with growth factors.””>®

As an additional option, stem cells may represent prom-
ising alternatives.>® Specifically, MSCs have the capability
to differentiate into a variety of connective tissue cell types,
including bone, cartilage, tendon, muscle, and adipose tis-
sue.b%0 These cells may be isolated from various tissues,
such as bone marrow, skeletal muscle, synovial membrane,
adipose tissue, and umbilical cord blood.!112:60-63 15 addi-
tion, the use of a growth factor or its cocktail (combination),
including insulin-like growth factor-1 (IGF-1), transforming
growth factor beta-1 (TGF-$1), fibroblast growth factor-2
(FGF-2), and bone morphogenetic proteins (BMP-2, BMP-
7), may support tissue maturation for cartilage.**” Similar
to cartilage, the bone also possesses a large variety of
growth factors that are involved in the regenerative process,
including TGF-B, BMP-2, -4, -6, and -7, IGF-1 and -2, and
platelet-derived growth factor (PDGF).%*~"0

On the other hand, some researchers have tested an
acellular approach using a scaffold alone.*™”" Considering
the time and cost effectiveness, as well as safety issues as-
sociated with cell culture, this approach could represent a
reasonable strategy in tissue engineering. Scaffolds should
be developed to meet requirements such as the recruitment
of enough tissue progenitor cells from the host tissue.

Materials of Cartilage Layer Scaffold

Several methods have been proposed to develop biphasic
scaffolds with the hybridization of two distinct biomaterials,
each of which is adequate to integrate with the respective
surrounding tissue.*> Many specific material types have
been developed for both cartilage and bone regeneration,
which are typically made of biocompatible and biodegrad-
able polymers. For the cartilage layer, natural or synthetic
polymer based scaffolds are commonly used. More recently,
scaffold-free implants have been developed and their po-
tential feasibility has been tested.

Natural polymers

The materials of natural-derived polymers could provide
a naturally occurring environment for cells and tissues,
thereby potentially facilitating cell proliferation and differ-
entiation.”*’®> Moreover, natural polymers usually contain
specific molecular domains that can support and guide cells
at various stages of their development!443; thus, biological
interactions of the scaffold with the host tissue can be en-
hanced. However, they are, in general, biomechanically
weak and less stiff than other materials.'* As a source of
materials, collagen, gelatin, glycosaminoglycan, chitosan,
starch, hyaluronic acid, alginate, and bacterial-sourced
polymers (hydroxyalkanoates) are commonly used.

Synthetic polymers

Biodegradable synthetic polymers offer several advan-
tages compared with other materials for developing scaf-

folds in tissue engineering. The main advantages are being
able to control mechanical progerties (i.e., strength and
stiffness) and degradation speed.”* Synthetic polymers are
also attractive, because they can be fabricated into various
shapes with a desired pore according to the speed of cell
migration or tissue in-growth.”> Moreover, the progression
of current techniques such as electrospinning methods and
the 3D printer have enabled the simple design and fabrica-
tion of scaffolds.”®’® On the other hand, synthetic polymers
have limitations in bioactivity due to their hydrophobic
surface not supporting cell attachment and proliferation.”>%?
Surface treatment with chondroitin su]fate,s?’ silicate,84 and
alkaline® could increase hydrophilicity and provide a suit-
able scaffold for tissue engineering. In addition, these
polymers, incorporated with growth factors such as TGF-$
and BMP, would be helpful and convenient to support cell
proliferation and differentiation, stimulating the repair of
damaged tissue.®>®¢ As a source of biodegradable synthetic
polymers, poly(glycolic acid), poly(D,L-lactic-co-glycolic acid),
poly(L-lactic acid), poly(caprolactone), and poly(ethylene
glycol) have been commonly used.

Scaffold-free biomaterials

Polymer-based scaffolds have been reported to contribute
to good osteochondral repair in vivo.36~*1 Despite this, there
remain several concerns associated with the long-term
safety of these constructs due to the involvement of
chemical- or animal-derived materials. To overcome such
potential problems, we have developed a scaffold-free 3D
tissue-engineered construct (TEC) composed of MSCs de-
rived from the synovium and ECMs synthesized by the
cells.!™'? The feasibility of the resultant TEC to facilitate
cartilage repair was demonstrated in a large animal mod-
€l.%11.87 These TECs are developed without an artificial
scaffold, and, thus, their implantation could eliminate or
minimize the risk of potential side effects induced by ex-
trinsic chemical or biological materials. Furthermore, such
TEC are highly adherent to cartilage matrix and secure in-
tegration of the TEC until adjacent cartilage tissue is ob-
served after implantation. Therefore, combined constructs of
TEC and several materials for the subchondral bone layer
may effectively repair an osteochondal lesion with zonal
restoration, and TEC could be considered one of the strong
candidates for a cartilage bioimplant. In our animal study,
we have demonstrated that the combined bioimplant of TEC
and ceramic-based artificial bone significantly accelerated
and improved osteochondral repair. (in submission).

Materials of Subchondral Bone Scaffold

For a scaffold of the subchondral bone layer, it is im-
portant to choose materials with initial mechanical strength,
good bone ingrowth, and integration of native surrounding
bone. Ceramics, glasses, and metallic materials are com-
monly used as follows. In addition, natural or synthetic
polymers, mentioned earlier, could be used alone or com-
bined with ceramics,*!#>%8-1

Ceramics and glasses

Ceramics, such as HA or other calcium phosphates, such
as tricalcium phosphate (TCP) and bioactive glasses, such as
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Bioglass®, are widely used for bone tissue engineering.”>

These materials promote the formation of a bone-like tissue
and enhance integration of the scaffold to the host tissue due
to excellent osteoconductivity and osteoinductivity. The
inclusion of growth factors in the scaffolds may be an in-
teresting concept to explore and contribute to the maturation
of bone tissue. Notably, the inclusion of BMP-2 in an HA-
based scaffold was reported to promote subchondral bone
repair as well as cartllaoe On the other hand, these scaf-
folds have low structural integrity due to being brittle and
unsuitable for applications under mcchamca] stress, al-
though they exhibit suitable stiffness.”* The degradation
behavior of these scaffolds can be controlled by changes in
the porous structures, which can be tailored in terms of their
degradation kinetics appropriate for bone tissue engineering.
It is also well known that increasing porosity further impairs
the mechanical properties of bioceramic scaffolds. This
problem can be solved by modifying any porous scaffolds
with infiltration or coating by biodegradable polymers.”®%®

Metallic materials

Metals are widely used in orthopedic implants such as
titanium, titanium alloys, stainless steels, and cobalt-chro-
mium alloy. As an application of osteochondral bone repair,
metallic materials withhold the capability of withstanding
mechanical loading when used in the subchondral bone
layer. On the other hand, the lack of degradation over time
and the possibility of wear particle release or corrosion are
disadvantages. As one such example, porous tantalum was
reported to induce subchondral bone growth and showed
integration to adjacent host bone in an in vivo rabbit study.”

Preclinical Study and Clinical Trial

Many therapeutic procedures have been investigated that
biologically repair damaged cartilage, some of which are
already at the stage of clinical application. On the contrary,
considering the higher incidence of OA, which involves
subchondral bone pathology, by comparison to isolated
chondral injury,!>190-103 there is an urgent need to develop
novel therapeutic methods for osteochondral repair with
clinical relevance. In this regard, the number of animal
experiments and clinical trials to treat osteochondral lesions
has been recently increased. In Table 1, we outline the latest
preclinical animal studies using large animal and clinical
studies.

Marquass et al. used an MSC-seeded combined implant
with a collagen I hydrogel and B-TCP in an ovine os-
teochondral defect model and showed comparable repair
quality to osteochondral autografts in terms of histology and
biomechanical testing.®” Miot et al, prepared engineered
cartilage, which was generated from autologous chon-
drocytes cultured in hyaluronic acid scaffolds of different
preculture periods, and implanted the engineered cartilage
above HA/hyaluronic acid sponges into goat osteochondral
defects. They concluded that 2 weeks of preculture of en-
gineered cartilage achieved a suitable compromise between
tissue maturity and structural/integrative properties of the
repair tissue. These data demonstrate that the stage of de-
velopment of engineered cartilage is an important parameter
to be considered in designing cartilage repair strategies.’
Kon et al. used an aragonite/hyaluronate biphasic scaffold
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for osteochondral defects in a goat model and showed that
mechanical modification with drilled channels in the carti-
lage phase and impregnation of HA within the coral pores
enhanced the scaffold’s cartilage regenerative potential.'®
Schleicher et al. compared two biphasic scaffolds of either
hydroxylapatite/collagen or allogenous sterilized bone/col-
lagen and tested their integration in a sheep model. They
showed that the latter scaffold proved to be stable and suf-
ficiently integrated in the short term.'%® Kon et al. developed
an acellular three-gradient multilayer scaffold made of
collagen type 1 and nano-particles of HA, and tested the
scaffold with or without autologous chondrocytes in sheep
osteochondral defect model. They concluded that the scaf-
fold contributed to the process of bone and hyaline-like
cartilage 1egenelat10n regardless of the use of chon-
drocytes.”’ They also treated 27 patients with chondral or
osteochondral lesions using an acellular scaffold,?!-1?7-108
and demonstrated the safety and potential clinical benefit of
the graded biomimetic osteochondral scaffold in promoting
bone and cartilage tissue with good clinical and magnetic
resonance imaging results until the S-year follow up.
Dhollander et al. treated 27 patients for cartilage lesions
with an acellular osteochondral plug, which is composed of
polylactide-co-glycolide copolymer, calcium-sulfate, poly-
glycolide fibers, and surfactant (TruFit plug; Smith & Ne-
phew, Andover, MA).”" In this clinical pilot study, a modest
clinical improvement became apparent at 12 months of
follow up. In addition, MRI data showed no deterioration of
the repair tissue. However, 20% of the patients had persis-
tent clinical symptoms after surgery, and had an additional
surgery such as removal of the osteochondral plug remnants.
The two latter studies were Level IV study, and further
studies, which would be compared with conventional
treatment such as bone marrow stimulation and osteochon-
dral transplantation, are necessary. In contrast with cell-free
scaffolds, no clinical trial using cell-seeded scaffolds has
been reported, and these studies should be expected in the
near future.

Summarizing recent animal studies (Table 1), the work
has been focused on not only investigating the effectiveness
of materials or cells, but also on applying several new
concepts and techniques such as mechanical,'® mlcro—
structural,” and local microenvironment modification®® for
the design and fabrication of scaffolds. In addition, the most
suitable biomaterials for the cartilage or subchondral bone
layers have not been fully investigated, while there are many
biomaterials available for osteochondral repair. Therefore, a
comparison of these materials should be performed to ulti-
mately determine the ideal material.

Future Directions

The management of OA remains challenging and con-
troversial. Considering the steady progression of tissue en-
gineering and cell-based technologies over the past decade,
we may have new therapeutic options for osteochondral
repair in clinical practice. In this review, we have focused
on biphasic implants for osteochondral repair, including the
concept, scaffold fabrication, in addition to the selection of
cells and materials. There have been many promising scaf-
folds developed, some of which contribute to good osteo-
chondral repair in vivo. Moreover, some of them are already
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TABLE 1. SUMMARY OF IN VIvo STUDY USING BIPHASIC SCAFFOLD

Cartilage layer

Subchondral bone layer

Intermidiate Ref.
Authors Year Material Cells Chondrogenesis Material Cells Osteogenesis layer Animal  number
Gao et al. 2002 Hyaluronic acid Bone - CP — N/A - Rabbit 42
marrow
MSC
Alhadlaq et al. 2005 PEG hydrogel Bone + PEG hydrogel Bone + + Rat 41
marrow marrow
MSC MSC
Kandel et al. 2006 CpP Chondrocyte N/A CPP — N/A - Sheep 7
Ahn et al. 2009 Hyaluronic acid/  Chondrocyte N/A HA/BTCP — N/A - Rabbit 40
atelocollagen
Marquass et al. 2010 Collagen hydrogel Bone + BTCP Bone - Autologous Sheep 37
marrow marrow plasma
MSC MSC
Kon et al. 2010 Collagen Chondrocyte N/A Collagen/HA — N/A Collagen/HA  Sheep 91
Chen et al. 2011 Chitosan/gelatin Bone + HA/chitosan/gelatin ~ Bone + - Rabbit 43
marrow marrow
MSC MSC
Kon et al. 2011, 2013 Collagen — N/A Collagen/HA — N/A Collagen/HA  Human 31, 108
Reyes et al. 2012 Alginate —_ N/A PLGA — N/A ~ Rabbit 85
Deng et al. 2012 Gelatin/CS/SH Chondrocyte N/A Gelatin/Ceramic Bone + - Rabbit 88
bovine bone marrow
MSC
Miot et al. 2012 Hyaluronic acid Chondrocyte N/A HA/Hyaluronic acid — N/A - Goat 104
Dhollander et al. 2012 PLG/calcium- — N/A PLG/calcium- — N/A - Human 71
sulfate/PGA sulfate/PGA
Zhang et al. 2013 Collagen — N/A PLLA — N/A - Rabbit 89
Zhang et al. 2013 Collagen — N/A Silk/HA — N/A - Rabbit 90
Reyes et al. 2013 Polyurethane — N/A PLGA — N/A - Rabbit 86
Duan et al. 2013 PLGA Bone — PLGA — N/A - Rabbit 75
marrow
MSC
Schleicher ef al. 2013 Collagen Chondrocyte N/A Collagen/HA — N/A - Sheep 106
Collagen Chondrocyte N/A Allogenous bone — N/A -
Kon et al. 2013 Hyaluronic — N/A Aragonite — N/A - Goat 105
acid/aragonite

MSC, mesenchymal stem cell; PEG, polyethylene glycol; HA, hydroxyapatite; CP, calcium phosphate; CPP, calcium polyphosphate; BTCP, beta-tricalcium phosphate; PLGA, polylactic-co-glycolic

acid; CS, chondroitin sulfate; SH, sodium hyaluronate; PLG, polylactide-co glycolide; PGA, polyglycolide; PLLA, poly-L-lactic acid; N/A, not applicable.



6

at the stage of preclinical, large animal studies, as well as
clinical trials. Therefore, the application of additional new
implants to osteochondral lesions could be expected in the
near future. On the other hand, the optimization of and
selection of biomaterials and their fabrication methods
have not been fully investigated. Thus, the ideal structure
and composition of bioimplants that repair osteochondral
lesions have not been elucidated. Further studies will be
needed and should be conducted in a methodologically
rigorous fashion.

Finally, in order to evaluate the feasibility and safety of
new implants with clinical relevance, the selection of ap-
propriate animal models is important. Due to the differences
in matrix structure and composition, as well as in the natural
osteochondral healing response and technical difficulty in
creating the lesions of consistent size and location, the use
of small animals such as rabbits, rats, and mice may not be
appropriate.'®~'!"! Rather, in consideration of clinical rele-
vance, it is preferable to utilize larger animal models, such
as pigs, sheep, goats, and horses.
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The use of a scaffold-free tissue-engineered construct (TEC) bio-synthesized
from synovium-derived mesenchymal stem cells with porous synthetic bones
for cartilage repair : Nanoscale mechanical properties.

Ryosuke NAKAMURA, BS.. Shota MOCHIZUKI B.S.. Norimasa NAKAMURA, M.D.. Ph.D.,
Hiromichi FUJIE, Ph.D.

Abstract

Important biomechanical functions of articular cartilage are lubrication properties. Articular
cartilage bears numerous of cyclic load applications for a long period while keeping the {rictional
coeflicient at a negligible level. However, once a degenerative disease or physical damage occurs
in articular cartilage. such functions immediately deteriorate and cannot be restored due to the
limitation of healing capacity. To solve the problem, we have been developing a new tissue-engi-
neering technique using a scaffold-{ree tissue-engineered construct (TEC) bio-synthesized from
allogenic or autogenic synovial-derived mesenchymal stem cells (MSCs) as a potential MSC-
based therapeutic method. The objective of the present study was to perform a nanoscale {riction
test using an atomic force microscope (AFM) for cartilage-like tissues repaired with the TEC
and combined with porous synthetic bones in a rabbit model.

Synovium-derived MSCs were obtained from the synovial membrane of rabbit knee joints.
When the cell density reached 4.0 x 10° cells/em® (6-cm dish). cells were allowed to undergo active
contraction for 8 hours to develop a TEC specimen. A cylindrically shaped osteochondral defect
of 6 mm in diameter and 5 mm in depth was created in the articular surface of the femoral
groove of a 24-week-old rabbit. A composite of hydroxyapatite (HA) or f-TCP with or without
the TEC was allografted into the defect. Nanoscale friction tests were performed for the specimens
at {riction speeds was of 10, 20. 50. or 100 xm/s, and contact force was 15.90-27.04 nN.

From the results of the friction test, in each specimen. there was no significant change of
friction speed and contact force in the coefficient of friction. The coefficient of friction was signifi-
cantly higher in HA and f#-TCP groups than in the normal group.

It is considered from the result of the coefficient of {riction that the TEC/HA group or TEC/
B -TCP group is similar to normal cartilage. and recovery of the boundary lubrication properties
and the shape of the cartilage surface is premature using the TEC.

Key words @ Articular cartilage, Mesenchymal stem cells, Friction, Atomic force microscpe.
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