campus. We highly recommend that PCC or the government have to take the initiative in establishing a regular health monitoring system, at least covering behavioral (Step 1) and physical (Step 2) measurements, for their members.

Because of the convenient sampling applied in our survey, a major weakness remained in the data set, namely low participation of non-PCC students (25%). It might be possible that the college students had better access to the information of the survey and more free time to join in than the other young people outside the college. This concern might make it inadequate to generalize the findings to all Palauan population at the 18-24 age group. Although probability sampling was not employed for the current study, its results still could reflect the current status of NCD risk factors and provide valuable information for this specific age group.

In conclusion, the current survey revealed a high prevalence of risk factors for NCDs among young people in Palau. It indicates that swift measures against NCDs are required even for the young age group of 18-24 years, which was not included in the Palauan national STEPS. The findings can serve as a baseline epidemiological data and help the policymakers in devising proper strategies against NCDs for the population. Moreover, this first-time comprehensive survey will also offer a reference for the further development of NCD surveillance systems in Palau.

ACKNOWLEDGMENTS

The authors wish to thank staff members of the Health Policy, Research and Development

(HPRD) office and the NCD Unit, Ministry of Health, Palau, for assistance in data collection

and valuable advice during the process of the survey. Appreciation is also given to the president,

the dean and other members of Palau Community College for their great help in preparation of

the venue and promotion for the survey. This study was supported by the Health and Labour

Sciences Research Grants for Research on Global Health Issues (H24-chikyukibo-ippan-004)

to A.A. from the Ministry of Health, Labour and Welfare, Government of Japan.

278

277

REFERENCES

Conflicts of interest: None declared.

- 1. Hankin J, Reed D, Labarthe D, Nichaman M, Stallones R. Dietary and disease patterns among Micronesians. Am J Clin Nutr. 1970; 23(3):346-57.
- 2. Hankin JH, Dickinson LE. Urbanization, diet, and potential health effects in Palau. Am J Clin Nutr. 1972;25(3):348-53.
- 3. Labrthe D, Reed D, Brody J, Stallones R. Health effects of modernization in Palau. Am J Epidemiol. 1973;98(3):161-74.
- Cash H. Palau Epidemiological Profile 2012. Koror: Palau State Epidemiological Workgroup (SEOW); 2012.
- 5. WHO STEPwise approach to surveillance (STEPS) [homepage on the Internet].

- Geneva: World Health Organization [cited 2014 July 15]. Available from: http://www.who.int/chp/steps/en/.
- 6. Armstrong T, Bonita R. Capacity building for an integrated noncommunicable disease risk factor surveillance system in developing countries. Ethin Dis. 2003;13:S13-8.
- 7. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003;289(19):2560-72.
- 8. World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia. Geneva: World Health Organization; 2006.
- 9. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106(25):3143-421.
- 10. Ministry of Health, Republic of the Marshall Islands. Republic of the Marshall Islands NCD Risk Factors STEPS Report 2002. Suva, Fiji; 2007.
- 11. National Center for Health Statistics. Health, United States, 2013: With Special Feature on Prescription Drugs. Hyattsville, Maryland; 2014.

12. Ministry of Health, Labour and Welfare. The National Health and Nutrition Survey in Japan, 2011. Tokyo: Ministry of Health, Labour and Welfare; 2013 (in Japanese).

Table 1 Percentages of behavioral factors among adults aged 18-24 years in Palau, 2013

		Male (n=174)		Female (n=182)		Total (n=356)	
Factor		n	(Valid %)	n	(Valid %)	n	(Valid %)
Alcohol drinking	current drinker ^a	116	(66.7)	66	(36.3)	182	(51.1)
	ex-drinker	46	(26.4)	69	(37.9)	115	(32.3)
	non-drinker	12	(6.9)	47	(25.8)	59	(16.6)
Smoking	current smoker	71	(40.8)	22	(12.1)	93	(26.1)
	ex-smoker	63	(36.2)	63	(34.6)	126	(35.4)
	non-smoker	40	(23.0)	97	(53.3)	137	(38.5)
Betel nut and tobacco	current chewer	109	(62.6)	98	(53.8)	207	(58.1)
chewing	non-chewer	65	(37.4)	84	(46.2)	149	(41.9)
Tobacco product use	current user	139	(79.9)	111	(61.0)	250	(70.2)
	non-user	35	(20.1)	71	(39.0)	106	(29.8)
Fruits/Vegetables	<1	34	(20.0)	50	(27.9)	84	(24.1)
(servings/day)	1-2.9	85	(50.0)	93	(52.0)	178	(51.0)
	3-4.9	31	(18.2)	23	(12.8)	54	(15.5)
	≥5	20	(11.8)	13	(7.3)	33	(9.5)
	missing	4		3		7	
Physical activity	no	5	(2.9)	25	(13.7)	30	(8.4)
	yes ^b	169	(97.1)	157	(86.3)	326	(91.6)

^a Those who answered that they consumed an alcoholic drink within the past 30 days or 1 month.

^b Those who answered that they have vigorous- or moderate-intensity physical activities in their daily life.

Table 2 BMI, blood pressure, blood levels of glucose and lipids among adults aged 18-24 years in Palau, 2013

			Male		Female (n=180)		Total (n=354)	
		(n=174)						
		n	(Valid %)	n	(Valid %)	n	(Valid %)	
Body mass index	<18.5	11	(6.5)	13	(7.3)	24	(6.9)	
(kg/m^2)	18.5-25	79	(46.7)	75	(41.9)	154	(44.3)	
	25-29.9	45	(26.6)	50	(27.9)	95	(27.3)	
	≥30	34	(20.1)	41	(22.9)	75	(21.6)	
	missing	5		1		6		
Systolic blood pressure	<120	30	(17.6)	100	(55.9)	130	(37.2)	
(mmHg)	120-129	49	(28.8)	54	(30.2)	103	(29.5)	
	130-139	63	(37.1)	23	(12.8)	86	(24.6)	
	140-159	27	(15.9)	1	(0.6)	28	(8.0)	
	≥160	1	(0.6)	1	(0.6)	2	(0.6)	
	missing	4		1		5		
Diastolic blood pressure	<70	67	(39.4)	65	(36.3)	132	(37.8)	
(mmHg)	70-79	68	(40.0)	76	(42.5)	144	(41.3)	
	80-89	28	(16.5)	35	(19.6)	63	(18.1)	
	90-99	6	(3.5)	2	(1.1)	8	(2.3)	
	≥100	1	(0.6)	1	(0.6)	2	(0.6)	
	missing	4		1		5		
Hypertension	no	140	(82.4)	176	(98.3)	316	(90.5)	
	yes	30	(17.6)	3	(1.7)	33	(9.5)	
	missing	4		1		5		
Fasting glucose	<100	112	(67.9)	136	(76.4)	248	(72.3)	
(mg/dL)	100-109	36	(21.8)	29	(16.3)	65	(19.0)	
	110-125	6	(3.6)	12	(6.7)	18	(5.2)	
	≥126	11	(6.7)	1	(0.6)	12	(3.5)	
	missing	9		2		11		
Triglycerides	<100	122	(74.4)	136	(77.3)	258	(75.9)	
(mg/dL)	100-149	30	(18.3)	26	(14.8)	56	(16.5)	
	150-199	6	(3.7)	8	(4.5)	14	(4.1)	

	≥200	6	(3.7)	6	(3.4)	12	(3.5)
	missing	10		4		14	
Total cholesterol	<160	23	(14.0)	29	(16.5)	52	(15.3)
(mg/dL)	160-189	77	(47.0)	88	(50.0)	165	(48.5)
	190-199	31	(18.9)	21	(11.9)	52	(15.3)
	200-239	32	(19.5)	37	(21.0)	69	(20.3)
	≥240	1	(0.6)	1	(0.6)	2	(0.6)
	missing	10		4		14	
HDL-cholesterol	<40	3	(1.8)	1	(0.6)	4	(1.2)
(mg/dL)	40-49	10	(6.1)	8	(4.5)	18	(5.3)
	50-59	27	(16.5)	17	(9.7)	44	(12.9)
	≥60	124	(75.6)	150	(85.2)	274	(80.6)
	missing	10		4		14	

HDL indicates high density lipoprotein.

Journal of Epidemiology

Profile of Non-communicable Disease (NCD) Risk Factors among Adults in the Republic of Palau: Findings of a National STEPS Survey

Journal:	Journal of Epidemiology
Manuscript ID:	JE-2014-0242
Manuscript Type:	Study Profile
Date Submitted by the Author:	30-Nov-2014
Complete List of Authors:	Watson, Berry Moon; Ministry of Health, Republic of Palau, Chiang, Chifa; Nagoya University School of Medicine, Department of Public Health and Health Systems Ikerdeu, Edolem; Ministry of Health, Republic of Palau, Yatsuya, Hiroshi; Fujita Health University School of Medicine, Department of Public Health Honjo, Kaori; Osaka University Global Collaboration Center, Mita, Takashi; Osaka University Global Collaboration Center, Cui, Renzhe; Public Health, Graduate School of Medicine, Osaka University, Madraisau, Sherilynn; Ministry of Health, Republic of Palau, Ngirmang, Gregorio; Ministry of Health, Republic of Palau, Iso, Hiroyasu; Public Health, Graduate School of Medicine, Osaka University, Aoyama, Atsuko; Nagoya University School of Medicine, Department of Public Health and Health Systems
Specialty Area:	International health
Keywords:	Non-communicable disease, WHO STEPS, obesity, hypertension, betel nut and tobacco chewing

SCHOLARONE" Manuscripts

Profile of Non-communicable Disease (NCD) Risk Factors among Adults in the Republic

of Palau: Findings of a National STEPS Survey

Berry Moon Watson^{1*}, Chifa Chiang^{2*}, Edolem Ikerdeu¹, Hiroshi Yatsuva^{2,3}, Kaori Honio⁴,

Takashi Mita^{4,5}, Renzhe Cui⁶, Sherilynn Madraisau¹, Gregorio Ngirmang¹, Hiroyasu Iso⁶,

Atsuko Aovama²

¹ Ministry of Health, Republic of Palau, Koror, Palau

² Department of Public Health and Health Systems, Nagoya University School of Medicine,

Nagoya, Japan

³ Department of Public Health, Fujita Health University School of Medicine, Toyoake, Aichi.

Japan

⁴ Global Collaboration Center, Osaka University, Suita, Osaka, Japan

⁵ Institute for Academic Initiatives, Osaka University, Suita, Osaka, Japan

⁶ Public Health, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan

Correspondence: Chifa Chiang, PhD

Department of Public Health and Health Systems, Nagoya University School of Medicine

65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan (email: keihatsu@med.nagoya-u.ac.jp)

*B.M. Watson and C. Chiang contributed equally to this work.

Running title: NCD Risk Factors in Palau

Number of tables: 2, Number of figures: 0

Formatted for: Journal of Epidemiology

1 ABSTRACT

- 2 Background: Palau, similar to other Pacific island countries, is currently highly burdened
- 3 with non-communicable diseases (NCDs). The WHO STEPS was launched in 2011 to
- 4 comprehensively survey indicators for NCDs in the country. This paper aims to describe the
- 5 prevalence of key NCD risk factors assessed by the survey.
- 6 Methods: The WHO instrument, including behavioral, physical and biochemical
- 7 measurements, was adopted to the nationwide survey for all residents aged 25 to 64 years. A
- 8 cluster-based sampling method was performed to obtain a national representative data.
- 9 Results: Valid data from 2,184 individuals were selected for the analyses, of which 75% were
- 10 Palauans and 19% were Filipinos. Prevalence of current cigarette smoking was 25% in men
- and 10% in women. Betel nut chewing with tobacco was prevalent particularly among
- 12 Palauans (58% in men, 69% in women) compared to the other ethnic groups. In terms of all
- types of tobacco use, 60% of men and 58% of women were current users. Overweight or
- obesity was very common among Palauans (84% in men, 86% in women) as well as Filipinos
- 15 (52% in men, 40% in women). Hypertension was found in 55% of men and 49% of women,
- with the stage 2 hypertension being 21% and 19%, respectively. The prevalence of diabetic
- 17 level hyperglycemia was more than 20%. Raised total cholesterol was detected in 16% of men
- and 20% of women.
- 19 Conclusions: This survey revealed an alarmingly high prevalence of NCD risk factors,

Page 3 of 23

Journal of Epidemiology

Watson 3 / 17

- 20 especially tobacco use, obesity, hypertension and raised blood glucose. The data would be
- 21 useful baseline information to develop effective NCD strategies in Palau.

22

- 23 Key words: Non-communicable disease, WHO STEPS, obesity, hypertension, betel nut and
- 24 tobacco chewing

INTRODUCTION

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Non-communicable diseases (NCDs) have undoubtedly become a major challenge in the Pacific Islands, which account for around 70% of all deaths in the region, including a high percentage of premature deaths (before the age of 60). ^{1,2} The Republic of Palau, a small island country in the western Pacific bears a high burden of NCDs, as well as other Pacific island countries and territories. According to the data released by the Ministry of Health of Palau in 2011, cardiovascular disease (24.3%), cancer (21.4%), chronic respiratory diseases (12.7%), and diabetes (9.8%) are the leading four causes of death in the country.³ Being aware of the seriousness of the issue, the President of Republic of Palau signed an executive order declaring a state of health emergency on NCDs in 2011. However, the authorities did not have valid population baseline data of key indicators for NCDs to establish evidence-based strategies for controlling NCDs. Although several previous population-based surveys were conducted in Palau, none of them could provide complete information, including behavioral and biological risk factor of NCDs. For example, the Palau Health Survey in 1991 did not include blood tests, and the Palau Community Health Assessment in 2003 or the behavioral risk factor surveillance system (BRFSS) in 2010 and 2012 did not include physical and biochemical measurements. The Ministry of Health, therefore, collaborated with the World Health Organization (WHO) to start the WHO STEPwise approach to risk factor Surveillance (STEPS) in late 2011, which would be the first comprehensive national survey for NCD risk

44 factors in Palau.

This paper aims to perform a preliminary analysis on the population representative dataset

and describe the prevalence of each major common risk factor for NCDs.

47

48

50

52

53

54

55

57

58

59

60

61

45

METHODS

49 Palau is a Micronesian island country, located east of the Philippines, west of the Federated

States of Micronesia (FSM) and northeast of Indonesia. It is classified as an upper middle

51 income country by the World Bank and has relatively high living standards in comparison

with other island countries in the region. According to the latest national population and

housing census conducted in 2005, the total population is about 20,000, of which 73% are of

Palauan descent and foreign nationals comprise the rest. Filipinos, estimated at 16% to

roughly 20% of the total population, are the largest group of the foreign residents, and most of

them are migrant workers from the Philippines after the 1990s.

A population-based survey for NCD risk factors, referred to as Palau NCD STEPS Survey,

was started in September 2011 by adopting the WHO STEPS Instrument,⁴ and the data

collection was completed in June 2013. Two-stage cluster random sampling was designed to

select 2,807 households nationwide, based on the 2009 Household Survey. One resident aged

25 to 64 years within each of the households was recruited for the survey using the Kish

62 methods.

As detailed below, there are three component parts, called "Steps", of the survey
instrument, i.e. behavioral, physical and biochemical measurements. (1) Apart from questions
for basic demographic information, a structured questionnaire was used to assess four
common behavioral risk factors of NCDs by face-to-face interviews. Participants were asked
about personal dietary habits, particularly fruit and vegetable intakes, as well as tobacco use,
alcohol consumption and physical activity in their daily lives. (2) The second Step consisted
of measurements of height, weight, waist and hip circumferences, and resting blood pressure.
The anthropometric measurements were taken in light indoor clothing, and without shoes or
other heavy accessories. Blood pressure in the sitting position was measured three times in the
upper arm, using an electronic sphygmomanometer (Omron HEM-7200). Three
measurements of blood pressure were taken for each participant in the survey, and the
arithmetic mean of the second and third readings were used. (3) Biochemical blood tests were
performed in the morning after roughly 10 to 12 hours of fasting. Fresh capillary whole blood
samples were drawn from the fingertip, followed by biochemical tests on portable devices,
namely ACCU-CHEK Performa system (Roche Diagnostics, North America) for fasting
blood glucose and Accutrend Plus system (Roche Diagnostics, North America) for blood
levels of total cholesterol and triglycerides.
Data were entered by using the EpiData software and categorized into different groups for

http://mc.manuscriptcentral.com/je

the analysis based on well-defined criteria. Body mass index (BMI) is defined as the weight in

kilograms divided by the square of the height in meters. As the current WHO classification,
cutoff points of 18.5, 25 and 30 kg/m ² were used to define underweight, normal weight,
overweight and obesity. Hypertension was defined as having a systolic blood pressure ≥140
mmHg, a diastolic blood pressure ≥90 mmHg, or currently being on antihypertensive
medication. People with systolic blood pressure ≥160 mmHg or diastolic blood pressure ≥100
mmHg were grouped as stage 2 hypertension, by applying the criteria of the Seventh Report
of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High
Blood Pressure (JNC 7). ⁵ According to the recommendations by the WHO and American
Diabetes Association (ADA), values of fasting blood glucose ≥126 mg/dL or those on diabetic
treatment were categorized as diabetic. Two values for the upper limit of normal fasting blood
glucose were used: 110 mg/dL by the WHO or 100 mg/dL by the ADA criteria. ^{6,7} The levels
of blood lipids were classified as follows: normal (<150 mg/dL), borderline-high (150-199
mg/dL) and high (\geq 200 mg/dL) for triglycerides, and desirable (\leq 200 mg/dL), borderline-high
(200-239 mg/dL) and high (\geq 240 mg/dL) for total cholesterol. We conducted all data
analyses using the statistical software, IBM SPSS Statistics for Windows, Version 22.0 (IBM
Corp, Armonk, NY, USA).
The survey proposal was reviewed and approved by the WHO and Institutional Review
Board of the Ministry of Health, Republic of Palau prior to implementation. Written informed
consent was obtained from all of the participants after adequate explanations of the objectives

and procedures of the project. This study is part of a joint research project between Palau and Japan, which was also approved by the Bioethics Review Committee of Nagoya University School of Medicine.

RESULTS

Valid data of 2,184 individuals were selected for the analyses in this study, excluding those who were not within the target age range of 25-64 years, who did not give a clear answer of sex, and women who were pregnant at the moment of the survey. About 75% of the subjects were Palauans and 19% were Filipinos, the main foreign population in the country. Table 1 shows the characteristics of participants by gender and age group, and Table 2 shows that by ethnic background.

A quarter of male participants were current cigarette smokers, but female smokers were less than 10%. Betel nut and tobacco chewing was a common practice among Palauans, as 58% of men and 69% of women had the habit. In the total participants, 60% of men and 58% of women reported current use of any kind of tobacco products, including smoking and chewing. Infrequent fruit intake, namely one day or less per week, occurred in 44% of men and 32% of women. As for infrequent vegetable intake (≤1 day/week), it was observed in 15% and 9% of men and women, respectively.

Most of Palauan males (84%) and females (86%) were overweight or obese (BMI ≥ 25

120	kg/m^2), with the mean BMI being 30.8 kg/m^2 and 31.3 kg/m^2 in males and females,
121	respectively. Filipino residents also had a high prevalence of overweight or obesity, i.e. 52%
122	in males and 40% in females, and the mean BMI was 25.4 kg/m² in males and 24.5 kg/m² in
123	females. As for percentage of obesity alone (BMI \geq 30 kg/m ²), it is much higher among
124	Palauan residents (51% in males and 55% in females) than that among Filipinos (9% in males
125	and 10% in females).
126	Approximately 8% of males and 14% of females among the total adult subjects reported
127	that they had taken antihypertensive medication during the past two weeks. Including those
128	who were on medication, more than half of Palauan males (60%) and females (54%) were
129	considered hypertensive, followed by 46% of males and 34% of females in the Filipino
130	population. Moreover, 20% of the total participants were stage 2 hypertensive (≥ 160/100
131	mmHg).
132	About one out of five participants in this survey were regarded as diabetic. The prevalence
133	is higher in the older age group, e.g. 29% of males and 35% of females were diabetic among
134	the oldest age group of 55-64 years.
135	Borderline-high or high levels of triglycerides were found in 48% of men and 41% of
136	women in the total subjects, whereas borderline-high or high levels of total cholesterol
137	including those on medication were observed among 16% of men and 20% of women.

DISCUSSION

http://mc.manuscriptcentral.com/je

country, FSM, has the same tradition of betel nut chewing, the percentage of smokeless

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

tobacco users was significantly lower in comparison to Palau, namely 22% in men and 3% in women. As regards the gender difference in betel nut and tobacco chewing, Cambodia is the other country in the WHO Western Pacific Region which reported women had a significantly higher prevalence than men. 12 Three reasons for the use of chewing tobacco and betel nut among Cambodian women were suggested in a previous study: (1) as an addictive stimulant, (2) as part of a female rite of passage into adulthood and reproductive age, and (3) as a remedy to relieve pregnancy-related symptoms.¹³ However, the reasons for the high prevalence of chewing betel nut with tobacco among Palauan women are still not clear. Further studies might be designed to gain insight into the social context. Based on the findings in this survey, the Palauan government may have to develop gender- and ethnic-specific tobacco control measures for the population. Obesity is a common major challenge of public health in the Pacific region. More than half of adult population in each of the Pacific island countries are observed to be overweight or obese (BMI ≥ 25 kg/m²), with the exception of Papua New Guinea. ¹⁴ Likewise, about three in four participants were considered as overweight or obesity in this survey. With regard to the difference by ethnic background, more than half of Palauan adults were obese (BMI ≥ 30 kg/m²), whereas the proportions of obesity in both Filipino men and women were less than 10%. Most of the Filipinos living in Palau are migrant workers engaged in physical labors and having lower income levels than Palauans. (see Table 2). Considering the socio-economic

background, lower prevalence of obesity among Filipinos than among Palauans might be attributable to the differences in dietary habits, physical activities, working conditions, etc. In comparison with the data reported from the Palau Health Survey in 1991, the mean BMI of adults aged 35-64 years had increased from roughly 27.6 to 29.6 kg/m² for men and 29.6 to 30.1 kg/m² for women over the past two decades. Dietary patterns and lifestyle changes with the economic growth in Palau might explain the increased BMI. Subsequent analyses or further studies are required to investigate the factors contributing to overweight or obesity in the population.

This survey revealed an alarmingly high prevalence of hypertension in Palau, of which more than half of the adults had a raised blood pressure, particularly among ethnic Palauans. Even the youngest age group (25-34 years) demonstrated a high percentage of hypertension

more than half of the adults had a raised blood pressure, particularly among ethnic Palauans. Even the youngest age group (25-34 years) demonstrated a high percentage of hypertension (36% in men and 25% in women). However, the proportion of participants who were on antihypertensive medication was relatively low (8% in men and 14% in women). As hypertension rarely causes symptoms in the early stages, those who have undiagnosed hypertension or ignore self-management of blood pressure should be targeted first in NCD control policies. Among published data of WHO STEPS surveys for Pacific island countries and territories, Palau has the highest prevalence of hypertension in both sexes (55% in men and 49% in women), even though the prevalence of obesity is not noticeably high compared to the others. Factors might contribute to this result, such as salt intakes, need to be