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anti-dystrophin (NCL-DYSI1, 1:10, and NCL-DYS2, 1:50,
Novocastra), anti-spectrin (MAB1622, Clone AA6, 1:200,
Millipore, Schwalbach, Germany), anti-a-sarcoglycan (NCL-
a-SARC, 1:50, Novocastra) and anti-B-dystroglycan (NCL-
b-DG, 1:10, Novocastra). The isotype-specific secondary
antibodies were anti-mouse IgG (H+L) coupled to Alexa
Fluor 488 (A11029, 1:300, Invitrogen) and anti-mouse IgG
coupled to TRITC (R0270, 1:300, Dako, Glostrup, Denmark).
Utrophin immunohistochemistry was performed on sections of
formalin-fixed and paraffin-embedded samples of the biceps
femoris muscle of each two 2-day-old and 3-month-old DMD
pigs and age-matched WT controls, using a polyclonal rabbit
anti-utrophin antibody (sc15377, 1:100, Santa Cruz Inc., USA)
according to the standard avidin—biotin peroxidase complex
method (secondary antibody: biotinylated goat anti-rabbit
immunoglobulins, E0432, Dako). Diaminobenzidine was used
as the final chromogen and haemalum as nuclear counterstain.
For negative controls, slides were incubated with an irrelevant
primary antibody (polyclonal rabbit anti-Escherichia coli,
B0357, Dako) instead of the anti-utrophin antibody.

Morphometric analyses

Morphometric analyses were performed on H& E-stained plastic
(GMA/MMA) cross-sections of the left and right biceps femoris
muscle of three 2-day-old and five 3-month-old DMD pigs, and
of corresponding age-matched control pigs (n =3 and 3, re-
spectively). For quantification of muscle fibre sizes, at least 12
locations per case were taken by systematic random sampling
in the sections at x 250 magnification, and superimposed with
an unbiased counting frame (58). The minimal Feret’s diameters
of all muscle fibre cross-section profiles (n =697 + 166)
sampled with the unbiased counting frames were measured
(59), using a Videoplan image analysis system (Zeiss-Kontron,
Munich, Germany). To display the distribution of fibre dia-
meters, the percentage deviation of each single measured
muscle fibre diameter from the mean diameter of all muscle
fibres was calculated separately for each investigated case. The
respective single values were categorized into 23 classes of
10% deviation of the mean fibre diameter. The number of
single values per class was counted, and their respective propor-
tion (%) of the total number of evaluated fibre diameters was cal-
culated. The volume density of muscle fibres in the biceps
femoris muscle was determined by point counting (60) (294 +
0.6 points per case) in six systematically randomly sampled loca-
tions at x 250 magnification, using an automated stereology
system (VIS-Visiopharm Integrator System® Version 3.4.1.0
with newCAST® software, Visiopharm A/S, Hersholm,
Denmark). In the same locations, the proportion of muscle
fibre cross-section profiles displaying at least one internalized
centrally located nuclear section profile was determined, using
an unbiased counting frame. Per case, 723 + 250 muscle fibre
cross-section profiles were evaluated.

Data analysis

Data are presented as means + standard deviations. Unpaired
two-sided #-tests were used for statistical analysis, assuming
equal variances for the parameter body weight, and unequal var-
iances for morphometric muscle parameters. The correlation

between birth weight and life expectancy was evaluated using
GraphPad Prism. P-values of <0.05 were considered statistical-
ly significant.
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Abstract
To elucidate the underlying mechanisms of adult common diseases based on chronic inflammation including metabolic and
thrombotic disease, it is vital to examine the multi-cellular kinetics in living animals. Therefore, we developed in vivo imaging
technique based on single- and multi-photon microscopy, and we assessed dynamic immune and inflammatory cellular interplay
in diseased conditions. The power of our imaging technique to analyze complex cellular interplays in inflammatory discases,
especially parenchymal and stromal cell cross talks was eclucidated. It enabled us to evaluate new therapeutic interventions against
adult common diseases.
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Introduction

In recent years, dramatic progress has been made in research
into the application of induced pluripotent stem (iPS) cells for
the treatment of both intractable genetic diseases and acquired
disorders such as myocardial infarction [1], macular degener-
ation [2,3] and spinal injury [4]. However, before iPS cells can
be used for clinical therapies, extensive animal experiments are
necessary to elucidate therapeutic mechanisms and to evaluate
the efficacy and safety of potential treatments. Although a range
of experimental animal models is available, it is preferable that
such investigations are conducted on those with anatomical and
physiological similarities to humans. For this reason, pigs are

PLOS ONE | www.plosone.org

often chosen for use in translational research because they
possess the closest similarity to humans among non-primate
animal models [5,6], and consequently, the results of research
on porcine iPS cell therapy [7,8] can be more easily
extrapolated to humans.

Recent investigations have been heading for establishment of
human iPS cell with naive state characteristics [9-11]. Similarly,
development of the naive type porcine iPS cells [12] has become
an important challenge in translational research using pigs, since
the pioneering works on porcine iPS cells [7,12-16]. Thus, the
pluripotency of porcine iPS cells need to be evaluated by a reliable
means. Authentic pluripotency of the 1PS cells can be proven by
their competence to contribute to chimera formation. To date,
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however, the ability of porcine iPS cells to form chimeras is still
very limited. In general, the methods used to judge whether
established pluripotent cells possess the ability to form chimeras
evaluate the success of incorporation of sample cells (donor cells)
into developing host embryos and their contribution to the fetus or
offspring. This is a lengthy and involved test procedure and has
stimulated a search for more simple and efficient methods for
proving pluripotency.

The incorporation of donor cells into a host embryo can be
achieved either by injecting donor cells directly into the
blastocoele of a host blastocyst [17] or by an aggregation method
in which donor cells are co-cultured with the host embryo [18,19].
Although the former method has been used successfully to show
the ability of donor cells to form chimeras [12,15,20-26], the
method requires a high skill level and expensive equipments. In
contrast, the aggregation method offers a simple approach to
generating chimeric embryos [27].

There have been a number of advances in pig reproductive
technologies in recent years, including in vifro oocyte maturation,
parthenogenetic oocyte activation, and i vitro embryo culture [28—
30]. These developments have made it possible to culture
parthenogenetic embryos to the somite stage [31-33]. Conse-
quently, it is now feasible to use a parthenogenetic embryo as the
host for the evaluation of the ability of pluripotent cells to form
chimeric fetuses. The use of parthenogenetic embryos derived
from in vitro-matured (IVM) oocytes offers the additional advan-
tage of saving labor and costs compared to the use of i viwo-
derived embryos.

In the present study, we demonstrate that the aggregation
method can be used with parthenogenetic porcine embryos
derived from IVM oocytes to efficiently generate chimeric
embryos and fetuses with pluripotent cells. This system provides
a simple and reliable means for evaluating the pluripotency of
established iPS cell lines through comparison of their abilities to
form chimeric embryos.

Methods

Animal Care

The pigs used in the present study were maintained in
a semiwindowless facility with a controlled temperature (15—
30°C) and received a standard pig diet twice a day and water ad
Lbitum. All of the animal experiments in the present study were
approved by the Institutional Animal Care and Use Committee of
Meiji University JACUC-11-1).

Chemicals
Chemicals were purchased from the Sigma Chemical Co. (St.
Louis, MO, USA), unless otherwise indicated.

In vitro Oocyte Maturation

IVM oocytes were prepared as described elsewhere [34]. Pig
ovaries were collected at a local abattoir and transported to the
laboratory in Dulbecco’s phosphate-buffered saline (DPBS; Nissui
Pharmaceutical Co., Ltd., Tokyo, Japan) containing 75 pg/ml
potassium penicillin G, 50 pg/ml streptomycin sulfate, 2.5 ug/ml
amphotericin B and 0.1% (w/v) polyvinyl alcohol (PVA).
Cumulus-oocyte complexes (COCs) were collected by aspiration
from ovarian antral follicles that had a diameter of 3.0~6.0 mm.
COCs with at least three layers of compacted cumulus cells were
selected and culture in NCSU23 medium [35] supplemented with
0.6 mM cysteine, 10 ng/ml epidermal growth factor, 10% (v/v)
porcine follicular fluid, 75 pg/ml potassium penicillin G, 50 g/
ml streptomycin sulfate, 10 TU/ml eCG (ASKA Pharmaceutical
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Co., Ltd., Tokyo, Japan) and 10 IU/ml hCG (ASKA Pharma-
ceutical). The COCs were cultured for 22 hr with eCG and hCG
in a humidified atmosphere of 5% COj and 95% air at 38.5°C.
The COGs were then cultured for 22 hr without eCG and hCG in
an atmosphere of 5% CO,y, 5% Oy and 90% N, [36]. IVM
oocytes with expanded cummulus cells were treated with 1 mg/ml
hyaluronidase dissolved in Tyrode’s lactose medium containing
10 mM Hepes and 0.3% (w/v) polyvinylpyrrolidone (Hepes-TL-
PVP) and were separated from the cumulus cells by gentle
pipetting. Oocytes with an evenly granulated ooplasm and an
extruded first polar body were selected for subsequent experi-
ments.

Parthenogenetic Activation of Oocytes

Parthenogenetic embryos developed from IVM oocytes were
used as host embryos in all the experiments. Parthenogenesis of
oocytes was induced by electric activation as reported previously
[34]. The oocytes were washed twice in an activation solution
composed of 280 mM mannitol (Nacalai Tesque, Inc., Kyoto,
Japan), 0.05 mM CaCly, 0.1 mM MgSO, and 0.01% (w/v) PVA.
They were then aligned between two wire electrodes (1.0 mm
apart) in a drop of the activation solution on a fusion chamber
slide (CUY500G1, Nepa Gene, Chiba, Japan). A single direct
current pulse of 150 V/mm was applied for 100 pgsec using an
electrical pulsing machine (LF201; Nepa Gene). Activated oocytes
were treated with 5 pg/ml cytochalasin B for 3 hr to suppress
extrusion of the second polar body.

In vitro Fertilization of Oocytes

Donor embryos for producing chimeric fetuses were prepared
by in witro fertilization of oocytes using frozen sperm of a transgenic
boar carrying humanized Kusabira-Orange (huKO) gene. In vitro
fertilization was carried out as described elsewhere [37]. Briefly,
frozen epididymal sperm [38] recovered from a straw were
suspended in 5 ml DPBS supplemented with 0.1% BSA (306—
1138, Wako Pure Chemical industries, Ltd., Osaka, Japan) and
washed three times by centrifugation at 1,000 xg for 4 min. After
washing, the sperm pellets were resuspended in porcine fertiliza-
tion medium (PFM) [39] (Research Institute for the Functional
Peptides, Yamagata, Japan) at a concentration of 1x107 cells/ml.
For insemination, 20 COCs that had been matured i vitro were
placed in a 100-pl drop of PFM containing spermatozoa
(1.75%10° cells/ml); the oocytes and sperm were incubated for
8 hr at 38.5°C in a humidified atmosphere containing 5% COs,
5% Og, and 90% N,. After insemination, the eggs were transferred
to Hepes-TL-PVP; cumulus cells and excess sperm were removed
by gentle pipetting. Eggs that showed release of polar bodies with
normal cytoplasmic morphology were selected for use in later
experiments.

In vitro Culture of Embryos

In witro culture of the parthenogenetic and in vitro-fertilized (IVF)
embryos was performed in droplets of porcine zygote mediume-5
(PZM-5) (Research Institute for Functional Peptides) under
paraffin oil (32033-00, Kanto Chemical Co., Inc., Tokyo, Japan)
in plastic 35-mm dish maintained in a humidified atmosphere of
5% O and 90% Ny at 38.5°C. The culture media were
supplemented with 10% (v/v) fetal calf serum for culturing
embryos at the morula stage or later.

Isolation of Donor ICMs from Blastocysts

Donor ICMs were isolated from the parthenogenetic and IVF
blastocysts by immunosurgery as described previously [22].
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Briefly, day-6 blastocysts were incubated at 38.5°C for 15 min
with heat-inactivated rabbit anti-pig spleen cell serum (BioTools
Inc., Gunma, Japan) diluted 1:8 with 21 mM Hepes-buffered
Minimal Essential Medium with Earle salts, L-glutamine and
nonessential amino acids (Gibco-Invitrogen, Carlsbad, CA, USA)
supplemented with 5 mg/ml BSA (MEM-Hepes). Embryos were
then incubated with guinea pig complement serum, diluted 1:8
with MEM-Hepes at 38.5°C for 10~15 min. Swollen trophecto-
dermal cells were dissociated by vigorous pipetting (inner
diameter, 100 um). The ICM was washed thoroughly with
MEM-Hepes. ‘

Isolation of Donor Blastomeres from Parthenogenetic
Embryos

Blastomeres isolated from parthenogentic embryos were also
used as donor cells to produce chimeric blastocysts. The
parthenogenetic embryos at the 4-8 cell (day 3) or morula (day
4) stage were decompacted by incubation in Ca®*'/Mg®*-free
DPBS containing 0.1 mM EDTA-2Na and 0.01% (w/v) PVA for
15-20 min, followed by removal of the zona pellucidae by
digesting with 0.25% (w/v) pronase (in DPBS). Blastomeres were
isolated from the zona removed embryos by gentle pipetting with
a finely drawn glass capillary.

Staining of Donor Cells for in vitro Tracing

Donor-ICMs and donor-blastomeres isolated from parthenoge-
netic embryos were labeled with fluorescent carbocyanine dye
(Dil) (Takara Bio, Inc., Shiga, Japan) for tracing during the
formation of chimeric blastocysts i vitro. Staining of the cells was
performed according to the manufacturer’s protocol. ICMs and
blastomeres were placed in MEM-Hepes containing 1% (v/v) Dil
for 30 min, after which excess Dil was washed out by immersing
the cells twice in MEM-Hepes for 10 min each time.

Preparation of Chimeric Embryos

Aggregation of donor cells and host embryos was carried out
using the micro-well method [40]. A cluster of 9 to 12
depressions (400 um in diameter, 300 um in depth) was made
on the bottom of a culture dish (Iwaki 1000-35, Asaht Techno
Glass, Tokyo, Japan) using an aggregation needle (BLS, Ltd,,
Budapest, Hungary) (Figure 1). The cluster of micro-wells was
overlaid with a microdrop (30 pl) of PZM-5 and covered with
paraffin oil.

Blastomeres of the host embryos were isolated from partheno-
genetic morulae (day 4) and 4-8 cell stage embryos (day 3) by the
same way for the donor cells as described above.

We first examined the i vitro development of chimeric embryos
composed of the donor ICM and host blastomeres (Figure 1). A
donor ICM of parthenogenetic blastocysts was placed in each
micro-well with blastomeres isolated from two host embryos
(Figure 2A, D).

As a control experiment, some of the ICMs were injected
into host morulae. Isolated ICMs were inserted into the center
portion of the host morulae (Figure 2G) using a beveled
injection pipette by micromanipulation with a micromanipulator
(MO-102, Narishige, Tokyo, Japan) and injectors (IM-6,
Narishige).

In vitro development of chimeric embryos was also analyzed
using donor blastomeres instead of donor ICMs (Figure 3).
Blastomeres isolated from a parthenogenetic donor embryo at
the morula or 4-8 cell stage were aggregated with the host
blastomeres of an embryo at the synchronous or asynchronous
stage.
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Evaluation of Chimeric Blastocysts by Confocal

Fluorescence Microscopy

Embryos produced by the aggregation method and those
produced by ICM-injection were cultured for 48 to 72 hr to
examine their ability to form chimeric blastocysts. Day-6
blastocysts were observed by confocal microscopy to determine
contribution of the donor cells into the ICM. Blastocysts showing
fluorescent signals in the ICM were judged to be chimeric. Images
of blastocysts placed in a drop of DPBS containing 5 pg/ml
Hoechst 33342 in the 35-mm glass-bottom dish (Iwaki 3910-035,
Asahi Techno Glass) were taken by a confocal fluorescence
microscope (FV-1000, Olympus, Tokyo, Japan) with 10-um
optical sections.

Generation of Chimeric Fetuses

To test whether the blastocysts generated by the aggregation
method can give rise to chimeric fetuses, embryo transfer
experiments were conducted (Figure 1). Donor ICMs derived
from IVF blastocysts were aggregated with host blastomeres
isolated from two parthenogenetic embryos at the morula or 4-8
cell stage. Aggregated embryos were cultured for 1 to 2 days, and
blastocysts obtained were transferred to recipient gilts. Pregnant
recipients were laparotomized to recover somite stage fetuses at
day 18 of gestation.

Blastocysts (day 5 and 6) obtained by aggregation of two
parthenogenetic morulae without donor ICMs were also trans-
ferred to a recipient to verify the developmental ability of the host
embryos.

Crossbred (Large White/Landrace x Duroc) prepubertal gilts,
weighing between 100 and 105 kg, were used as the recipients of
the chimeric blastocysts. The gilts were given a single intramus-
cular (i.m.) injection of 1,000 IU eCG (ASKA Pharmaceutical) to
induce estrus. Ovulation was induced by an im. injection of
1,500 IU hCG (Kyoritsu Seiyaku Corporation, Tokyo, Japan),
which was given 66 hr after the injection of eCG. The blastocysts
were surgically transferred into the uterine horns of the recipients
approximately 146 hr after hCG injection.

Evaluation of Chimerism in the Fetuses

The recipient gilts were autopsied on day 18 of gestation to
collect somite stage fetuses. Fetuses showing the huKO-fluores-
cence in fluorescence microscopy (MVXI10, Olympus) were
evaluated to be chimeric. Chimerism was verified by PCR
amplifying the sequences of huKO transgene in the genomic
DNA extracted from the fetuses using DNeasy Blood and Tissue
Kit (QIAGEN, Inc., Hilden, Germany).

Fetuses were also analyzed by genotyping to detect female/male
chimerism. In the present study, chimeric embryos were composed of
parthenogenetic host embryos; hence, the sex chromosome compo-
sition of those embryos was XX. However, half of the donor ICMs
obtained from the IVF blastocysts theoretically had X'Y-chromosome
composition. Therefore, detection of Y chromosome-specific
sequences [40] in the fetuses’ genomic DNA was used to determine
the chimerism. Nested PCR for detection of huKO transgene was
performed using following primers: 5'- AGCACGAAGTCTGGA-

GACCTCTG-3" and 5- AGGTGGTCTTGAACTGG-
CACTTGTG-3' for the first round of PCR; 5'- ACCTTACA-
CAGTCCTGCAGACC-3' and 5'-

GCCAGCTTCAGGAACATGGT-3" for the second round of
PCR. The cycle conditions of both PCR were 95°C for | min,
followed by 95°C for 30 sec, 68°C for 30 sec, and 72°C for 1 minper
cycle for 25 cycles. The primers used to amplify the porcine male-
specific sequences for sex determination were 5'- AAGTGGT-
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Figure 1. Generalized scheme for the production of chimeric porcine blastocysts and fetuses by the aggregation method. For in vitro
analysis of the chimeric blastocyst formation, donor ICMs were isolated from parthenogenetic blastocysts derived from IVM oocytes. Isolated ICMs
stained with Dil were aggregated with blastomeres isolated from parthenogenetic host embryos in a microwell made on the bottom of a culture dish.
For in vivo analysis of chimeric fetus formation, the donor ICMs were isolated from blastocysts fertilized in vitro by transgenic boar sperm carrying the
fluorescent huKO gene. ICMs of the IVF blastocysts were similarly aggregated with the parthenogenetic host embryos as the Dil-stained ICMs, and the
resultant blastocysts were transferred to recipient pigs to obtain chimeric fetuses.

doi:10.1371/journal.pone.0061900.g001

CAGCGTGTCCATA-3’ and 5'-
TTTCTCCTGTATCCTCCTGC-3" [40]. The cycle conditions
were 95°C for | min, followed by 95°C for 30 sec,58°Cifor5 sec,and
72°C for 20 sec per cycle for 25 cycles.

To quantify chimerism of the fetuses, sagittal sections of the
huKO-positive fetuses were analyzed after immunostaining with
polyclonal antibody against huKO (MBL Co., Ltd., Nagoya,
Japan). The chimeric fetuses with fluorescence were fixed with 4%
(w/v) paraformaldehyde, embedded in paraffin blocks and thin-
sectioned. Paraffin-embedded sections were deparaffinized with
xylene and hydrated with graded ethanols. Each section was
incubated with anti-huKO antibody (1:100) for 0.5 hr at room
temperature. Distribution of huKO expressing cells in each section
was determined by peroxidase staining using Histofine® kit
(Nichirei Biosciences, Inc., Tokyo, Japan) with haematoxylin
counterstaining. Proportion of the huKO-positive cells in the
sections covering entire body of the fetuses was measured by image
analysis software (Image], http://rsb.info.nih.gov/ij/).

Statistics Analysis

Statistical analyses were performed using the SPSS 16.0
software (SPSS, Inc., Chicago, IL, USA). Differences between
two groups were analyzed using the x*-test. For comparisons
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among three groups or more, the data were subjected to arcsine
transformation and evaluated by one-way analysis of variance
(ANOVA) followed by multiple comparisons by Tukey’s test. The
level of significance was set at P<<0.05.

Results and Discussion

Aggregation of Donor ICMs and Parthenogenetic
Blastomeres to Produce Chimeric Blastocysts

Our first step was to address the question of whether chimeric
blastocysts could be produced efficiently i vitro using ICMs as the
donor cells for aggregation with parthenogenetic embryos. At the
same time, we sought to determine whether the developmental
stage of the host embryos influenced the production rate of
chimeras (Figure 1).

Intact ICMs isolated from parthenogenetic blastocysts by
immunosurgery [22] were used as the donor cells. Each ICM
was first stained with Dil and then placed into a microwell [41]
with blastomeres disaggregated from two parthenogenetic morulae
(Figure 2A). After culture, 95.8% (23/24) of the aggregates
developed to form single blastocysts (Figure 2B, Table 1).
Fluorescent Dil signals derived from the donor ICMs were
observed in 20 of the 23 blastocysts (87.0% or 83.3% of the
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Figure 2. Production of chimeric blastocysts with donor ICM and parthenogenetic host embryos. (A, D) A donor ICM (stained with Dil)
aggregated with host blastomeres isolated from parthenogenetic embryos at the morula (A) or 4-8 cell stage (D). (B, E) Bright field images of chimeric
blastocysts developed from the aggregated embryos. (C, F) Confocal fluorescence images of chimeric blastocysts showing Dil fluorescence in ICMs.
Single confocal sections of fluorescence were overlaid on the bright field images. (G-I) Parthenogenetic host morulae injected with Dil-stained donor
ICM (G) and resultant chimeric blastocysts (H, 1). Arrow heads, ICM. Scale bars =50 pum.

doi:10.1371/journal.pone.0061900.g002

embryos cultured) (Figure 2C). Thus, a high rate of formation of
chimeric blastocysts was achieved, which was similar to the
outcome obtained when donor ICMs were injected into parthe-
nogenetic morulae (Figure 2G—1I, Table 1).

We also carried out an aggregation experiment using Dil-
stained ICMs and 4-8 cell-stage parthenogenetic embryos
(Figure 2D). Blastocysts were formed in 88.5% (23/26) of the
aggregates (Figure 2E), and 65.4% (17/26) were chimeric
(Figure 2F). The rates of blastocyst and chimera formation were
not significantly different from those obtained using morulae.

With these results, we have demonstrated that the efficient
production of chimeric blastocysts can be achieved by an
aggregation method using donor ICMs and host parthenogenetic
embryos. The developmental stage of the host embryo does not
appear to be a limiting factor, as equally efficient chimera
production occurred with 4-8 cell-stage embryos (day 3), which
are more distant in developmental stage from the donor ICMs
(day 6), compared to morula stage embryos (day 4). We believe
that the ability of the aggregation method to use a wider range of
host embryonic stages has practical significance.

PLOS ONE | www.plosone.org

We also confirmed that the efficiency of chimeric blastocyst
production by the aggregation method using donor ICMs and host
blastomeres was similar to that using aggregation of host and
donor blastomeres (Table 1). The formation rates of chimeric
blastocysts using ICMs (Figure 2A—-C) or morula-blastomeres
(Figure 3A-C) as the donor cells with morula stage host embryos
were 83.3% (20/24) and 70.6% (24/34), respectively (not
significantly different). Similarly, when 4-8 cell-stage embryos
were used as the host, donor ICMs (Figure 2D-F) produced 65.4%
(17/26) chimeric blastocysts compared to 58.7% (27/46) using
synchronous (4-8 cell stage, Figure 3D-F) donor blastomeres and
65.4% (17/26) using asynchronous (morula stage, Figure 3G-I)
donor blastomeres (not significantly different in either case).

In the present study, the donor ICMs were not disaggregated
into single cells, but this did not appear to inhibit their
incorporation by the host embryos. This suggests that iPS cells
that form cellular colonies during development should also be able
to aggregate with host blastomeres. However, in porcine iPS
colonies with naive type morphological characteristics, we found
partially differentiated cell fractions in which Oct3/4 promoters are
highly methylated [12]. We also recently found that porcine iPS
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Figure 3. Production of chimeric blastocysts by blastomere aggregation. (A, D, G) Aggregation of donor (Dil-stained) and host blastomeres
between synchronous (A, D) and asynchronous (G) embryonic stages. (B, E, H) Chimeric blastocysts developed from the aggregated blastomeres. (C,
F, 1) Confocal fluorescence images of the chimeric blastocysts showing Dil fluorescence in ICMs. Single confocal sections of fluorescence were overlaid

on the bright field images. Arrow heads, ICM. Scale bars=50 pum.
doi:10.1371/journal.pone.0061900.g003

colonies with epistem cell (primed)-like characters show a reduced
rate of chimeric blastocyst formation after aggregation with
blastomeres (unpublished). Furthermore, Tachibana et al. reported
that monkey blastocysts did not readily aggregate with trans-

planted ICM:s to form chimeric embryos [42]. They identified two
types of cells within monkey ICMs: a cluster of NANOG-positive
epiblast cells and a covering layer of GATA-6-positive primitive
endoderm cells. They suggested that cellular segregation in the

Table 1. In vitro development of the chimeric embryos produced by injection or aggregation method.

Donor cells Method Stage of host embryos No. of embryos cultured Blastocysts (%) Chimeric blastocysts (%)
@] Injection Mourla 29 27 (93.1) 24 (82.8)
ICM Aggregation Morula** 24 23 (95.8) 20 (83.3)
Ic™M 4-8 cell** 26 23 (88.5) 17 (65.4)
Morula* Morula* 34 314(91.2) 24 (70.6)
Morula* 4-8 cell* 26 23 (88.5) 17 (65.4)
4-8 cell* 4-8 cell* 46 37 (80.4) 27 (58.7)

*Blastomeres isolated from single embryos.
**Blastomeres isolated from two embryos.
doi:10.1371/journal.pone.0061900.t001
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ICMs of monkey blastocysts might diminish their ability to
incorporate foreign cells and to develop into chimeric embryos.
These findings indicate that further studies on the influence of the
simultaneous presence of both partially differentiated and un-
differentiated pluripotent cells in an iPS colony are necessary for
investigating any possible effects on the ability to aggregate
efficiently with host blastomeres. to form chimeras.

In the present study, we routinely cultured donor ICMs with
two parthenogenetic embryos. This protocol was adopted because
use of a single morula resulted in a relatively. low rate of
production of chimeric blastocysts (Table 1); in many cultures, the
ICM was not incorporated by the host blastomeres (data not
shown). By contrast, aggregates in which the ICM was sandwiched
by blastomeres from two embryos increased both the rate of
blastocyst formation and the frequency of chimerism. It has been
proposed previously that blastomeres located inside the morula
form the ICM, while those located on the outside differentiate into
trophectoderm (the “inside-outside” theory [43]). We suggest that
sandwiching the donor ICM between blastomeres from two
embryos is the cause of the high frequency of ICM chimerism.

As parthenogenetic’ embryos  can be obtained easily by
activating IVM oocytes, there is no increased  difficulty  in

conducting the experiment using two host embryos per aggrega-

tion: An additional benefit is that the blastocysts generated from
the blastomeres of two host embryos seem to have a high ability to
develop into fetuses. because of their higher cell numbers.
However, the ratio of donor cells to host blastomeres may
influence the rate of aggregates developing into - chimeric
blastocysts as well as the contribution of the donor cells to
chimeric fetuses [44,45]. Further investigation is required to
determine the optimal conditions for efficient production of
chimeric blastocysts and chimeric fetuses.

Generation of Chimeric Fetuses

We carried out a transfer experiment using chimeric blastocysts
to determine the contribution of donor ICM cells to chimeric fetus
formation (Figure 1). In this experiment, ICMs isolated from
transgenic blastocysts carrying the huKO gene were aggregated
with blastomeres of parthenogenetic morulae or 4-8 cell-stage
embryos. We produced 102 and 67 aggregated embryos using host
embryos at the morula and 4-8 cell stages, respectively (Table 2).
In total, 73 (71.6%) and 54 (80.6%) blastocysts (Figure 4A, B),
respectively, developed to blastocysts and were transferred into 2
recipient gilts; all gilts were successfully impregnated.

On day 18 of gestation, the gilts were subjected to laparotomy.
In total, 25 (34.2%) fetuses were recovered from the “morula”
group, while 22 (40.7%) were recovered from the “4-8 cell-stage
embryo” group; the difference in the developmental rate between
the groups was not significant (Table 2). A PCR analysis to detect
the huKO transgene showed that 6/25 (24.0%) and 3/22 (13.6%)
fetuses were chimeric (Table 2). All the PCR-positive fetuses were
fluorescent due to expression of huKO, although the intensity of
fluorescence varied among the fetuses indicating the presence of
variation in the proportion of donor ICM derived cells among the
chimeric fetuses (Figure 4). An immunostaining analysis of
6 huKO-positive fetuses showed that the proportion of donor
cells in the chimeras ranged from 16 to 65% (Figure 4E, H, K).
The donor cells were distributed throughout the whole body of the
fetuses with no indication of any localization of huKO cells to
specific organs or tissues (data not shown).

When 20 of the blastocysts developed from aggregates of two
parthenogenetic morulae were transferred to a recipient, 5 (25.0%)
developed to somite-stage fetuses (day 22, Figure 40-Q),
suggesting that developmental competence of the parthenogenetic
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host embryos were not compromised by aggregation with the
donor ICMs.

The donor ICMs in this study were obtained from huKO-
transgenic blastocysts produced by in vitro fertilization using semen
of a huKO-transgenic boar that carried a single copy of the huKO
gene integrated into a single chromosomal site [38]. Therefore,
only half of the blastocysts obtained using the semen of this boar
will be transgenic [37]. When ICMs were isolated from the
blastocysts; we did not carry out any check on whether they
showed huKO expression to avoid damage to the embryos by
fluorescence microscopy. Thus, non-transgenic ICMs had been
used as donor cells. A second factor to be considered is that half of
the non-transgenic donor ICMs will be male whereas the
parthenogenetic host embryos are all female. Hence, if male cells
are detected in the fetuses, this is evidence of chimerism.
Therefore, we screened the non-fluorescent fetuses for porcine
male specific DNA sequence [40]; this analysis identified 3 fetuses
in the morula group that were chimeras. Overall, therefore, we
identified 9/25 chimeric fetuses in the morula group (36.0%,
Table 2). No male-specific signals were detected in the huKO
negative fetuses in the 4-8 cell embryo group.

The analyses described above identified chimeras based on the
presence of the huKO transgene or male cells; however, other
chimeras may also exist. For example, chimeras formed by the
combination of a female non-fluorescent ICM and a parthenoge-
netic host embryo (female) would not be detectable in the present
analyses. Therefore, we believe that the rate of chimeric fetuses
might be greater than the detected frequency, that is, 36.0% in the
morula group and 13.6% in the 4-8 cell-stage embryo group
(Table 2). Regardless, we have shown here that our approach
ensures that at least one fetus out of every 10 fetuses generated will
be a chimera. As it is a relatively simple matter to obtain more
than 10 parthenogenetic fetuses from a recipient female [32], we
anticipate that one to several chimeric fetuses will be generated in
a litter of fetuses when pluripotent donor cells are used. Therefore,
we propose that the aggregation method using parthenogenetic
host embryos is a practical approach to the evaluation of the
pluripotency of iPS cells.

The aggregation method using host parthenogenetic embryos is
straightforward; however, parthenogenetic embryos are expected
to be restricted in their developmental capacity to the somite stage
and are not expected to produce liveborn young [31,32,46]. In the
present study, we sought to establish a method for evaluating the
comparative ability of donor cells to contribute to chimeric fetuses
and were not interested in the production of chimeric offspring.
However, even somite stage fetuses can be valuable for tracking
the differentiation of endoderm, mesoderm, and ectoderm tissues
[33]. Gonadal specification can also be examined. When chimeric
fetuses after the somite stage or liveborn offspring are required, it
will be necessary to use IVF embryos or in vive-derived embryos to
provide the host cells for the aggregation method.

Conclusion

We have demonstrated that chimeric fetuses can be produced in
a highly reproducible manner by aggregation of host partheno-
genetic embryos at the morula or 4-8 cell stages with donor ICM
cells. To the best of our knowledge, this is the first demonstration
that aggregation with parthenogenetic blastomeres is an effective
means of determining pluripotency in porcine cells. The method
provides a simple and highly accurate system for evaluating
whether undifferentiated cells such as iPS cells possess the chimera
formation ability characteristic of true pluripotency.
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Figure 4. Chimeric fetuses produced by aggregation of the ICM carrying huKO transgene and parthenogenetic host embryos. (A, B)
Morphological appearance of the chimeric blastocysts before embryo transfer. (C-K) Chimeric fetuses (day 18) showing huKO fluorescence derived
from the donor ICM cells (C, D, F, G, |, J) and immunohistochemical images showing proportion of the donor-derived (huKO-positive) cells in the
tissue of chimeric fetuses (E, H, K). (L, M, N) A day-19 fetus developed from an embryo fertilized in vitro with the huKO transgenic boar sperm as
a positive control, showing the systemic expression of huKO (M, N). (O, P, Q) A non-chimeric fetus (day 22) developed from the aggregates of two
parthenogenetic embryos as a negative control.

doi:10.1371/journal.pone.0061900.g004
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Table 2. Development of the aggregated embryos into chimeric fetuses.

doi:10.1371/journal.pone.0061900.t002
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