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Fig. 6. p38is a direct target of miR-17/106 and is responsible for the NSPC
competence transition. (A) Treatment of p2 neurospheres in the growth
phase with SB203580 increased the percentage of neurons that differenti-
ated from the neurospheres (n = 3). (Scale bar, 50 pm.) (B) p38-specific ShRNA
introduced by lentiviral infection increased the neuropotency of p2 neuro-
spheres (n = 3). (Scale bar, 50 pm.) (C) Simultaneous OE of miR-17 and miR-
17/106-resistant p38 mMRNA (tagged with 3x HA) eliminated the neuronal
phenotype of miR-17 OE in p2 neurospheres (n = 3). Arrows indicate GFP,
HA-p38, and GFAP triple-positive astrocytes. Arrowheads indicate GFP and
plll-tubulin double-positive neurons. (Scale bar, 50 um.) (D) OE of p38 caused
abnormal early gliogenesis from p0 neurospheres in the presence of LIF and
BMP2 (n = 3). (Scale bar, 50 pm.) Results are shown as mean + SEM. NS,
P > 0.05; *P < 0.05; **P < 0.01.

Taken together, our results strongly suggest that the miR-17/
106-p38 axis is the major regulator of the neurogenic-to-
gliogenic competence transition in developing NSPCs and that
manipulation of this axis permits bidirectional control of NSPC
multipotency (SI Appendix, Fig. S6).

Discussion

The miR-17-92 cluster is associated with tumorigenesis and the
development of various organs (5-7, 23). A recent study of the
functions of the miR-17-92 cluster has shown that miR-19 and
miR-92a repress PTEN and Tbr2 (also known as Eomes), re-
spectively, and suppress the transition from radial glial cells to
intermediate progenitors (24). These two miRNAs have strong
oncogenic effects by regulating PTEN and Bim (also known as
Bcl2111) (6, 23). Therefore, they have often been the focus of
miR-17-92 cluster studies, whereas the functions of miR-17/106
in developing NSPCs have remained obscure. We identified the
miR-17/106-p38 axis as a key effector of the neurogenic-to-glio-
genic competence transitions in NSPCs, and our previous study
identified Coup-tfs as the triggers of this competence transi-
tion. We initially hypothesized that epigenetic regulation is the
most fundamental program behind the competence transition of
NSPCs for three reasons: the expression of Coup-tfs in NSPCs
peaks at the midgestation stage and then declines, this expres-
sion peak is required for acquisition of gliogenic competence and
changes in the epigenetic status of the Gfap promoter, and
epigenetic regulation of the polycomb-group complex restricts
neurogenic competence by terminating the expression of the

1608 | www.pnas.org/cgi/doi/10.1073/pnas.1315567111

proneural Neurogenin gene, which in turn regulates respon-
siveness to Wnt signals (25). However, our present results sug-
gest that these miRNAs form a distinct regulatory layer that is
essential for neurogenic competence of NSPCs independent of
the acquisition of gliogenic competence (Fig. 3). Forced miR-17
OE not only maintained but also restored neurogenic compe-
tence in stage-progressed NSPCs without changes in the meth-
ylation status of the Gfap promoter. Moreover, miR-17 loss of
function (via TuD-miR-17/106 OE) resulted in precocious glio-
genesis in p0 neurospheres, albeit with the addition of gliogenic
cytokines (Fig. 4B). These observations suggest that multilayered
systems independently govern the neurogenic/gliogenic compe-
tence of NSPCs. Identification of other pro- and antigliogenic/
neurogenic signals in developing NSPCs and subsequent in vivo
correlations with the timing of neurogenic competence termina-
tion and gliogenic competence acquisition are necessary to fur-
ther advance the understanding of these systems.

Our data also provide insight into the molecular mechanisms
underlying the multilayered regulation programs of cytogenesis
from NSPCs. The Onecut2 gene was identified as a regulator of
NSPC differentiation into early-born Isl-1-positive neurons (Fig.
2). This regulation occurred independent of miR-17/106-mediated
NSPC competence changes. These data suggest that the tempo-
rally regulated neurogenic-to-gliogenic competence transition and
neuron-subtype specification of NSPCs are not totally regulated
via a common molecular pathway. However, timing of these events
is synchronized within and across competence phases. Therefore,
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Fig. 7. p38 regulates the acquisition of gliogenic competence in the de-
veloping mouse forebrain. (4) OE of p38 resulted in cell clusters with ab-
normal early GFAP protein expression in the VZ and SVZ (n = 5) (three left
panels). Higher magnification images of the cells indicated by the arrows are
shown in the two right panels. (Scale bars, 50 pm.) (B) shRNA-mediated p38-
KD significantly decreased the percentage of Acsbg1-expressing astrocytes in
the VZ and SVZ (n = 5). (Scale bars, 50 pm.) Results are shown as mean + SEM
*P < 0.05.
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integration of outputs from multiple dynamic regulatory programs
seems to be important for the sequential generation of various cell
types from NSPCs. Indeed, the competence regulation may also
be involved in the neuron-subtype specification indirectly. For
example, Foxgl is constitutively required for the suppression of
the earliest-born Cajal-Retzius neuron fate, and Foxgl-KD can
reset the timing of the neuron subtype specification of cortical
progenitors only within the neurogenic phase (4, 26).

p38 was responsible for the neurogenic-to-gliogenic compe-
tence transition in NSPCs (Figs. 6 and 7). However, it is unclear
how p38 is linked with other gliogenic factors. Recent stud-
ies concerning the Oasis-Geml axis (27) and the RAF/MEK/
ERK pathway (28) found that these pathways also control glio-
genesis. Deficiency of the transcription factor Oasis results in
astrocytogenesis-specific disturbances and increases the number
of Nestin-positive NSPCs. Therefore, Oasis seems to be more
important for the differentiation or maturation steps of astro-
cytogenesis than the competence regulation or cell fate deter-
mination steps of NSPCs. In addition, OE of constitutively active
Mek1 dramatically increases gliogenesis from radial progenitors,
and Mekl1/2 deletion results in problems in the maintenance of
the glial-like properties of radial progenitors, severe loss of glio-
genesis, and a prolonged neurogenesis at late embryonic stages. It
will be interesting to investigate whether the p38 signaling pathway
interacts with the RAF/MEK/ERK pathway to regulate the neu-
rogenic-to-gliogenic competence transition. Further investigations
of the upstream and downstream effectors of p38 and of the
crosstalk between p38 and other signaling pathways will help
identify novel molecular mechanisms that enable rigorous ma-
nipulation of cytogenesis from NSPCs.

Materials and Methods

Cell Culture and Neurosphere Differentiation Assay. Mouse ESC culture, em-
bryoid body formation, neurosphere formation, and neurosphere dif-
ferentiation were performed as previously described (3). Identification
of miR-17/106 and p38 were performed as described in S/ Appendix,
Materials and Methods.

Lentivirus Preparation. Lentiviral particles were produced by transient
transfection of human embryonic kidney 293T (HEK293T) cells with lentivirus
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constructs (provided by H. Miyoshi, RIKEN BioResource Center) that con-
tained the gene of interest. The sequences of the shRNAs, artificial miRNAs,
and TuDs used in this study are shown in S/ Appendix, Table 6. The KD ef-
ficiencies are shown in Fig. 4A and S/ Appendix, Fig. 7 and in our previous
report (3).

Mice and in Utero Virus Injection. Experiments were performed with the In-
stitute of Cancer Research (ICR) strain of mice. Animal care and experiments
were performed according to the guidelines of the Experimental Animal Care
Committee of Keio University School of Medicine and the Yokohama Safety
Center of RIKEN. In utero microinjections of lentivirus particles into E10.5 ICR
mouse brains were guided by an in vivo ultrasound real-time scanner
(Vevo660; VisualSonics).

Immunostaining. Immunocytochemistry and immunohistochemistry were per-
formed as previously described (3), using antibodies against plli-tubulin
(1:1,000, Covance MMS-435P; 1:2,000, Covance PRB-435P), NeuN (1:100, Chem-
icon 377), GFAP (1:400, DAKO Z0334), Acsbg1 (1:200, Abcam ab118154), and
hemagglutinin (HA, 1:1,000, Roche 11867423001).

qPCR Analyses. gPCR analyses were performed using miScript Il RT kits, miScript
Primer Assays (Hs_SNORD61, Mm_miR-17, Mm_miR-106a, and Mm_miR-106b),
miScript SYBR Green PCR Kits (Qiagen), and the StepOne Plus Real-Time PCR
System (Applied Biosystems).

Statistical Analyses. A minimum of three independent experiments were
included in each statistical analysis. Statistical significance was determined by
two-tailed t tests. Throughout the study, P values < 0.05 were considered
statistically significant.
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Recent advances in genetic diagnostic techuologies have made
the classic disease nosology highly complicated. This situation is
exemplified by rasopathies, among which neurofibromatosis
type 1 oand Noopman syadrome represent profotypic emtities
The former condition is characterized §, waultiple café au lalt
spets and neurcfibromas, while the latter Is characterized by
éés%z ot facial features, &ﬁ:%}%}ﬁé neck, mﬁge;iéé:«ﬁ §;m%§v diseass,
and a short statwre. On rare occasions, the features of both
veuwrofibromatosis and Neonan syndrome co-exist within an
individualy such patients ave dlagnosed as having §§§§{§'$§§‘3‘3“}§’§’M-
ts-Noonan syndrome. Here, we report familial patients with
muitiple café au lalt spots and Noonan syndreme-like facial
features. A mutation analysis unexpectedly revealed a mutation
in MAPZKZ in both the propositus and his mother, The proposi-
tus fulfilled the dlagnostic criteria for neurofibromatosis type 1,
bt his miother did not. Thelr phenotype was not consistent with
that of cardio-facie-cutaneous syndrome, which is dassically
known to be asseciated with MAP2ZK2 §§i§g£§§§{}§3$. The mother of
the propositus had cervical cancer af the age of 23 vears, consis-
tent with the encogenic tendency assoclated with rasopathies,
The phenotypic combination of multiple café au lait spots and
Noonan syndrome-like faclal features suggested a diagnosis of
neurofibromatosis-Noonan syndrome. Whether this conditlon
represents a discrete disease entity or @ variable expression of
neurofibromatosis type 1 has long been debated. The present
observation suggests that some perturbation in the RAS/MAPK
signaling cascade results in multiple café au lalt spots, & key
diagnostic phenotype of rasopathies, although the exact mecha-
wismn remadas 1o be elucidated. ©
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INTRODUCTION

A classic genetic syndrome is defined based on a combination of
distinctive phenotypic features and causative genes. However,

© 2013 Wiley Periodicals, Inc.
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recent advances in molecular diagnostic technology have revealed
significant phenotypic overlaps among classic syndromes, making
genetic disease nosology more complicated than ever [Viskochil,
2011].

The RAS/mitogen activated protein kinase (MAPK) pathway is
essential for the regulation of the cell cycle and differentiation.
Somatic mutations in the RAS/MAPK signaling cascade can cause
cancers, whereas germline mutations are responsible for several rare
genetic conditions such as neurofibromatosis type 1 (OMIM
162200), Noonan (OMIM 163950), LEOPARD (OMIM 151100),
Costello (OMIM 218040), and cardio-facio-cutaneous (CFC;
OMIM 115150) syndromes. Given the considerable phenotypic
and molecular overlaps among these conditions caused by germline
RAS/MAPK mutations, they are collectively termed “rasopathies”
[Tidyman and Rauen, 2009; Gripp and Lin, 2012].
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Among rasopathies, neurofibromatosis type 1 and Noonan
syndrome represent prototypic entities: neurofibromatosis type
1 is an autosomal dominant disorder caused by loss-of-function
mutations in the NFI gene on chromosome 17q11.2. This relatively
common genetic condition is characterized by multiple café au lait
spots and neurofibromas. Noonan syndrome is caused by hetero-
zygous mutations in the PTPNI11, SOSI, KRAS, RAFI1, BRAF,
NRAS, CBL, and MAP2K]I genes and is characterized by hyper-
telorism, ptosis and low-set ears, webbed neck, congenital heart
disease, chest deformities, postnatal reduced growth, and cryptor-
chidism [Cirstea et al, 2010; Martinelli et al., 2010; Tartaglia
et al.,, 2010]. In rare cases, features of neurofibromatosis type 1
and Noonan syndrome co-exist, and such patients are classified as
having neurofibromatosis—Noonan syndrome (NFNS) (OMIM
601321) [Allanson et al., 1985; Abuelo and Meryash, 1988]. Since
patients with mutations in the NFI and PTPN11 genes can present
ashaving NFNS [Bertola et al.,, 2005; De Luca et al., 2005], ithas long
been debated whether NFNS is a discrete entity [Opitz and
Weaver, 1985; Carey, 1998]. Here, we report familial patients
with multiple café au lait spots and Noonan syndrome-like facial
features who carried mutations in MAP2K2 (MEK?2), a component
of the RAS/MAPK signaling cascade.

CLINICAL REPORY

The propositus was born at term via vaginal delivery in a breech
position, with a birth weight of 3,535 g (+1.3 SD) and a length of
46.3 cm (—1.3 SD). He was noted as having multiple café au lait

spots at birth. At the age of 6 years, he attended regular school, and a
physical examination showed a short stature with a height of
107.5cm (—2.0 SD) and a weight of 19.3kg (—0.7 SD), multiple
(>6) café au lait spots, axillary and inguinal frecklings, hyper-
telorism, downward-slanting palpebral fissures, and a webbed neck
(Fig. 1A). No Lisch nodules were present. An echocardiogram was
normal. The results of a brain magnetic resonance imaging exami-
nation at the age of 2 years were normal. The propositus’ biological
mother had multiple (>6) café au lait spots and no signs of
intellectual disability. Her past medical history was significant
for cervical cancer, for which she had undergone a total hysterec-
tomy at the age of 27 years. At the age of 31 years, her height was
158 cm (—0.1 SD), and her weight was 54 kg (40.3 SD). She had
multiple café au lait spots, but did not exhibit any intertriginous
frecklings (Fig. 1B).

MOLECULAR ANALYSIS

We performed target-selected resequencing using a custom-
designed mutation analysis panel (SureSelect XT-Auto; Agilent
Technologies, Santa Clara, CA) [manuscript in preparation],
which included 100 common genes described in a classic textbook
of dysmorphology: Smith’s Recognizable Patterns of Human
Malformation [Jones, 2006]. Included within the gene list were
major molecules in the RAS/MAPK signaling cascade, including
NFI, PTPNI11, SOSI, KRAS, RAF1, BRAF, NRAS, CBL, SHOC?2,
MAPKI, MAP2K1, and MAP2K2. This panel was run on a next-
generation sequencer (MiSeq; Illumina, Inc., San Diego, CA). After

— 102 —



394

AMERICAN JOURNAL OF MEDICAL GENETICS PART A

we aligned the sequencing reads to the reference human genome
sequence (hs37d5) using BWA [Li and Durbin, 2009], local
realignment around indels and base quality score recalibration
were performed using Genome Analysis Toolkit software
[McKenna etal., 2010]. Duplicate reads were removed using Picard
(http://picard.sourceforge.net). This analysis revealed that the
propositus and his mother were heterozygous for a missense
mutation in exon 6 of MAP2K2 (c. 667A>G, p.Met223Val).
This p.Met223Val mutation was a novel variant that is not present
in the dbSNP137, 1,000 genomes, ESP6500, or our in-house
Japanese SNPs dataset. We confirmed the mutation detected in
the propositus and his mother using Sanger sequencing and
the following primers: forward, cctcacagcctgaaatggtt; reverse,
agagcagcagggaggagag. In silico functional evaluations of the
p-Met223Val substitution in MAP2K2 using five different
prediction programs suggested that this mutation is pathogenic
(PhyloP, “conserved” [score 0.9932]; PolyPhen2, “probably dam-
aging” [0.8690]; SIFT, “damaging” [0.9900]; MutationTaster,
“disease_causing” [1.0000}; and LRT, “deleterious” [1.0000]).
p-Met223Val is evolutionarily conserved among many species
and is located between two sites, p.Ser222 and p.Ser226, that are
phosphorylated by RAF family proteins [Alessietal., 1994] (Fig.2).
In addition, a crystal structure analysis indicated that the amino
acid at position 223 is a substrate-binding residue [Ohren
et al., 2004]. Therefore, p.Met223Val would alter the activity of
MAP2K?2, affecting downstream signaling. Direct sequencing of
the NFI gene did not reveal any pathologic mutations in either the
propositus or his mother.

DISCUSSION

Here, we report familial patients with multiple café au lait spots
and Noonan syndrome-like facial features who carried mutations
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in MAP2K2. The identification of the MAP2K2 mutations had
diagnostic and therapeutic implications. The maternal history
of cervical cancer at a very young age, that is, 27 years, suggested
that this specific mutation, that is, p.Met223Val, may predispose
an individual to cancer. This observation was consistent with
the effects of somatic gain-of-function mutations in MAP2K2
in melanoma patients [Nikolaev et al., 2012]. Although her
cervical cancer was successfully resected, MEK inhibitors
may be useful as a therapeutic option in the case of cancer
recurrence.

In retrospect, the diagnostic journey based on the patients’
phenotype was rather challenging. The presence of multiple café
au lait spots is a cardinal feature of neurofibromatosis type 1.
Indeed, the propositus fulfilled the diagnostic criteria for neurofi-
bromatosis type 1, but his mother did not. More specifically, the
mother, who was 31 years of age, did not exhibit intertriginous
freckling. The absence of this finding during the third decade of life
practically excludes a diagnosis of neurofibromatosis type 1. In-
stead, the propositus had Noonan syndrome-like facial features,
and his mother had cervical cancer at a very young age. This
phenotypic constellation did not point to a specific disease entity,
but strongly suggested that they had some form of rasopathies. The
targeted mutation analysis panel consisting of the causative genes of
major dysmorphic syndromes, including major molecules in the
RAS/MAPK signaling cascade, successfully identified pathologic
mutations in MAP2K2.

The identification of the causative gene in MAP2K2 was rather
unexpected. Typically, the germline mutations in MAP2K2 have
been associated with a CFC syndrome phenotype [Rodriguez-
Viciana et al., 2006]. The classic phenotypic features of CFC
syndrome include a refatively severe degree of developmental delay,
heart defects, and eczematous skin, together with Noonan syn-
drome-like facial features [Narumi et al., 2007]. Interestingly, the
presently reported patients did not have any of the above-men-
tioned features except for the Noonan-like facial features. Further-
more, the presence of multiple (>6), but not 2 or fewer, café au lait
spots was suggestive of a cutaneous feature in neurofibromatosis
type 1 [Siegel et al., 2011]. A review of familial patients with
MAP2K2 mutation confirmed a heterogeneous clinical picture
consisting of learning disability, pulmonic stenosis, and café au
lait spots (Table I) [Rauen et al., 2010; Linden and Price, 2011].
Overall, the phenotypic features of the family, including the
Noonan syndrome-like facial features and multiple café au lait
spots, in the absence of cardiac abnormalities or intellectual dis-
ability can be regarded as NENS. The vertical transmission of the
trait in the family is also compatible with NENS [Quattrin
et al., 1987].

The observation that MAP2K2 mutation can lead to the NFNS
phenotype casts another informative piece to the long-standing
controversy of whether NFNS represents a discrete disease entity
or a variable expression of neurofibromatosis type 1 [Opitz
and Weaver, 1985]. We have shown that NENS is heterogeneous
at a clinical and a molecular level, as Carey exactly pointed out
in his editorial 15 years ago [Carey, 1998]. What kind of perturba-
tion in the RAS/MAPK signaling cascade results in café au lait
spots, a key diagnostic phenotype in rasopathies, remains to be
elucidated.
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. Elinical Characteristios of Familial Patlents With MAPZAZ Mutstions
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Simpson-Golabi-Behmel syndrome Is 2 rave overgrowth syn-
drome caused by the GPC3 mutation at Xa26 and is dinjeally
characterized by multiple congenital abnormalities, intellectual
disability, prefpostneial overgrowth, distinctive cranlofacial
features, macrocephaly, and erganomegaly. Although this syn-
drome is known o be associated with a risk for embryonad
tumors, similar to other overgrowth syndromes, the pathoge-
netic basis of this mode of tumorigenesis remaing largely -
koown. Here, we report a boy with Shmpson-Gelabi-Behmel
syndrome who had a germiine loss-of funcdon mutadon in
GPC3 At 9 months of age, he developed hepatoblastoma. A
comparison of exome apalysis results for the germline genome
and for the tumor genome revesled o somatic mutation,
0.110358ex, within the degradetion targeting box of S-catenin.
The same somatic mutation in CTNNBI has been repeatedly
reported in heputoblastoma and other cancers. This Bnding
suggested that the CTNNBI mutation in the tumor Hssue vep-
resents a driver mutation and that both the GPC3 and the
CTNNBI mutations contributed to tumerigenesis in a clearly
defined seguential manner in the propositus. The current obser-
vation of asomatic CTNNBI mutationin s hepatoblastoma from
a patient with a germiine GPC3 mutation supports the notion
that the mutation in GPC3 may influence one of the initial steps
in tumorigenesis and the progression to hepatoblastoma.
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Simpson~Golabi-Behmel

roblastomas

INTRODUCTION

Simpson—Golabi-Behmel syndrome (SGBS, OMIM312870) rep-
resents an overgrowth syndrome associated with organomegaly and
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macroglossia accompanied by characteristic external features, such
as supernumerary nipples, supernumerary ribs, hypospadias, and
cryptorchidism, as well as internal malformations, such as cardiac
defects, diaphragmatic hernias, and cystic dysplasia of the kidneys
[Cottereau et al., 2013]. SGBS is caused by loss-of-function muta-
tions in the heparan sulphate proteoglycan, glypican 3 gene (GPC3)
at chromosome Xq26 [Pilia et al., 1996]. The GPC3 gene encodes
an extracellular matrix protein that is expressed during develop-
ment and that regulates cell proliferation and apoptosis during
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development through the modulation of growth factor action,
including that of IGF2 [Gonzalez et al., 1998; Pellegrini et al., 1998].

Patients with SGBS are at an increased risk for the development
of embryonal tumors, such as Wilms tumor [Xuan et al,, 1994;
Hughes-Benzie et al, 1996; Lindsay et al., 1997] and hepato-
blastoma [Lapunzina et al., 1998; Li et al., 2001; Buonuomo
et al., 2005; Mateos et al.,, 2013]. In a recent article published in
this journal, Mateos et al. [2013] documented a patient with SGBS
and a GPC3 duplication who developed a hepatoblastoma.
The pathogenetic basis of the triggering and progression of embry-
onal tumors in the absence of a functional GPC3 is currently
unknown. Here, we document an infant with a GPC3 mutation
who developed a hepatoblastoma in which the tissue was shown
to harbour a CTNNBI mutation using exome sequencing. This
observation sheds new insight on the stepwise progression of
hepatoblastoma.

CLINICAL REPORY

The propositus was born at 41 weeks of gestation as the first child of
nonconsanguineous parents. He was delivered by cesarean section.
His mother was 35 years old, had a height of 165 cm (+1.3 SD), and
had coarse facial features. The father was 54 years old and was
healthy. The birth weight of the propositus was 4,068 g (+2.65 SD),
his length was 55 cm (42.8 SD), and his head circumference was
37.5cm (+2.66 SD). He had a ventricular septal defect that was
repaired at the age of 1 month.

At the age of 4 months, his weight was 8.55 kg (+1.61 SD), his
length was 68.8 cm (+1.71 SD), and his head circumference was

43.8 cm (+1.6 SD). He had an upturned bulbous nose, a wide nasal
bridge, apparent hypertelorism, macrostomia, macroglossia, a
midline grooved tongue, a right accessory nipple, and a short
webbed neck. His hands were broad, and he had right index
fingernail hypoplasia. Based on these clinical features, he was
diagnosed as having SGBS (Fig. 1A). Regular surveillance was
started to screen for the possible development of abdominal
tumors, including hepatoblastoma and Wilms tumor. A cystic
lesion was detected in the hepatic parenchyma at 9 months during
an abdominal ultrasound examination. An abdominal CT scan
revealed a 45 mm X 35mm X 35mm heterogeneously enhancing
mass localized in S4 that was classified as PRETEXT stage 111
(Fig 1B,C). The patient’s serum o-fetoprotein was elevated to
658 ng/ml. A fine needle biopsy led to a pathological diagnosis
of hepatoblastoma. After chemotherapy with cisplatin and tetra-
hydropyranyladriamycin, the residual mass was surgically removed
at the age of 14 months. At the age of 2 years, he continued to
demonstrate overgrowth, with a weight of 17.1 kg (+4.58 SD) and a
length of 95.7 cm (+3.4 SD).

MOLECULAR INVESTIGATION

Informed consent from the parents and approval from the institu-
tional review board were obtained for the molecular studies. We
first performed Sanger sequencing of the GPC3 gene using DNA
obtained from a peripheral blood sample of the propositus. A
¢.1159C > T, p.Arg387X mutation was identified, confirming the
diagnosis of SGBS. Next, we obtained DNA from the hepatoblas-
toma tissue resected at the time of biopsy. A matched non-tumor
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peripheral blood DNA sample was also obtained. Whole-exome
sequencing was performed for both DNA samples. Massive parallel
sequencing on an [llumina HiSEQ platform yielded ~11 gigabases
per sample, with a mean coverage of 114-fold across 54 Mb of
targeted coding regions (SureSelectXT2 Human All Exon V4;
Agilent Technologies, Santa Clara, CA) for each sample. The
sequence reads were aligned to the reference genome assemblies
(hgl9) using BWA [Li and Durbin, 2009]. Local realignment
around the insertions/deletions and base quality score recalibration
were performed using the Genome Analysis Tool Kit software
[McKenna etal., 2010], with duplicate reads removed using Picard.
On average, 73% of the coding bases were covered in sufficient
depth in both the tumor and the matched normal samples to allow
for confident mutation detection.

MuTect version 1.14 [Cibulskis et al., 2013] was used for
comparison of the exome data derived from hepatoblastoma
and that derived from the peripheral blood. The default parameters
were used except that max_alt alleles_in_normal count and
minimum_mutation_cell_fraction were set to 0 and 0.1, respec-
tively. The Mutect program detected seventy mutations as a somatic
change. These 70 mutations were annotated by the program SnpEff
[Cingolani et al., 2012] and classified into the following classes of
mutations: non-synonymous coding, non-synonymous start,
splice site acceptor, splice site donor, start lost, stop gained, and
stop lost. A mutation ¢.104T > G, p.Ile35Ser (NM_00904) was
identified at exon 3 of the CTNNBI that encodes B-catenin, and
was the only remaining somatic mutation through the filtering
process described above. This alteration was confirmed using
Sanger sequencing (Fig. 2). An analysis of the reads at the mutant
position after the removal of duplicated reads revealed that 72 out of
171 reads were mutant.
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Mutations within a targeting box are known to lead to the
accumulation of intracytoplasmic and nuclear B-catenin protein
[Koch et al., 1999; Purcell et al., 2011]. The catalog of somatic
mutations in cancer (COSMIC) version 64 database contained 28
instances of samples containing the somatic mutation p.Ile35Ser in
CTNNBI under the query conditions “confirmed somatic” or
“previously reported”; “tumor sample, not cultured”; and “not
reported as polymorphism in the 1,000 genome projects”. Out of
the 29 samples, 21 originated from theliver, 2 from soft tissue, and 1
each from the endometrium, pituitary, thymus, central nervous
system, and lung. Hence, most of, if not all, the samples with
p-lle35Ser were derived from the liver. Among the 21 samples, 4
samples were specifically labeled as hepatoblastoma samples; in the
remaining samples, the patient’s age was not mentioned, and the
clinical distinction between hepatocellular carcinoma versus hep-
atoblastoma was not mentioned. Furthermore, a literature review
on CTNNBI mutation analyses in hepatoblastomas in patients
without multiple malformation syndromes indicated that at least
five patients carried the ¢.104T > G, p.Ile35Ser mutation [Takayasu
et al., 2001; Cairo et al., 2008; Lopez-Terrada et al., 2009; Purcell
et al., 2011; Chavan et al., 2012]. The article by Takayasu et al. was
not catalogued in the COSMIC database.

DISCUSSION

Through Bayesian comparison of the exome data between the
germline genome and the tumor genome, we identified a somatic
CTNNBI mutation, p.Ile35Ser, within the degradation targeting
box of B-catenin in the hepatoblastoma tissue of a patient with an
overgrowth syndrome, SGBS, who had aloss-of-function mutation
in the GPC3 gene.
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In general, the mutations identified in tumor tissue can be
classified into two groups [Burgess, 2013]: “Driver mutations”
that are directly involved in tumorigenesis followed by tumor
progression, and “passenger mutations” that are not responsible
for tumorigenesis or tumor progression but are by-products of
genomic instability in tumor cells and are biologically neutral.
A distinguishing feature of driver mutations is the recurrent
appearance of the same somatic mutation in different individuals.
Since the p.Ile35Ser mutation has been reported at least five
times in hepatoblastomas [Takayasu et al., 2001; Cairo
et al., 2008; Lopez-Terrada et al., 2009; Purcell et al., 2011; Chavan
etal.,2012] and 17 times in samples from non-hepatoblastoma liver
tumors, including hepatocellular carcinoma, it is reasonable to
assume that the p.Ile35Ser CTNNBI mutation in the tumor tissue
from the propositus represents a driver mutation.

The software MuTect has been shown to be efficient at detecting
somatic mutations in a relatively small percentage (i.e., <10%) of
tumor cells in a normal tissue background. Hence, the chance of
missing mutations in other genes that are present in a subset of the
cellsin the tumor tissue is unlikely to be very high. Nevertheless, the
classes of mutations that have been missed could include but are not
limited to: (1) mutations in low coverage areas; (2) mutations in
non-coding portions of the genome, such asin non-coding RNAs or
regulatory elements; and (3) epigenetic changes that are undetect-
able using exome sequencing.

The identification of the CTNNBI mutation in a patient with
SGBS sheds new light on the pathogenesis of hepatoblastoma:
CTNNBI mutations within a targeting box, in which the proposi-
tus’ p.Ile35Ser mutation resided, are known to lead to the accumu-
lation of intracytoplasmic and nuclear B-catenin protein and to
potentiate canonical Wnt/B-catenin signaling [Koch et al., 1999;
Purcell et al., 2011]. Of note, the loss of Gpc3 leads to the activation
of canonical Wnt/B-catenin signaling in Gpc3-knockout mice
[Song et al., 2005]. If this finding is extrapolated to humans, the
GPC3 loss-of-function mutation could have exerted an additive
effect on the potentiation of canonical Wnt/f-catenin signaling by
the CTNNBI mutation. Given the fact that the propositus harbored
a germline GPC3 mutation and that the tumor harbored a somatic
CTNNBI mutation together with the GPC3 mutation, GPC3 and
CTNNBI apparently contributed to tumorigenesis in a clearly
defined sequential manner, at least in the propositus. Whether
mutations in GPC3 and CTNNBI must occur in this specific
sequence, and not vice versa, remains uncertain. Somatic loss-
of-function mutations in GPC3have been reported in tumor tissues
with various origins, including the lung (6/18), kidney (3/18),
endometrium (3/18), large intestine (2/18), breast (1/18), prostate
(1/18), and skin (2/18), but not in the liver according to the
COSMIC database, version 66 [Forbes et al., 2011], and a search
performed under the query conditions “confirmed somatic” or
“previously reported”; “tumor sample, not cultured”; and “not
reported” as polymorphism in the 1,000 genome projects. Hence,
mutations in GPC3 are unlikely to yield a liver-tumor-specific
susceptibility to tumorigenesis or tumor progression.

From an etiological standpoint, SGBS and another prototypic
overgrowth syndrome, Beckwith-Wiedemann syndrome (BWS,
OMIM130650), share a key fetal growth accelerator, IGF2: the
overproduction of IGF2 in BWS and the lack of an anchoring action

of IGF2 by the extracellular matrix protein GPC3 in SGBS both
promote fetal growth. Patients with BWS are known to have an
increased susceptibility to hepatoblastoma, similar to patients with
SGBS [Fukuzawa et al., 2003]. Further elucidation of the role of the
CTNNBI mutation in hepatoblastomas in patients with BWS is
warranted. Similarly, the likely role of CTNNBI mutation in the
pathogenesis of Wilms tumor in both SGBS and BWS should be
explored, together with the potential role of GPC3 mutation in
isolated hepatoblastomas.

In summary, we here document a somatic CTNNBI mutation in
a hepatoblastoma from a patient with SGBS and a germline GPC3
mutation. The current observation supports the notion that a
mutation in GPC3 may represent an initial step in the tumorigenesis
and progression of hepatoblastoma.
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