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ABSTRACT

Neural stem cell (NSC) transplantation provides a new approach for the repair of damage to the central ner-
vous system (CNS), including that resulting from cerebral infarction and spinal cord injury (SCI). In the past,
there were no reputable mieans of converting non-neural somatic-cells into neural cells. This status was
overturned by the establishment of induced pluripotent stem (iPS) cells, which have pluripotency akin to
that of embryonic stem (ES) cells and can differentiate into most cells of the three germ layers. If differenti-
ated somatic cells could be reprogrammed into iPS cells, and if these iPS cells could be induced to differentiate
once again, it would be theoretically possible to obtain a large number of neural cells. However, this is not yet
feasible due to the limitations of existing stem cell technology. Induction of neural cells from iPS cells is cur-
rently hindered by two distinct problems: 1) the preparation of specific types of targeted neural cells requires

Neuron extensive celi culture, and 2) tumors are likely to form due to the presence of residual undifferentiated cells
Reprogramming following transplantation of the induced cells. By contrast, direct induction methods permit the generation of
target cells from somatic cells without the transitional iP$ cell stage. This review outlines the present-day sta-
tus of research surrounding the direct induction of NSCs from somatic cells, as well as the perspectives for the

future clinical application of this technique for cell replacement therapy following CNS injury.
: © 2012 Elsevier Inc. All rights reserved.
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Introduction individuals with bone fractures, where the pre-fracture state is often re-

stored by appropriate treatment, patiehts rarely achieve a full recovery

1t is well-known that the mature human central nervous system
{CNS) shows little potential for regeneration (CNS). In contrast to
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hibitory factor; NSC, netral stem cell; SCI spinal cord injury; TGF, transforming growth factor.
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after CNS injury resulting from- trauma or neurodegeneration. In fact,
patients with spinal cord injury (SCI), cerebral infarction or neurode-
generative diseases are likely to suffer from the pathological sequelae
for the rest of their lives. )

Cell replacement therapy involves the transplantation of neural stem
cells (NSCs) and is a promising regenerative strategy for the repair of CNS
damage. A number of studies in mice, rats and other animal models re-
port that NSC-transplantation can result in the recovery of function
from neurological disorders that are conventionally difficult to treat,
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Fig. 1. Schematic diagram showing direct vs. indirect induction of NSCs. The direct con-
version of fibroblasts into NSCs requires a three-fold shorter period of culture to obtain
mature NSCs with gliogenic competency relative to the indirect induction of NSCs from
iPS cells. These NSCs can be maintained by passage for more than 1 year,

such as SCI (Ogawa et al, 2002), cerebral infarction (Oki et al., 2012},
amyotrophic lateral sclerosis (Boulis et al., 2011) and Alzheimer's disease
(Blurton-Jones et al., 2009). The clinical application of transplanted fetal
brain-derived or embryonic stem (ES) cell-derived NSCs in humans
engenders problems such as immunological rejection and ethical consid-
erations; however, induced pluripotent stem (iPS) cell technology is
expected to overcome these complications (Takahashi et al, 2007).
This technology allows the preparation of NSCs from iPS cells derived
from the patient's own somatic cells for subsequent autografting. In
addition to iPS technology, there is an increasing interest in the direct in-
duction of NSCs from somatic cells for potential autografting therapy fol-
Jowing SCI (Fig. 1). Recent findings and perspectives for the use of cell
replacement therapy to repair CNS damage, with a particular emphasis
on the spinal cord, will be discussed in this review article.

iPS cell technology and cell rei;lacement therapy for SCI

iPS cell technology is anticipated to allow the acquisition of cells
from a mature somatic origin with pluripotency similar to ES cells.
Multiple systems for inducing ES cell-derived populations associated
with each germ layer have already been established, and the use of
these systems is expected to similarly enable the induction of NSCs
from iPS cells (Qkada et al,, 2008; Reynolds and Weiss, 1992). Thus,
cell replacement therapy with autografting is likely to be feasible in
the future. Many neurological diseases develop rapidly in elderly
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humans, and human iPS cells can even be obtained from the somatic
cells of humans aged over 100 years (Yagi et al,, 2012). Therefore, cell
replacement therapy is also theoretically applicable to the treatment
of patients of advanced age. ‘

Despite this positive outlock, at least three problems need to be
overcome before the autografting of NSCs established from human
iPS cells can be realized. The first problem pertains to the time re-
quired to prepare the target cells (Okada et al., 2008; Takahashi and
Yamanaka, 2006:; Tsuji et al, 2010). Establishment of iPS cells from
human cells is more time-consuming than their establishment from
mouse cells (Takahashi et al., 2007), and the subsequent induction
steps involve complex and rather prolonged incubation periods
(Koch et al., 2009; Nori et al, 2011; Yagi et al,, 2011). Studies using -
animal models of SCI show that NSC-transplantation during the sub-
acute phase of injury (within 14 days of injury in rodents) is neces=
sary for optimal functional recovery (Fig. 2) in view of the changes
in the microenvironment of the injured spinal cord (lwanami et al,,
2005 Ogawa et al, 2002; Okada et al, 2006). With the currently
established incubation techniques, however, it is difficult to establish
iPS cells from somatic cells during this relatively short time frame for
use in cell replacement therapy.

The second problem relates to the fact that NSCs must differenti-
ate into neurons and glia to enable sufficient functional recovery fol-
lowing their transplantation into SCI patients (Kumagai et al,, 2009;
Norti et al, 2011; Tsuji et al,, 2010). This is probably because the fol-
lowing processes all play a significant role in functional recovery: 1)
incorporation of neurons derived from the transplanted cells into
the host's neural circuit; 2) re-myelination by oligodendrocytes de-
rived from the transplanted cells; and 3) trophic effects of astrocytes
derived from the transplanted cells (Kumagai et al,, 2009; Nori et al.,
2011; Tsuji et al., 2010). ;

Regarding the differentiation potential of NSCs, NSCs induced from
mouse pluripotent stem cells (ES and iPS cells) via embryoid body (EB)
formation can differentiate specifically into neurons as long as they re-
main in the primary neurosphere state without undergoing passaging. If
these cells undergo passaging and enter the secondary neurosphere
state, they can differentiate not only into neurons, but also into glia
{Miura et al, 2009; Naka et al, 2008; Okada et al, 2008). When
transplanted into animal models of SCI, NSCs in the secondary
neurosphere state exert useful therapeutic effects, while NSCs in the pri-
mary neurosphere state do not (Kumagai et al, 2009; Tsuji et al., 2010).
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Fig. 2. Schematic diagram of autogralt transplantation of induced NSCs, For the optimal treatment of SCI with cell replacement therapy, NSC transplantation must be performed in
the subacute phase of injury. The rapid induction of mature NSCs by direct conversion may thus provide the best source of cells for this treatment.
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Furthermore, induction of NSCs that have the potential to differentiate
into glia from established iPS cells via EB formation takes about 60 days
in mice and 180 days in humans after gene transfer into somatic cells
{e.g. skin cells). Therefore, if iPS cells are only generated after the onset
of SCI, the patient will have already proceeded to the chronic stage of
the disease before the cells become available for transplantation (ie. to
a stage where cell transplantation is no longer expected to be effective).

The third problem pertains to the risk of teratoma formation from
residual undifferentiated cells among the NSCs used for transplantation
(Miura et al,, 2009). Humans have a long lifespan, and it is essential that
tumorigenesis related to cell transplantation does not occur for at least
10 years after grafting. It is, therefore, imperative to establish NSCs that
are free from undifferentiated cells for use in cell replacement therapy.

To overcome these problems, it seems indispensable to adopt a
strategy of allogeneic transplantation, which involves the establish-
ment of a bank of iPS cells and a bank of NSCs derived from these
iPS cells (Okano et al, in press). If autologous transplantation is to
be adopted, a technique must be developed that will allow the rapid
induction of NSCs with the potential to differentiate into both neu-
rons and glia from somatic cells (skin, blood, etc.). Such direct induc-
tion is expected to serve as a breakthrough in resolving the above
difficulties regarding cell replacement therapy.

Concept of direct induction
“Direct induction™ is a collective term used to refer to methods of in-

duction aimed at establishing target cells from differentiated somatic
cells, without the intermediary stage of iPS cells. The first report on

direct induction was published in 1987 (Davis et al., 1987}, much earlier
than the initial description of iPS cells. In this report and a follow-up
study, Weintraub and colleagues demonstrated that transduction with
the MyoD gene resulted in the alteration of fibroblasts into myoblasts
(Davis et al,, 1987, Weintraub et al,, 1989). Next, conversion of B cells
into macrophages by the forced expression of CCAAT-enhancer-
binding protein (C/EBP) « or C/EBPJ3 was reported in 2004 (Xie et al.,
2004). However, all of these reports pertained to direct conversion
(conversion through differentiation} among cells belonging to the meso-
derm layer, and none dealt with direct conversion among cells of differ-
ent germ layers. However, in 2006, Yamanaka and colleagues succeeded
in establishing pluripotent stem cells (i.e., iPS cells) from adult mouse
fibroblasts (Takahashi and Yamanaka, 2006), triggering remarkable
changes in the research field of reprogramming and transdifferentiation.

As a first step, the forced expression of 24 genes known to be pre-
dominantly expressed in ES cells was performed in fibroblasts, resulting
in the successful establishment of iPS cells with pluripotency akin to
that of ES cells. The same investigators attempted to limit the number
of genes needed for induced pluripotency among these 24 genes, ulti-
mately demonstrating the indispensability of four genes, Oct4, Sox2,
Kif4 and c-Myc. Using the same approach, multiple groups have
succeeded in establishing ectodermal NSCs from mesodermal fibro-
blasts. The techniques employed by these groups can be roughly divid-
ed into two types: 1) forced expression of genes required in the target
cells; and 2) forced expression of reprogramming factors (used at the
time of iPS cell establishment) to yield partially pluripotent cells,
followed by the incubation of these cells in appropriate culture media
to obtain the desired target lineage. Both techniques enable acquisition

Table 1
List of currently reported NS/PCs divectly induced from mouse somatic cells.
Ref. Cell source Transgenes Gene expression control Culture Colony-forming Passage Growth Cells generated
period efficiency (%) factor
Kimm* MEF (primary) Oct4 Trans-gene expression was restricted 13 days 0.69 «5 EGF Neuron
Adult mouse fibroblast  Sox2 to six days using the tet-ON system. FGF2 Astrocyte
Kl FGF4
c-Myc
Matsui®  Adult mouse fibroblast  Oct4 NP 18 days 0.03 >40 LIF Neuron
Sox2 EGF Astrocyte
MEF Kif4 FGF2 Oligodendrocyte
c-Myc
Lujan ¢ MEF Brn2 Trans-gene-expression was rerminated 24 days Unknown >20 EGF Neuron
FoxG1 at the beginning of differentiation. FGF2 Astrocyte
Sox2 Oligodendrocyte
Sheng®  Mouse Sertoli cell Ascli NP 30 days 0.002 >25 EGF Neuron
Ngn2 FCF2 Astrocyte
Hes1 Oligodendrocyte
Id1
Pax6
brn2
Sox2
Klif4
c-Myc
Thier® MEF Octd The expression of Oct4 was restricted 18 days 0.008 =50 EGF Neuron
Adult mouse fibroblast  Sox2 to five days by direct delivery of the OCT4 protein. FGF2 Astrocyte
Kif4 Oligodendrocyte
c-Mye
Han' MEF E47/Tcf3 NP 28-35 days  <0.01 =130 EGF Neuron
Brnd FGF2 Astrocyte
Sox2 Oligodendrocyte
Kif4
c-Myc
Ring® MEF Sox2 NP =40 days 0.96 > 40 EGF Neuron

FGF2 Astrocyte
Oligadendrocyte

A Kimetal (20110

B oMatsui et al, (2012).
Lujan et al, (2012},
4 Sheng et al. {2012).
¢ Thier et al. (2012).
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of the desired target cells without the intermediary stage of iPS cells.
The elimination of the iPS cell stage is expected to reduce the risk of ter-
atoma formation from residual undifferentiated cells after induction of
differentiation, thereby improving the safety of cell replacement thera-
py. Furthermore, these techniques are expected to shorten the time re-
quired to obtain the target cells to a duration comparable with that of
iPS cell-mediated induction. To date, at least 7 cases of direct induction
of NSCs have been reported (Han et al,, 2012; Kim et al,, 2011; Lujan et
al, 2012; Matsui et al., 2012; Ring et al, 2012; Sheng et al,, 2012; Thier
et al, 2012) (Table 1). In the forthcoming sections, the characteristics of
the NSCs established using these techniques will be outlined, accompa-
nied by a discussion of the roadmap to clinical application of directly
induced NSCs and the issues that must be resolved prior to their use.

Direct induction of NSCs

Direct induction of neuronal cells was first reported in 2010 by
Wernig and colleagues (Vierbuchen et al,, 2010). These investigators
listed up to 19-genes expressed in neuronal cells and their precursor
cells as candidate genes for NSC induction and also identified the indis-
pensable genes -among these 19 genes, akin to the approach of
Takahashi and Yamanaka (2006). Transduction with three of the 19
genes (Brn2; Myt1l and Ascl?) enabled the efficient induction of neural
cells, which were termed “induced neurons” (iNs) {Vierbuchen et al,,
2010). Subsequently, a series of reports has been published regarding
the direct induction of neural cells from human fibroblasts (Pang et
al., 2011), neuronal cells from the fibroblasts of patients with familial
Alzheimer's disease (Qiang et al, 2011), dopaminergic neurons
(Pfisterer et al, 2011) and spinal cord motor neurons {Son et al,
2011) from somatic cells, and so on. At present, efforts are underway
to establish a technique for the generation of specific subtypes of neural
cells by direct induction, in addition to simply creating a general popu-
lation of neural cells. The cutcomes of this research are likely to have a
major impact on the advancement of relevant pathophysiological anal-
yses and pharmaceutical research related to neurological disorders.

However, these iNs are unlikely to be an appropriate cellular resource
for the promotion of functional recovery via cell replacement therapy fol-
lowing CNS injury. To achieve functional recovery in the damaged CNS,
the presence of diffusible factors secreted from glial cells {astrocytes)
also plays an important role, in addition to the repair of neural circuitry
via transplanted iNs. Furthermore, because the majority of grafted cells
are lost without undergoing engraftment (Yasuda et al,, 2011), trans-
plantation of a large number of cells with proliferative activity seems es-
sential for a successful outcome. Our experiments demonstrated that
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functional recovery in animal models of SCl requires the transplantation
of numerous mature NSCs with the potential to differentiate into astro-
cytes {Kumagai et al., 2009; Nori et al, 2017; Ogawa et al,, 2002). In-gen-
eral, most studies concerning cell transplantation-into animal models of
neurological disease have shown that grafted astrogenic NSCs afford-a
high therapeutic efficacy {Blurton-jones et al,, 2009; Boulis et al,, 20115
Ogawa et al,, 2002; Old et al.,. 2012; Parish et al., 2008). These studies
support the hypothesis that the most advantageous results can be
expected from cell replacement therapy using NSCs with self-renewal
capacity and the potential to differentiate into all cell types of the ner-
vous system. :

The establishment of NSCs by direct induction was first reported by
Kim et al. (2011). Prior to this, Takahashi and Yamanaka (2006} demon-
strated that transduction of somatic cells with four genes (Oct4, Sox2, KIf4
and ¢-Myc) enabled their reprogramming into an undifferentiated state
resembling the ES cell phenotype. Kim and colleagues adapted this pro-
cess to transduce mouse fibroblasts with the above-mentioned genes,
cells were then incubated and reprogramming was completed using con-
ditions optimized for NSCs. In this way, directly reprogrammed NSCs
were effectively generated. Unlike iNs, the neuronal progenitor cells
established by this method had the potential to divide, albeit to a limited
extent, and could be passaged for several generations. However, despite
having the capability to differentiate into both neuronal and glial cells,
they failed to differentiate into oligodendrocytes. -

Our own group (Matsui et al,, 2012), as well as the groups of Lujan et
al. (2012) and Sheng et al. (2012) (discussed: below), simultaneously
established induced NSCs (iNSCs) with a stable self-renewal capacity
and the potential to differentiate into all three types of nervous system
cells {neurons, astrocytes and oligodendrocytes). However, the three
studies employed almost entirely different methods. Like Kim et al.
(2011), our group transduced mouse fibroblasts with Oct4, Sox2, Kif4
and ¢-Myc, harvested the fibroblasts before their conversion into iPS
cells, and cultured them in suspension in serum-free medium supple-
mented with leukemia inhibitory factor (LIF) and fibroblast growth
factor-2 {(FGF-2) (Fig. 3). In this way, iNSCs were established in a relative-
ly short period of time (18 days after gene transduction, including 4 days
of adherent cuiture and 14 days of suspension culture). The resultant
cells were mature NSCs capable of differentiating into neurons, astrocytes
and oligodendrocytes when incubated with the appropriate growth fac-
tors in vitro or when transplanted into the living body. Moreover, the
NSCs could be maintained in culture for one year or longer. We have
since confirmed that these iINSCs retain the capability to differentiate
into nervous system cells even after prolonged maintenance in the
undifferentiated state.

Direct Induction {inducad N8Cs)

Reprogramming

\

e @
Indibiduals with
Homozygous HLA-haplotypes

iPS{ celis N

Differentiation

Neural Stem Cells

e

Fig. 3. Partially reprogrammed fibroblasts can form both neurospheres and iPS cell colonies. Fibroblasts differentiate into NSCs following suspension culture in serum-free medium
containing LIF and FGF-2 upon transduction with four reprogramming factors (Octd, Sox2. Kif4 and ¢-Myc). By contrast, fibroblasts are reprogrammed to the pluripotent state and
give rise to colonies of iPS cells after adherent culture on feeder cells and in the presence of LIF {L.e., under ES cell culture conditions).
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We additionally demonstrated that iNSCs could be obtained without
the intermediary stage of Nanog-GFP-positive iPS cells, if LIF was tem-
porarily omitted, and epidermal growth factor (EGF) was instead
added during the period of suspension culture. These results were
attained using iNSCs derived from fibroblasts isolated from Nanog-GFP
mice (Matsui et al.,, 2012). The iNSCs established by this method were
almost entirely free from undifferentiated multipotent cells. Therefore,
these iNSCs are a prormising source of cells for transplantation therapy,
provided that their safety is endorsed.

Lujan et al, (2012) employed a technique resembling that used for
the generation of iN cells and iPS cells to transduce mouse fibroblasts
with 11 transcription factors known to be expressed specifically in
NSCs. These investigators generated iNSCs with self-renewal capacity
and the potential to differentiate into all three types of nervous sys-
tem cells. Later, Lujan et al. (2012) attempted to limit the number
of factors needed to establish pluripotency by using an approach sim-
ilar to that adopted by Takahashi and Yamanaka (2006} and demon-
strated that transduction of only twe factors (FoxGI and Brn2)
enabled the direct conversion of fibroblasts into NSCs.

In contrast to the research performed by our group and that of
Lujan et al., in which fibroblasts were used to establish iNSCs, Sheng
et al. (2012) generated iNSCs via transduction of Sertoli cells (collect-
ed from the genital glands of mouse fetuses) with nine genes (Pax6,
Ngn2, Hest, Id1, Ascll, Brn2, c-Myc, Kif4 and Sox2). Although this
group attemipted to reduce the number of transduced genes, eight
of the nine genes, excluding Sox2, were found to be indispensable.
This finding is especially noteworthy in view of the fact that most of
the successful demonstrations of iNSC generation from fibroblasts
have employed Sox2. The requirement for a large number of
reprogramming genes in Sertoli cells but not fibroblasts may be attrib-
utable to the difference in the gene expression profile between the
two cell types.

A number of studies were subsequently published concerning the
direct induction of NSCs. For example, Thier et al. (2012) reported the
direct induction of NSCs from mouse fibroblasts using four factors
(Oct4, Sox2, KIf4 and c-Myc), which were identical to those employed
by Kim et al. and our group. However, the Thier et al. study differed in
that a retroviral vector was employed for transduction with Kij4, Sox2
and c-Myc, but not Oct4. Instead, the encoded Oct4 protein was
directly introduced into fibroblasts, circumventing its continued
gene expression and the reprogramming of fibroblasts into an iPS
cell-like state. Furthermore, Han et al. (2012) transduced cells with
Brn4 and E47/Tcf3 in addition to Sox2, Kif4 and c-Myc, resulting in
iNSCs with the ability to differentiate into all three types of nervous
system cells and the capacity for long-term maintenance. Hence,
these INSCs were similar to those established by our group {Matsui
et al, 2012) and that of Thier et al. (2012), whereas the iNSCs
established by Kimi et al. (2011) (i.e. using a tet-ON system and limit-
ing the expression of Kif4, Sox2 and c-Myc to the first six days) lacked
both self-renewal properties and the potential to differentiate into
oligodendrocytes.

By contrast, the iNSCs established by our group (characterized by
continued expression, to some extent, of Oct 4, KIf4, Sox2 and c-Myc,
despite silencing) (Matsui et al., 2012) and the iNSCs established by
Thier et al. (2012 (characterized by continued expression of KIf4,
Sox2 and c-Myc, but not Oct4) exhibited a self-renewal capacity, as
well as the potential to differentiate into oligodendrocytes. Hence,
Kif4, Sox2 and/or c-Myc might be needed for the long-term mainte-
nance of NSCs.

The current status of the direct induction of NSCs using mouse cells
has been outlined above. Several groups are now attempting to create
NSCs from human cells using the same techniques. For example, our
group adapted a technique similar to that used to generate mouse
iNSCs from human fibroblasts. As a result, NSCs capable of differentiat-
ing into P tubulin- and GFAP-positive cells were obtained following a
short period of culture {about 20 days), despite the low efficiency of

transduction (Matsui et al, 2012). In addition, Ring et al. (2012)
attempted to establish mouse INSCs through forced expression of
Sox2, Bmi-1, TLX, Hes1 and Oct1, which are known to be expressed in
NSCs, and eventually demonstrated that transduction with Sox2 alone
enabled direct conversion of mouse MEFs into iNSCs. Surprisingly, this
technique was also applicable to human fetal fibroblasts, culminating
in the generation of human iNSCs with self-renewal capacity and the
ability to differentiate into neurons, astrocytes and oligodendrocytes
for the first time (Ring et al., 2012). This was also the first report dem-
onstrating direct conversion between germ layers using only one factor.

The investigation by Ring and colleagues also demonstrated that
iNSC colonies could not be obtained by adherent culture on a plastic
dish with gelatin, but required culture on glass coated with poly-
o-lysine and laminin. It has been previously shown that human
NSCs express laminin receptors, and that laminin stimulates the pro-
liferation of human and mouse NSCs (Flanagan et al., 2006). These
findings indicate that optimization of extracellular matrix-derived
signals, in addition to the provision of suitable growth factors, is crit-
ical for obtaining the desired target cells through direct conversion.
Since the generation of human iNSCs in this manner did not involve
oncogenic factors (e.g., Oct4 and/or ¢-Myc), and the expression of
Sox2 (introduced via a retroviral vector) was gradually decreased
due to silencing, Ring et al. {2012) made a convincing argument
that these iNSCs might represent a useful source of biological material
for cell transplantation therapy. Nonetheless, a limitation of this study
is that long-term incubation (for 60 days) was needed to obtain suf-
ficient numbers of INSCs for autografting. Furthermore, mouse/
human fibroblasts of fetal origin were employed, rather than cells of
mature mouse/human origin. Considering that many patients who
require NSC aufografts are adults, the generation of NSCs of adult
origin would be beneficial for clinical application.

Open issues and perspectives for the future

As illustrated above, new findings related to stem cell transplanta-
tion have been published frequently since Kim et al. first reported the
direct induction of NSCs in 2011 (Fig. 1). The preceding sections
discussed the usefulness of NSCs established from fibroblasts. However,
a number of issues must be resolved before these cells can be applied
clinically. In this section, we discuss the problems that require resolu-
tion prior to the successful realization of cell transplantation therapy
using NSCs, as well as the possibility of pharmacological approaches to
achieve the same end. As already described, a large number of cells
are needed for NSC transplantation therapy (Nori et al, 2011; Ogawa
et al, 2002; Tsuji et al, Z010). The induction period of the cells that
will be grafted needs to be shortened, so that transplantation can be
performed before the disease has progressed to a stage that is
untreatable using this approach. This is true not only for the treatment
of SCI, but also for the treatment of other neurological disorders,

Experiments on NSC induction using ES cells have been repeatedly
carried out, starting before NSCs were generated by direct induction.
These investigations have identified many low molecular weight
compounds that can potentially improve the efficiency of NSC gener-
ation and control the phenotype of the established NSCs. These com-
pounds may also be applicable to the creation of NSCs by direct
induction. For example, cyclic AMP (cAMP) reportedly suppresses
apoptosis of NSCs and can be employed for the induction of NSCs
{Smulder et al,, 2006). This compound has been successfully used by
our group for the direct induction of NSCs; notably, the addition of
cAMP to the culture medium markedly increased the efficiency of
NSC induction (Matsui et al., 2012).

The transforming growth factor (TGF)}-3/SMAD pathway also pro-
motes the maintenance of hurnan ES cells through its actions on the
SMAD protein (Liet al., 20112). When a compound inhibiting this path-
way was added to the culture medium, the differentiation of human ES
cells into NSCs was accelerated. A similar effect was reported for
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glycogen synthase kinase (GSK)-3f inhibitors and notch signal inhibi-

tors. Indeed, NSCs were recently generated from human ES cells in
only 7 days by the simultaneous inhibition of TGF-f, GSK-3p and
Notch-signaling (Li et al.,2011a). This result pertains only to NSC induc-
tion using ES cells, and it is anticipated that even with this technology,
incubation for 2 months or more will be required to establish NSCs
from human somatic cells via iPS cells. However, if these findings
were applied to modify the current direct induction technique for the
establishment of NSCs without mediating the iPS cells, there may be po-
tential for further shortening of the incubation period. Advances in this
technology are expected in the near future,

Clearly, one of the most important issues related to the clinical
application of NSCs is the integration of exogenous transgenes into
the NSC genome. To date, several reports have been published
concerning methods for the efficient induction of NSCs, either indi-
rectly (via mediating the iPS cells) or directly (from the somatic
cells). Without exception, all of these methods require transduction
of exogenous genes, such as KIf4, Oct4, Sox2, c-Myc and FoxG1; howev-
er, numerous reports suggest that these genes are associated with
tumorigenesis. Thus, establishment of NSCs by forced gene expres-
sion involves the risk of teratomas, gliomas, etc. (Moon et al, 2011;
Schmidt et al., 1988; Seoane etal.,, 2004; Wang et al,, 2009). Retroviral
vectors and lentiviral vectors are primarily used for the transduction
of exogenous genes, but there are also significant problems associated
with the use of the viral vectors themselves. For instance, the number
of gene copies inserted, the chromosomal site of integration, and so
on, are not constant, resulting in numerous random effects. If iINSCs
can be established without using exogenous transgenes {e.g. by the
addition of low molecular weight compounds), it will be possible to
realize safer, more efficient and better-standardized incubation
systems that may prove advantageous for clinical application.

As far as the establishment of human and mouse iPS cells is
concerned, the required number of exogenous genes has been
successfully reduced to one (Oct4) following the addition of low
molecular weight compounds to the culture medium (Li et al,
2011b;:Zhu et al, 2010). These findings have increased confidence
that suitable small compounds will be discovered to mediate the
direct induction of NSCs. At present, many millions of small chemical
compounds are accessible at research institutions and pharmaceutical
companies around the world. If large-scale screening is carried out
with these chemical . compounds, remarkable advances may be
achieved in the field of NSC technology.

Despite the hope for early clinical application of directly induced
NSCs, to date, no published reports have evaluated the therapeutic ef-
ficacy of these cells. However, a report has recently been published
regarding the efficacy of directly induced myocardial cells for the
treatment of myocardial infarction (Qian et al., 2012). Undoubtedly,
similar reports regarding the efficacy of directly induced NSCs for
the treatment of neurological disorders will soon appear and they
are eagerly anticipated.
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