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Abstract

Background: The transplantation of neural stern/progenitor cells (NS/PCs) at the sub- a‘cute phase of spinal cord
injury, but not at the chronic phase, can promote functional recovery. However, the reasons for this difference and
whether it involves the survival and/or fate of grafted cells under these two conditions remain unclear. To address
this question, NS/PC transplantation was performed after contusive 5pma1 cord injury m adult mice at the sub-acute
and chronic phases.

Results: Quantitative analyses using bio-imaging, which can noninvasively detect surviving grafted cells in living
animals, revealed no significant difference in the survival rate of grafted cells between the sub-acute and chronic
transplantation groups. Additionally, immunohistology revealed no significant difference in the differentiation
phenotypes of grafted cells between the two groups. Microarray analysis revealed no significant differences in the
expression of genes encoding inflammatory cytokines or growth factors, which affect the survival and/or fate of
grafted cells, in the injured spinal cord between the sub-acute and chronic phases. By contrast, the distribution of
chronically grafted N5/PCs was restricted compared to NS/PCs grafted at the sub-acute phase because a more
prorminent glial scar located around the lesion epicenter enclosed the grafted cells: Furthermore, microarray and
histological analysis revealed that the infiltration of macrophages, especially M2 macrophages, which have

anti-inflammatory tole, was significantly higher at the sub-acute phase than the chronic phase. Ultimately, NS/PCs
that were trampidm@d in the sub-acute phase; but not the chronic phdse promoted funcuonal recovery c:ompared
with the vehicle control group.

Conclusions: The extent of glial scar formation and the characteristics of inflammation is the most remarkable

difference in the injured spinal cord microenvironment between the sub-acute and chronic phases. To achieve

functional recovery by NS/PC tra wsplantamr in cases at the chronic phase, modification of the microenvironment
of the injured spinal cord focusing on glial scar formation and inflammatory phenotype should be considered.

Keywords: Spinal cord injury, Neural stern/progenitor cells, Cell transplantation, Chronic phase, Microenvironment
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Background
The injured spinal cord exhibits little spontaneous re-
covery and, as a result, many spinal cord injury (SCI)
patients suffer from permanent functional impairments,
such as motor and sensory dysfunction, and bladder and
rectal disturbance. However, some previous reports have
shown that neural stem/progenitor cells (NS/PCs) trans-
planted into the injured spinal cord of rodents [1-6] and
non-human primates [7], 7-10 days post-injury (DP1),
promote functional recovery after SCI. These reports in-
dicate that NS/PC transplantation has therapeutic po-
tential for SCI when performed during the sub-acute
phase. However, patients continue to seek new therapies
for SCI many years after their original injury, and most
are therefore in the chronic phase. Although many
researchers have sought to achieve functional recovery
at the chronic phase of SCI by NS/PC transplantation,
with one exception [8], no significant recovery of motor
function has been obtained in animal models of chronic-
phase SCI [9-12]. Despite differences in the survival rate,
the cell types derived from the grafted NS/PCs and the
distribution of grafted cells transplanted at the sub-acute
versus the chronic phase remain unknown. Thus, it
remains unanswered as to why grafted NS/PCs do not
exert therapeutic benefits in the injured spinal cord at
the chronic phase. To address this question, this study
analyzed fetus-derived NS/PCs transplanted into the
injured spinal cord of mice at 9 DPI and 42 DPL

To assess the survival rate of grafted cells, we per-
formed quantitative analysis using bioluminescence im-
aging (BLI) on a weekly basis until 42 days after
transplantation. BLI is a powerful tool for the detection
of exclusively living grafted cells that stably express
luciferase in living animals after administration of luci-
ferin, the luciferase substrate, because the luciferin-
luciferase reaction depends on oxygen and ATP [13]. In
this study, no significant difference in the survival rate
of grafted cells between the sub-acute and chronic
transplanted (TP) groups was observed at each experi-
mental time point. Immunohistology also revealed no
significant difference in the differentiation pattern of
grafted NS/PCs between the two groups. In addition,
inflammatory cytokines and growth factors, which influ-
ence the survival rate and differentiation characteristics
of grafted cells, were expressed at similar levels at both
phases. By contrast, the grafted cells were distributed
broadly from the epicenter to rostral and caudal sites in
the sub-acute TP group, whereas they remained near
the lesion epicenter, due to extensive glial scarring, in
the chronic TP group. Moreover, prominent macro-
phages distributed at and around the lesion epicenter in
the sub-acute phase by immunohistochemistry, and
microarray analysis demonstrated that the expression of
Arginase-1, which is associated with M2 macrophages,
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was up-regulated significantly at the sub-acute phase
than the chronic phase. These findings indicated that
the characteristics of post-SCI inflammation are differ-
ent between the sub-acute and chronic phases.

Consequently, the grafted NS/PCs did not promote
any motor functional or histological recovery in the
chronic TP group, while the sub-acute TP group demon-
strated significant recovery compared with the vehicle
control group. Taken together, these data suggest that a
combination therapy of NS/PC transplantation with con-
trol of glial scar formation or inflammatory reaction may
be critical to achieving functional recovery for chronic
SCL

Results

in vitro characterization of transgenic mouse-derived NS/
PCs that ubiquitously express fluorescent protein-fused
luciferase (ffLuc)-cp156

To identify and monitor the grafted cells by bio-imaging,
a transgenic mouse that ubiquitously expresses {{Luc-
cpl56 was previously developed [14]. NS/PCs derived
from this transgenic mouse showed strong and stable
emission of ffLuc-cpl56 in vitro (Figure 1A, B). The
number of N§/PCs and the photon counts measured by
BLI were significantly correlated (Figure 1B, C).

We proceeded to perform differentiation and prolifera-
tion assays of these NS/PCs i vitro. The NS/PCs differen-
tiated into PII tubulin (Tuj-1)" neurons (21.0 + 0.5%), glial
fibrillary acidic protein (GFAP)" astrocytes (63.0 + 1.5%),
and 2'3-cyclic nucleotide 3’-phosphaodiesterase (CNPase)”
oligodendrocytes (10.4 = 0.5%) in vitro (Figure 1D, E). ATP
production, an indirect measurement, was used to assess
NS/PC proliferative ability [15]. The doubling time of the
NS/PCs was 28.8 + 0.8 h. The differentiation rate and pro-
liferative ability of NS/PCs obtained from the transgenic
mice were equivalent to those previously reported for wild-
type NS/PCs [16,17].

Comparison of the injured spinal cord microenvironment
between the sub-acute and chronic phases
To clarify differences in the microenvironment of the
injured spinal cord between the sub-acute and chronic
phases, histological analyses of spinal cord tissues at 9
DPIL and 42 DPl were performed. Spinal cord atrophy
and glial scar formation were more prominent at and
around the lesion epicenter at 42 DPI than at 9 DPI
{(Figure 2A). A significantly larger CS56° chondroitin
sulfate proteoglycan (CSPG) area was detected at the le-
sion site at 42 DPI than at 9 DPI (Figure 2A, B). Further-
more, Ibal’ macrophages infiltrated area was more
prominent at the lesion site at 9 DPI but not at 42 DPI
(Figure 2A, C).

To analyze the gene expression profile in the
injured spinal cord, we performed microarray analysis
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astrocytes, and CNPase™ oligodendro invitro. E, C
in vitro. Values are means = SEM (n = 5. 5¢

C Pae

Figure 1 In vitro characterization of the NS/PCs derived from transgenic mice that ubiquitously express ffLuc-cp156. A, Fluorescence
image showing NS/PCs derived from fetal rransgenic mice expressing the fluorescent protein cpl156-Venus, which is originally modified from GFP.
B, Biclurninescent signals originating from the luciferase were detected in the NS/PCs by BLL €, The number of NS/PCs was significantly
correlated with the measured photon count by BLL Values are means = SEM (n =

itative analysis of Tuj-17 neurons, GFAP” astrocytes, and CNPase™ oligodendrocytes
ale bar 100 wm in (A and 50 um in (D).
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to provide a global analysis of the gene expression
profile of spinal cord tissues at 9 DPI and 42 DPI. As
a control, samples of uninjured naive spinal cord were
prepared. Principal component analysis (PCA) of all
the microarray data revealed that the samples of the
intact, 9 DPI and 42 DPI groups were clustered at dif-
ferent locations (Figure 2D). Hierarchical clustering of
the target genes, which were narrowed down by cut-
off values for expression levels and by fold change,
revealed that the gene expression profiles of both
injured groups were dramatically different from that
of the intact group. Furthermore, the gene expression
pattern at 9 DPI was similar to that at 42 DPI, but
the magnitude of changes in gene expression differed
between the two injury groups. At 9 DPL, the magni-
tude of gene expression changed more remarkably
than that at 42 DPI (Figure 2E).

Subsequently, we focused on individual gene expres-
sion levels. No significant differences were observed in
the expression levels of genes for individual inflamma-
tory cytokines or growth factors between the two injury
groups (Figure 2F, G). By contrast, the expression of
CD36 and CD68, which are expressed on monocytes
and macrophages, was significantly elevated at 9 DPI

{(Figure 2H). These results were consistent with the
immunostaining results for Ibal (Figure 2A, C). Interest-
ingly, the expression of arginase-1, which is associated
with anti-inflammatory M2 macrophages, was also sig-
nificantly higher at 9 DPI than at 42 DPI, whereas no
significant differences were observed in the expression
levels of genes associated with pro-inflammatory M1
macrophages, such as CD86 or inducible nitric oxide
synthase (iNOS). Consistent with these findings, immu-
nohistological analysis revealed more Ibal and arginase-
1 double-positive cells at 9 DPI (14.1 £ 1.5%) than at 42
DPI (0.9 + 0.4%) (Figure 21, J).

We also evaluated the phagocytic activity of the
macrophages recruited into the injured spinal cord
by performing immunochistochemistry for LAMP2, a
marker for endosomes or lysosomes. At 9 DPI, sub-
stantial numbers of infiltrating Ibal, arginase-1, and
LAMP2 triple-positive cells were observed at and
near the lesion epicenter. In contrast, only a small
amount of LAMP2-positive phagocytes were localized
to the lesion epicenter at 42 DPI (Figure 2I). In
addition, no significant expression of mveloperoxi-
dase, a marker of neutrophils, was observed at either
9 DPI or 42 DPI (Figure 2H).
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Comparison of survival rates and differentiation
phenotypes of the grafted NS/PCs between the sub-acute
and chronic TP groups

BLI analysis only detects luminescent photon signals
from living cells, and the number of NS/PCs and the
photon count in vitro were significantly correlated. To
investigate whether similar correlativity was observed
in vivo, various numbers of NS/PCs (approximate
range 2.5 x 10% to 5 x 10° cells) were transplanted
into the intact spinal cord of mice (Figure 3A). These
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data revealed that the photon count was significantly
proportional to the number of grafted cells in vivo
(Figure 3B).

We next analyzed. the survival rate of the grafted
cells on a weekly basis until 42 days after transplant-
ation using BLI (Figure 3C). At 7 days after trans-
plantation, BLI analysis revealed that the survival of
grafted cells. was reduced to.12.4 * 5.6% in the sub-
acute TP group and to almost the same level in the
chronic TP group (152 = 2.9%). At 42 days after

A

On il 1.0x10

s}
St

Y

Fhoton count

{photons/sec!

5

R B g
Celt count {210%

~Sub-acuie TH

BLI of naive rice m ~~piar*mo with various numbe
correlated ir S are means
after iranspfanzatéon, D, Quantitative a
acute and chroni
neurons, GFAP™ astrocytes, a
three reural cell lineage

Figure 3 Survival rate and differentiation phenotype of grafted cells in the sub-acute and chronic TP groups. A, Representative

1008 :
= a0 1 - Bubeacute TP
25 sageChronie TF
g8
o i
g
@ 20 %

: »wwf@% - w&% s T mwmﬁmwmm
By U Tas 4
¢ 7 14 21 28 38 42

Days after transplantation {Days)

Foo

@
&

w Sub-acute TP

s (%)

‘
i
g

tive cel
=

x

markerpost

b

Percentage of

Hu  GFAR APC Nestin
I[’} x\‘O
Q?ka s and the measured photon count were significantly
5 and chronic TP groups immediately and 42 days
ival rate of grafred cells batwwn rhu Sub-

Heans fred cells differentiated into Hu
chronic TP gr i ion rate of gra‘ted Lclls into the
"‘d chrenic < 42 days after rangplantation. Only a
ute and chronic quw 5. Valuss are means = SEM (n = 3).




Nishimura et al. Molecular Brain 2013, 6:3
http//www.molecularbrain.com/content/6/1/3

transplantation, approximately 8% of the cells sur-
vived in both the sub-acute and chronic groups (8.6 =
2.6% vs. 8.3 £ 1.9%). The survival rate of grafted cells
did not significantly differ between the sub-acute and
chronic TP groups at any time point examined
(Figure 3D).

To evaluate the differentiation phenotype of the grafted
cells in vivo, immunostaining for cell markers was per-
formed 42 days after transplantation for both the sub-acute
and chronic groups. Green fluorescent protein (GFP)”
grafted cells differentiated into all three neural lineages in
both groups (Figure 3E). Quantitative analyses revealed that
in the sub-acute and chronic TP groups, most of the grafted
cells differentiated into GFAP' astrocytes (60.8 = 1.6% and
60.7 = 3.7%), followed by adenomatous polyposis coli anti-
gen (APC)" oligodendrocytes (20.3 =+ 5.1% and 15.3 = 1.3%)
and Hu' neurons (11.8 * 6.0% and 12.4 + 4.2%). The differ-
entiation rates of neurons, astrocytes, and oligodendrocytes
did not significantly differ between the sub-acute and
chronic TP groups (Figure 3F). Nestin-positive cells repre-
sented around 3% of the grafted cells in both TP groups.

Grafted cells were limited to the lesion epicenter in the
chronic TP group due to extensive glial scar formation
To examine whether the prominent glial scarring seen in
the chronic TP group affected the distribution of grafted
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cells, we performed immunostaining for GFP in both TP
groups. In sagittal sections of the sub-acute TP group, GFP
© grafted cells were found at the epicenter and at rostral
and caudal sites, whereas in the chronic TP group, grafted
cells were seen almost exclusively at the lesion epicenter
(Figure 4A, B). Quantitative analysis of the GFP* areas in
the axial sections revealed that the GFP” area in the sub-
acute TP group, which spread from 3 mm rostral to 2 mm
caudal from the lesion epicenter, was significantly larger
than that in the chronic TP group (Figure 4C). Moreover,
to clarify what causes the difference of distribution of
grafted cells, double immunostaining for GFP and CS§56
was performed in both TP groups. The GFP" grafted cells
were surrounded and enclosed by CS56" CSPG areas at
the lesion site in the chronic TP group, whereas the grafted
cells distributed beyond CSPGs areas due to less accumula-
tion of CSPG around the lesion site in the sub-acute TP
group (Figure 4D, E).

NS/PC transplantation at the sub-acute phase, but not at
the chronic phase, contributes to the preservation and/or
enhancement of myelination and axonal growth

To compare the effects of NS/PC transplantation on the
injured spinal cord between the sub-acute and chronic
groups, axial sections were examined histologically using
hematoxylin-eosin (HE) staining (Figure 5A). In sections
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at the lesion epicenter and 4 mm rostral and caudal to
it, the HE-stained images revealed significant atrophy of
the spinal cord in the sub-acute phosphate-buffered sa-
line' (PBS) group compared to the sub-acute TP group.
However, the experimental transverse area of the spinal
cord did not significantly differ between the chronic TP
and PBS groups (Figure 5B). In addition, the sub-acute
TP group demonstrated a significantly larger myelinated
area compared to the sub-acute PBS group at the lesion
epicenter and in sections 4 mm rostral and caudal to the
epicenter (Figure 5A), whereas the myelinated area did
not significantly differ between the chronic TP and PBS
groups (Figure 5C).

Next, to investigate axonal growth after NS/PC trans-
plantation, immunostaining for 200 kDa neurofilament
(NF-H) and 5-hydroxytryptamine (5HT) was performed
in all experimental groups (Figure 5D). The NF-H™ areas
at the lesion site as well 4 mm rostral and caudal to it
significantly differed between the sub-acute TP group
and the other groups (Figure 5E). Furthermore, the sub-
acute TP group demonstrated a significantly larger area
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of BHT™ serotonergic fibers in the distal cord compared
to the other three groups (Figure 5F). By contrast; the
chronic TP group demonstrated no significant differ-
ences in the NE-H™ and 5HT" areas compared. to the
chronic PBS group.

NS/PC transplantation at the sub-acute phase, but not at
the chronic phase, promotes motor function and
electrophysiological recovery after SC

Finally, we evaluated locomotor functional recovery by
Basso Mouse Scale (BMS) score, Rotarod testing, and
DigiGait.. We confirmed that the  mice exhibited
complete paralysis of the hindlimbs by-a BMS score of
0 at 1 DPL At 7 DP], the hind limb locomotor: func-
tions had recovered: spontaneously to-an approximate
BMS score of 2, and plateaued at an approximate BMS
score of 3, in all experimental groups except the sub-
acute TP group. In the sub-acute TP group, significantly
greater functional recovery was observed compared to
the sub-acute PBS group at 14 DPI and. thereafter. By
contrast, the chronic TP group did not:show any
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