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the OCCC signature is metabolism-related, in partic-
ular glycogen-related genes, suggesting that OCCC
has a distinct metabolic character among the ovarian
carcinomas [8]. In this context, our next goal was to
characterize the genes responsible for this unique
expression profile and define the function of these
genes, which may then provide the basis for develop-
ment of targeted molecular therapy that is specific for
OCCC. In this study, we have chosen to focus on a
specific OCCC signature gene, hepatic nuclear factor-
1B gene (HNF-18).

HNF-1B is a homeodomain-containing transcrip-
tion factor that shares >80% amino acid sequence of
homeodomain [9] homology with HNF-la. These
proteins dimerize and bind to the same DNA sequence
as homodimers or heterodimers, and are known to
regulate the expression of multiple genes through
direct or indirect mechanisms [9]. Clinically, HNF-1
mutations are responsible for “maturity-onset diabe-
tes of the young (MODY),” a specific type of diabetes
characterized by pancreatic hypoplasia. Diabetes has
been reported in 58% of HNF-18 mutation carriers
[10]. HNF-1pB has been implicated in the development
of the pancreas and is thought to be an essential
regulator of the transcriptional network that controls
pancreatic morphogenesis and the differentiation of
pancreatic endocrine cells [11].

Tsuchiya et al. recently reported that HNF-1B is
overexpressed in OCCC. Although they identified an
anti-apoptotic effect of this gene, the precise mecha-
nism and biological significance of HNF-1B in OCCC
are not yet clear [12}. We have shown that HNF-18 is
not only a component of the OCCC signature [8], but
also included in the intracellular signaling network
demonstrated by pathway analysis, suggesting that
this gene plays an important role in the biology of
OCCC [13]. Therefore, using HNF-18 knockdown in
OCCC cells and HNF-1B overexpression in non-
OCCC cells, we report herein elucidation of how
HNF-18 functionally plays a role in the unique
biology of OCCC from multiple point of view
including cell proliferation, glucose metabolism and
gene expressions.

MATERIALS AND METHODS

Cell Lines and Cell Culture

The OCCC cell lines, RMG1 and RMG2, and the
serous carcinoma cell line, Hey, were cultured in
RPMI1640 (Nikken, Kyoto, Japan) supplemented with
10% FBS in a humidified atmosphere containing 5%
CO, at 37°C, as previously described [8].

Stable Knockdown and Overexpression of the HNF-18
Gene

Two HNF-1-targeting short hairpin RNAs (shRNA;
clone IDs: V2LHS_204881 and V2LHS_196459) and
a non-silencing control (clone ID: RHS4348)
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were purchased from the GIPZ lentiviral shRNAmir
library (Thermo Fisher Scientific, Huntsville, AL).
RMG2 cells were infected with lentiviruses using a
standard protocol using puromycin as the selective
marker. RMG2 cells stably transfected with clones
V2LHS_204881 or V2LHS_196459 were designated
as RMG2-HNFB-sh1l and RMG2-HNF1B-sh2, respec-
tively, while RMG2 cells transfected with the non-
silencing control were designated as RMG2-control.
HNF-1B-suppressed stable cells in RMG1 cell line were
established using same method above and designated
as RMG1-HNF1B-sh1l while non-silencing control
cells were designed as RMG1-control. For HNF-1B-
overexpressing cell line, an HNF-1B-expressing lenti-
virus was constructed using an entry vector,
pENTR221, containing the HNF-18 ¢cDNA (Cat. No.
OHS4559-99857765a; Thermo Fisher Scientific), and
a destination vector, pLenti6/V5-DEST, in a Gateway
system (Invitrogen Japan, Tokyo, Japan). Hey cells
were infected with the HNF-1B-expressing lentivirus
and were selected with blasticidin (Hey-HNF18). The
Hey cells transfected with an empty lentiviral vector
were used as a control (Hey-control).

RNA Extraction and Quantitative Real-Time Polymerase
Chain Reaction (qRT-PCR)

Total RNA was isolated from cells at 80% conflu-
ency using the RNeasy Mini Kit (Qiagen, Tokyo,
Japan). Quantitative RT-PCR (qRT-PCR) was per-
formed with primers and probe specific for HNF-18
(Assay ID: Hs00172123_ml) and SODI1 (Assay ID:
Hs00533490_m1; Tagman Gene Expression Assays;
Applied Biosystems, Foster City, CA). All other assays
were designed using Roche Probefinder software
at the Universal Probe Library Assay Design Center
(https://www.roche-applied-science.com/sis/rtpcr/
upl/index.jsp?id=UP030000). Primer and probe se-
quences are provided in Supplementary Table 1. The
samples were analyzed using a LightCycler 480 Real-
Time PCR system (Roche Diagnostics, Tokyo, Japan).

Protein Extraction and Western Blot Analysis

Protein extraction and Western blotting were
performed as reported previously [13] using the
following primary antibodies: anti-HNF-18 (1:200;
Santa Cruz, CA), anti-CDKN1B (1:1000, BD Biosci-
ence, Franklin Lakes, NJ), anti-CDKN1A (1:200; Santa
Cruz, CA), anti-GLUT1 (1:2500, Abcam Plc, Cam-
bridge, UK), and anti-B-Actin (1:5000, Abcam PIc).
Horseradish peroxidase-linked secondary antibodies
were as follows: anti-goat Ig for HNF-1p (1:10000,
DAKO, Glostrup, Denmark) and CDKN1A (1:3000, GE
Healthcare, Buckinghamshire, UK), anti-mouse Ig for
CDKN1B (1:1000, GE Healthcare) and GAPDH
(1:1000, Santa Cruz, CA), anti-rabbit Ig for GLUT1
and P-actin (1:2500 ‘and 1:10000, respectively,
GE Healthcare). Images were obtained using a
ChemiDoc XRS Plus systemn (Bio-Rad Laboratories,
Tokyo, Japan).
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Proliferation Assays

Cells were seeded into 96-well (2.5 x 103 cells/well)
tissue culture plates and incubated for 3 d. Cell
numbers were counted at three consecutive time
points using a WST-8 (Water Soluble Tetrazolium
salts) assay kit, which is a modified MTT (3-(4,5-
di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide) assay (Nakalai tesque, Kyoto, Japan). WST-8
assay values were normalized using the WST-8 value
at the initial time point (Day 0), and compared
between the groups. Population doubling times (PDT)
were calculated based on the slope angle of the linear
regression model for the three time points. In
addition to WST-8 assays, cell numbers were directly
counted in sextuplicate using the Countess Automat-
ed cell counter (Invitrogen) after the cells were seeded
into 6-well tissue culture plates (3.0 x 10° cells/well)
and incubated for 2, 5, and 11 d. The values were
normalized at the initial time point (Day 0) same as
above.

The Cell Cycle Analysis

The cell cycle analysis was performed as described
previously [14]. The cells (1 x 10%/well) were seeded in
10cm? tissue culture dishes and cultured. The next
day, cells were treated by nocodazole (Sigma-Aldrich,
St. Louis, MO) at a final concentration of 0.5 pg/mlL.
After incubation for 0, 12, 24 h, cells were fixed with
70% ethanol, stained with 25 ug/mL propidium
iodide (Sigma-Aldrich) and analyzed by FACS-Calibur
flow cytometry with Cell Quest software (Becton
Dickson, Franklin Lakes, NJ). For analysis of S-phase
cell, cells were pulse-labeled with 10 uM BrdU for 1h,
fixed with 70% ethanol, denatured, and stained with
APC conjugated Anti-BrdU Antibody (Becton Dick-
son), according to manufacturer’s instructions.

Glucose Uptake Assay and Measurement of Lactate
Production

Glucose uptake assays were performed as reported
previously [15]. In brief, cells were incubated with
glucose-free medium with 1 pCi Z-deoxy‘[3H]-D—glu-
cose for 60min. The cells were then washed three
times with ice-cold PBS, collected, and quantified
using a liquid scintillation counter. Lactate produc-
tion was evaluated by measuring the concentration in
the medium after 24h of incubation. The assay was
performed in triplicate, repeated three times and
all the values were normalized by total protein
concentration.

Glycolytic Flux Measurement

Measurement of glycolytic flux was performed as
reported previously [16]. In brief, 0.7-3.0 x 10° cells
were plated in a 10cm? dish. The medium was
changed the following day to a low-glucose
(4.25mmol/L) medium, and 12h later, p-[3->H]
glucose (3.6 uCi) was added. Every 2h, 400uL of
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the medium was taken for perchloric acid precipita-
tion. The supernatant was applied to DOWEX
1 x 8 200-400 MESH Cl resin (Sigma-Aldrich Japan)
after dilution in sodium tetraborate. The assay
was performed in triplicate, repeated three times
and the values were normalized by total protein
concentration.

Glucose Uptake After Knockdown of GLUTT in RMG2
Cells

GLUT1-specific siRNAs (Gene Solution siRNA, Cat.
No. S103089401 and No. SI00089264; Qiagen, Valen-
cia, CA) and a negative-control siRNA (AllStars
Negative Control siRNA; Qiagen) were transfected
into RMG2 cells using HiPerFect Transfection Reagent
(Qiagen). After 48 h incubation for with the siRNAs,
glucose uptake assays were performed as described
above. To confirm downregulation of GLUT1 expres-
sion, gRT-PCR and Western blotting were performed
as described above.

Microarray Analysis

RNA preparation and microarray analysis were
performed as described [8,13]. Genome set Human
U133 Plus 2.0 chips (Affymetrix, Santa Clara, CA)
were used and expression of HNF-1B-knockdown and
non-silencing control cells were compared using
replicate cell preparations (five replicates each for
RMG2-HNF1B-sh1 and RMG2-HNF1B-sh2, ten repli-
cates for the RMG2-control). The enrichment of the
OCCC signature in control (non-silencing) cells
versus HNF-1B-knockdown cells was evaluated using
Gene Set Enrichment Analysis (http://www.broad-
institute.org/gsea/index.jsp; GSEA). GSEA is a tool to
determine if a particular set of pre-defined genes is
over- or under-represented in a given sample. Here,
probe sets that were previously shown [8] to be
upregulated (n=393) and downregulated (n=44)
were analyzed in RMG2 cells following knockdown of
HNF-18 using two independent shRNAs. Interpreta-
tion of output figures is described in detailin the GSEA
website (http://www.broadinstitute.org/gsea/index.
jsp). Bayesian binary regression 2.0 (http://data.
genome.duke.edu/oncogene.php) was used to calcu-
late the HNF-1B signature probability scores of cells,
indicating transcriptional pathway activity of HNF-18
downstream genes. Published microarray dataset
GSE6008 (consisting of data from 8 OCCC and 91
non-OCCC specimens) was obtained from the Gene
Expression Omnibus (GEO) website (http://www.
ncbi.nlm.nih.gov/geo/). The GSE2109 dataset was
also obtained from the GEO website, and 16 OCCC
and 184 non-OCCC (excluding borderline tumors)
were used for this analysis. Cell lines used in the
present study are listed in Supplementary Table 2.

Statistical Analysis

Differences between groups were assessed using
two-tailed unpaired t-tests. Data are represented
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as mean =+ standard deviation (SD). Statistical analy-
sis was performed using GraphPad Prism 4 software
(GraphPad Software, Inc., La Jolla, CA), and pro-
bability values below 0.05 were considered as
significant.

RESULTS

Effect of HNF-1B8 Knockdown on In Vitro Cell Proliferation

Expression of HNF-18 mRNA in shRNA-transfected
cells was evaluated using qRT-PCR. HNF-18 expres-
sion was significantly suppressed (% suppression is
87.3% in RMG2-HNF1B-shl (P=0.009) and 71.6%
in RMG2-HNF1B-sh2 (P=0.013) compared with
the RMG2-control cells (Figure 1A). Suppression of
HNF-18 protein was also confirmed by Western blot
(Figure 1A).

Silencing of HNF-1p was associated with an increase
in cell proliferation in RMG2 cells as detected using
WST-8 assays (P <0.01; Figure 1B) and based on cell
counts (P < 0.0001; Figure 1B). PDT of RMG2-HNF1B-
sh1l, RMG2-HNF1B-sh2, and RMG2-control cells
were 27.2, 21.5, and 34.5 h, respectively, as assessed
by WST-8 assays, and were 1.94, 1.43, and 2.37 d,
respectively, based on direct cell counts.

The suppression of HNF-18 in another OCCC cells,
RMG1 (% suppression was 72.8% in RMG1-HNF18-
sh1l (P=0.041; Figure 2A)) also caused accelerated cell
proliferation as compared to control cells (P < 0.0001;
Figure 2B). PDT of RMG1-HNF1B-shl and RMG1-
control cells by WST-8 assays were 41.9 and 65.2h,
respectively.

Effect of HNF-18 Knockdown on Cell Cycle Progression
and the Expression of CDKN1A and CDKN1B

We evaluated cell cycle progression by using
Nocodazole, which arrests cell cycle at G2/M phase.
Non-silencing RMG2 cells were significantly retarded
in the transition G1/S to G2/M phase after 12, 24h
incubation with Nocodazole, compared to HNF-18-
knockdown RMG2 cells (Figure 1C). In addition, the
detection of BrdU incorporation revealed that the
percentage of S-phase cell was significantly reduced in
19.9% in RMG2-control cells, compared with 29.1%
in RMG2-HNF18-shl and 28.9% in RMG2-HNF1B-
sh2 (Figure 1D).

Since HNF-18 knockdown resulted in an increase in
cell proliferation in RMG2 cells, we evaluated
CDKN1A and CDKN1B expression in HNF-1p-knock-
down and non-silencing RMG2 cells by Western blot.
CDKN1B protein levels in both RMG2-HNF1g-shl
and RMG2-HNF1B-sh2 were significantly repressed as
compared with the RMG2-control cells (% suppres-
sions were 61.9% and 81.8%, respectively; Figure 1E).
CDKN1A protein levels were also suppressed in
RMG2-HNF1B-knockdown cells compared with
RMG2-control cells (% suppressions were 81.9% and
83.1%, respectively; Figure 1F).
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Effect of HNF-1B8 Knockdown on Glucose Uptake,
Glycolytic Flux, and Lactate Secretion

The rate of glucose uptake was measured using
a scintillation counter and normalized to that of
non-silencing control cells. Uptake of extracellular
glucose was significantly decreased in HNF-18-knock-
down cells as compared to control cells (RMG2-
HNF1B-sh1, 42.6 +6.56%, P=0.0019; RMG2-HNF1p-
sh2, 40.2 4 5.29% P =0.0014; Figure 3A).

To verify that HNF-1B promotes glycolytic activity,
we further examined glycolytic flux, which was
determined by measuring the rate per hour of
conversion of 3H-labeled glucose to H,O through
the glycolytic pathway (Figure 3B). Glycolytic flux
was significantly decreased in HNF-1B-knockdown
cells as compared to control cells (RMG2-HNF1B-sh1,
56.0+£8.78%, P=0.0012; RMG2-HNF1B-sh2, 49.8 +
2.56%, P < 0.0001; Figure 3B).

Lactate secretion into the culture media was also
measured and was significantly suppressed in HNF-
1B-knockdown cells (RMG2-HNF1B-shl, 70.0%
6.46%, P=0.030 and RMG2-HNF1B-sh2, 45.2+
8.53%, P=0.0047) relative to the control cells
(Figure 3C).

We also analyzed the effect of HNF-1B on glucose
metabolism using another OCCC cell line, RMGI1.
Glucose uptake (69.0 & 1.60%, P = 0.0008; Figure 3D),
glycolytic flux (71.5+1.35%, P=0.0003; Figure 3E)
and lactic acid production (60.0+0.98%, P < 0.0001;
Figure 3F) in RMGI-HNF1B-shl cells were also
significantly suppressed compared to control cells.

Effect of HNF-1B Overexpression on Cell Proliferation,
Glucose Uptake, Glycolytic Flux, and Lactate Secretion

Expression of HNF-1B was determined by qRT-PCR
and Western blot following transfection of the HNF-
18 gene construct into Hey ovarian cancer cells. Both
the mRNA and protein levels were markedly increased
in Hey-HNF1B compared with the Hey-control cells
(Figure 2A). Forced expression of HNF-1B in Hey cells
led to a decrease in cell proliferation, as measured
using the WST-8 assay (P=0.0003; Figure 2B). The
PDT of Hey-control and Hey-HNF18 was 11.9 and
14.9h, respectively.

Glucose uptake was significantly increased in
Hey-HNF18 cells when compared with Hey-control
cells (231+65.2% vs. 100+28.8%, P=0.0334;
Figure 3G). Hey-HNF1B cells also exhibited en-
hanced glycolytic flux relative to the Hey-control
cells (120+7.26% vs. 100+2.84%, P=0.0099;
Figure 3H).

Lactate production over the course of 24 h was also
elevated in Hey-HNF1 cells compared with that in
Hey-control cells (118+7.74% vs. 100£8.37%,
P=0.0028; Figure 3I).

Moreover, forced expression of HNF-1B in the
immortalized human ovarian surface cell line
(HOSE/E7/hTERT) showed a similar result as Hey
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Figure 1. Short hairpin RNA mediated knockdown of HNF-18 expression enhanced cell proliferation rates with
suppression of CDKN1A and CDKN18B protein expression and progressed cell cycle the G1/S to G2/M phase. (A) HNF-
18 mRNA expression detected by quantitative RT-PCR (left panel). HNF-1p protein expression detected by Western
blot analysis (right panel). (B) Cell proliferation curve produced from results of the WST-8 assay (left panel). Cell
proliferation curve produced by direct cell counts (right panel). x-axis, incubation time; y-axis, relative number cells in
log, scale. In detail, relative number cells are determined as WST-8 value (number of cells) divided by WST-8 (number
of cells) value at 0 h (0 d). (C) Cell cycle analysis using Pl after 12, 24 h nocodazole treatment. (D) The cell cycle analysis
using BrdU incorporation. (E) CDKN1B protein expression by Western blot analysis. (F) CDKN1A protein expression
by Western blot analysis. The right panels of (E) and (F) showed the quantified protein expressions which were
normalized with the expression in control cells. RMG2-sh1, RMG2-HNF18-sh1; RMG2-sh2, RMG2-HNF1B-sh2; G1,
G1 phase; G3, G3 phase; *P<0.01.
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cell in glucose uptake, glycolytic flux and lactate

production (Supplementary Figure 2).

Effect of HNF-1B Knockdown and Overexpression on
GLUT1 Expression

GLUTI1 mRNA expression in HNF-1B-knockdown
RMG2 cells was evaluated by gRT-PCR and found to
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be repressed as compared to the control cells (RMG2-
HNF18-sh1, 36.3+0.19%, P=0.0001 and RMG2-
HNF1B-sh2, 40.5+0.20%, P=0.0001; Figure 4A).
Likewise, the expression of GLUT1 protein was also
lower in the HNF-1B-knockdown cells than that
observed in the non-silencing control cells (Figure
4B). In addition, the mRNA expression of GLUT1I in
RMG1-HNF1B-sh1 was also decreased as compared to
control cells (84.94% +1.25%, P=0.035; Figure 4C).
GLUT1 protein expression was also suppressed in
RMG1-HNF1-shl (Figure 4D).

Inversely, the expression of GLUTI mRNA in Hey-
HNF18 cells was more than 2-fold higher than that in
Hey-control cells (228+11.2% vs. 100+0.98%,
P=0.0073; Figure 4E). GLUT1 protein expression
was also elevated in the HNF-1B-overexpressing cells
(Figure 4F).

Effect of HNF-1B Suppression on Glycolytic Enzymes and
HIF-Ta Expression

Messenger RNA expression levels of most of the
glycolytic enzymes (Hexokinasel (HK1), Hexokinase2
(HK2), Glucose-6-phosphate isomerase (GPI), Phos-
phofructokinase liver type (PFK-L), Phosphofructoki-
nase platelet type (PFK-P), Aldolase A (ALDOA),
Aldolase B (ALDOB), Aldolase C (ALDOC), Triose-
phosphate isomerase (TPI), Phosphoglycerate kinase
1 (PGK1), Phosphoglycerate kinase 2 (PGK2), Phos-
phoglycerate mutase 1 (PGAM1), Enolase 2 (ENO2),
Enolase 3 (ENO3), Lactose dehydrogenase A (LDHA),
Lactose dehydrogenase B (LDHB)) were significantly
decreased in RMG2-HNF1B-shl cells ‘as compared
with the RMG2-control group (Figure 5).

Since HIF-1a is implicated in the stress-resistance in
several cell lines, we examined if HNF-18 affects HIF-
la expression. Expression levels of HIF-1o mRNA were
not significantly different between RMG2-HNF1B-
shl, RMG2-HNF1B-sh2, and RMG2-control cells
(Supplementary Figure 3).

Effect of HNF-18 Suppression on OCCC Signature

OCCC signature upregulated genes (393 probe sets)
were significantly enriched in the non-silencing
control cell group as compared with the HNF-18-
knockdown cells (RMG2-HNF18-sh1, RMG2-HNF18-
sh2; FDRg-value < 0.0001 and <0.0001, respectively;
Figure 6A). OCCC signature downregulated genes (44
probe sets) were significantly enriched in the HNF-18-
knockdown cells when compared with the non-
silencing - control cells (FDRg-value=0.0019 and
0.0051, respectively; Figure 6B). These data indicate
that by suppressing HNF-18 activity, the OCCC
signature profile is altered in a manner that more
closely matches the non-OCCC gene signature profile.

Creation of an HNF-18 Signature From
HNF-18-knockdown Microarray Data

We analyzed the gene expression microarray data
derived from the HNF-1B-knockdown cells and the
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WST-8 assay. RMG1-sh1, RMG1-HNF1B8-sh1; *P < 0.05. Experiments were done three times in triplicate.

non-silencing control cells using Bayesian binary
regression 2.0, and derived an HNF-18 signature that
consists of 250 probe sets (Supplementary Table 3)
that are differentially expressed between these two
groups (Figure 6C and D). The HNF-18 signature was
able to distinguish OCCC from non-OCCC in the
clinical ovarian cancer dataset GSE6008 (HNF-18
signature probability, 0.934+0.0378 in OCCC vs.
0.423+£0.208 in non-OCCC, P<0.0001) and in
dataset GSE2109 (HNF-1B signature probability,
0.632+0.297 in OCCC vs. 0.478+0.224 in non-
OCCC, P=0.0112), as well as in the ovarian cancer
cell line dataset KyotoOv [8] (HNF-1B signature
probability, 0.610+£0.196 in OCCC vs.0.409 +0.221
in non-OCCC, P=0.012; Figure 6D).

Effect of GLUT1 Knockdown on Glucose Uptake of RMG2
Cells

Knockdown of GLUT1 was performed using GLUT1-
specific siRNAs (siRNA1, siRNA2). Over 41.8%
(siRNA1) and 49.6% (siRNA2) knockdown of GLUTI
expression was achieved as measured by qRT-PCR and
87.7% (siRNA1) and 61.7% (siRNA2) reduction in
GLUT1 protein levels measured by Western blot
(Supplementary Figure 1A and B). Glucose uptake
following GLUT1 suppression was decreased relative
to that observed in the cells receiving the negative-
control siRNA (siRNA1, 73.7+7.72%, P=0.0074;
siRNA2, 70.8+6.28%, P=0.0030; Supplementary
Figure 1C).
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Effect of HNF-1B Suppression on the Expression of
Superoxide Dismutase 1 (SODT)

In the microarray data derived from the HNF-1B-
knockdown cells and the non-silencing control cells,
the expression of SODI1, which is one of oxidative
stress genes, were significantly suppressed in RMG2-
HNF1B-sh1 cells (P < 0.0001) and RMG2-HNF1B-sh2
cells (P =0.0002) as compared with the RMG2-control
(Figure 6F).

Further, we validated the SOD1 mRNA expression
by using qRT-PCR. The expression was significantly
decreased in RMG2-HNF1B-sh1 cells (P=0.0012) and
RMG2-HNF18-sh2 cells (P=0.0001) as compared
with the RMG2-control (Figure 6G). Using another
OCCC cell line, RMG1, HNF-1B suppression also
caused decrease in mRNA expression of SOD1 genes
(P=0.029; Figure 6G).

The expression of Glutathione peroxidase (GPX),
which is also one of the oxidative stress genes, was
also decreased in HNF-1B-suppressed cells (Supple-
mentary Figure 4).

DISCUSSION

We previously identified an OCCC-specific gene
expression signature that contains multiple genes
with functional relevance to the biology of clear cell
carcinomas, including HIF-1e, IL-6, and HNF-18. In
this study, we focused on the role of HNF-18 in OCCC
for several reasons. First, HNF-1B is overexpressed
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Figure 3. Knockdown of HNF-18 in RMG2 and RMG1 cells was associated with the decrease of glucose uptake,
glycolytic flux, and lactate secretion. Conversely, forced expression of HNF-18 in Hey cells was associated with the
increase of them. (A) Glucose uptake in RMG2 cells. (B) Glycolytic fluxin RMG2 cells (left panel). Scheme of simplified
glycolytic pathway (right panel). (C) Lactate secretion in RMG2 cells. (D) Glucose uptake in RMG1 cells. {E) Glycolytic
fluxin RMG1 cells. (F) Lactate secretion in RMG1 cells. (G) Glucose uptake in Hey cells. (H) Glycolytic flux in Hey cells.
() Lactate secretion in Hey cells. RMG2-sh1, RMG2-HNF18-sh1; RMG2-sh2, RMG2-HNF18-sh2; RMG1-sh1, RMG1-
HNF1B-sh1. *P<0.05.
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Figure 4. HNF-1B upregulated GLUT1 expression. Knockdown of HNF-18 expression in RMG2 suppressed GLUTT
mRNA (A) and protein (B). Knockdown of HNF-18 expression in RMG1 suppressed GLUTT mRNA (C) and protein
expression (D). Forced expression of HNF-1B in Hey cells increased GLUTT mRNA (E) and protein expression (F).
RMG2-sh1, RMG2-HNF1B-sh1; RMG2-sh2, RMG2-HNF18-sh2; RMG1-sh1, RMG1-HNF1B-sh1. *P < 0.05.

specifically in the clear cell histologic type of
epithelial ovarian cancer [12,17-19], which we also
confirmed by gene expression microarray and RT-PCR
[8]. Second, we have shown that the expression of
HNF-18 is epigenetically regulated [8,20], which is an
important and pharmacologically reversible feature
of many cancer-associated genes. Third, activation of
the HNF-18 signaling network was strongly predicted
from the pathway analysis of the OCCC signature,
indicating that HNF-1p is a central mediator of the
OCCC-specific signaling network [8,13]. Finally,
transcription factor binding motif analysis showed
that HNF-1B binding motifs are significantly enriched
among genes that comprise the OCCC signature [13].
Taken together, these findings strongly suggested
that HNF-1B plays a central role in the manifestation
of the unique biological phenotype of OCCC, but
the mechanisms driving this have been thus far
unclear.

Molecular Carcinogenesis

To begin a functional analysis of HNF-1B in OCCC,
we chose to use RMG2, a human OCCC cell line,
because it phenotypically resembles clinical OCCC
and is also thought to be best representative of OCCC
from the context of gene expression profiles as
measured by microarray analyses. Knockdown of
HNF-18 expression in RMG2 cells using lentiviral
transfer of gene-specific shRNAs resulted in a marked
shiftin the OCCC signature toward a non-OCCC gene
expression profile, suggesting that, as predicted, HNF-
1B is a key molecule in maintaining an OCCC
biological phenotype (Figure 6A and B). To confirm
the significance of HNF-1p in OCCC, we also used
binary regression 2.0 to develop an HNF-18 gene
signature using gene expression microarray data
obtained from HNF-1B-knockdown and control cells.
The HNE-1B gene signature consists of the group of
genes that are differentially expressed between the
HNF-1B-knockdown and control RMG2 cells, and has
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Figure 5. Effect of HNF-1B suppression on glycolytic enzymes Messenger RNA expression of HK7, HK2, GPI, PFK-L,

PFK-P, ALD-A, ALD-B, ALDOC, TPI, PGK1, PGK2, PGAM 1, ENO2, ENO3, LDHA, and LDHB were decreased in RMG2-
HNF1B-sh1 (right bar) cells, relative to RMG2-control cells (left bar). HK, hexokinase; GPI, glucose-6-phosphate
isomerase; PFK-L, phosphofructokinase liver type; PFK-P, phosphofructokinase platelet type; ALD, aldolase; TP,
triosephosphate isomerase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PGK, phosphoglycerate kinase;
PGAM, phosphoglycerate mutase; ENO, enolase; PKM, pyruvate kinase muscle type; LDH, lactate dehydrogenase.

*P < 0.05. Experiments were done in duplicate.
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the ability to distinguish OCCC from non-OCCC in
both ovarian cancer cell line datasets and important-
ly, clinical ovarian cancer datasets (Figure 6C-E).
These results support that HNF-1p plays a pivotal role
in the biology of OCCC. In addition, a total of 23
genes including HNF-1B were overlapped between
OCCC- and HNF-1B signature. Among them, eight

11

genes (ELOVL6, FXYD2, IVNSIABP, LIPC, MED2S,
MITF, RELN, TNFAIP6) have HNF-1 binding element
(V$HNF1 01) by analyzing with GATHER software
(http://gather.genome.duke.edu/). We also analyzed
these 23 genes by DAVID software (http://david.abcc.
ncifcrf.gov/), and found that genes belonging to
GO slim terms related to cell proliferation and

A Upregulated genes (393 probes)

RMG2-HNF1B-sh1

RMG2-HNF1B-sh2

B Downregulated genes (44 probes)

RMG2-HNF16-sh1

RMG2-HNF1B-sh2

ST

Figure 6. Gene expression microarray analysis showed that HNF-1B is a key molecule determining the OCCC gene
expression profile. (A and B) Gene Set Enrichment Analysis. The x-axis represents rank of genes comprising of a
particular gene set (signature genes) among the whole genes in the genome. Each vertical black line represents on
signature genes, and the degree to which the black lines are deviated to the left or right indicates the statistical
significance regarding increased expression of the signature genes in a particular group of samples (designated as
enrichment). The y-axis represents Enrichment Score (ES) of the individual signature genes. Shift of the green line
curve to the upper left indicates enrichment in the left, and shift to the lower right indicates enrichment in the right.
(A) Left x-axis; Individual upregulated genes within the OCCC signature are shown as vertical black lines to see their
deviation compared to the whole genes in the genome between the left (control ShRNA samples, n = 10) and the
right (HNF1B-sh1, n =5). The genes comprising of this gene set were shifted to the left, which indicates enrichment
in the RMG2-control-sh samples as compared to RMG2-HNF1B-sh1 samples (FDRg-value < 0.0001). (A) Right;
Similarly, the upregulated genes within the OCCC signature were enriched in the RMG2-control-sh samples (n = 10)
as compared to the RMG2-HNF1B-sh2 samples (n = 5) (FDRg-value < 0.0001). (B) The downregulated genes within
the OCCC signature were significantly enriched in RMG2-HNF18-sh1 and RMG2-HNF18-sh2 cells as compared with
RMG2-control cells (FDRg-value = 0.0019 and 0.0051, respectively). (C) Analysis using Bayesian binary regression.
The HNF-18 signature was generated from 250 probe sets shown in each row. Red to blue indicates high to low
expression. Each column represents an individual cell line. Ten columns on the left side represent shRNAs (both
RMG2-HNF1B-sh1 and RMG2-HNF18-sh2 cells) and the ten columns on the right side represent RMG2-control cells.
(D) Leave-one-out cross-validation of training sets (RMG2-HNF1B-sh1 and RMG2-HNF18-sh2 cells versus RMG2-
control) using the HNF-1 signature genes. Blue and red colors indicate RMG2-HNF18-sh cells (n = 10) and RMG2-
control cells (n = 10), respectively. The probability estimates based on the HNF-1p signature genes is shown on the
vertical axis with 95% confidence intervals. (E) OCCC has a higher probability of having the HNF-18 signature profile
than non-OCCC. GSE6008 (0.93 +0.038 vs. 0.42 +0.21, P<0.0001); GSE2109 (0.63 +£0.30 vs. 0.48 £0.22,
P=0.0112); KyotoOv (0.61+£0.20 vs. 0.41:40.22, P=0.012). (F) The expression of SOD7 gene (probe ID:
200642 _at) is significantly decreased in RMG2-HNF18-sh1 and RMG2-HNF18-sh2 cells as compared to control cells
(P<0.0001 and P=0.0002, respectively). (G) The validation of SOD7 gene expression by gRT-PCR. RMG2-HNF18-
sh1 and RMG2-HNF1B-sh2 cells versus RMG2-control cells (P=0.0012 and P=0.0001, respectively). RMG1-
HNF1B-sh1 versus RMG1-control cells (P=0.029). RMG2-sh1, RMG2-HNF1B-sh1; RMG2-sh2, RMG2-HNF13-sh2;

RMG1-sh1, RMG1-HNF1B-sh1. *P < 0.05.
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Figure 6. (Continued)

metabolism such as “negative regulation of cell Then, we tested if HNF-1p8 suppression affects cell
proliferation (P=0.09),” “carbohydrate binding proliferation and notably found that this significantly
(P=0.062),” and “regulation of cellar response to increases the growth rate of RMG2 cells. Moreover,
stress (P=0.009)” were enriched in these 23 genes. transfection of the HNF-18 gene into Hey, a serous
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ovarian cancer cell line with minimal HNF-18
expression, caused cell growth to be significantly
decreased. These data suggest that HNF-18 functions
as a suppressive regulator of cell proliferation. We
then evaluated whether HNF-1B suppression causes
leads to altered expression of the cell cycle regulator,
CDKN1A and CDKNI1B, and found that it causes
marked reduction of CDKN1A and CDKNI1B levels,
suggesting that HNF-1B negatively controls cell
proliferation by inducing expression of a potent cell
cycle regulatory gene that inhibits G1 progression. As
shown in Supplementary Table 4, CDKN1B has HNF-1
binding motif according to TRANSFAC dataset [21].
The cell cycle analysis using flow cytometry also
suggests that HNF-1B act as inhibitor of cell cycle
progression. Suppression of HNF-1B significantly
increased cell population in S-phase. Taken together,
observation of clinical cases as well as ovarian cancer
cell lines indicates that OCCC generally grows slower
than serous adenocarcinoma, which may partly be
ascribed to the overexpression of HNF-1g in OCCC
[3].

It is well documented that cancer cells exhibit
unusually active metabolic processes when compared
with normal cells. This “metabolic switch” in cancer
cells is most prominent with regard to glucose
metabolism [22-24]. In this study, we incidentally
noticed that the culture media over time retained its
red coloration from the phenol red (which is indica-
tive of a more basic pH levels) in spite of the increased
growth rate of the HNF-1B-knockdown RMG2 cells,
suggesting that these cells may be secreting less lactate
into the media. Indeed, measurement of lactate
indicated that both RMG2-HNF1B-sh1 and RMG2-
HNF1B-sh2 show significantly less efflux of lactate
when compared with the RMG2-control. We then
evaluated glucose uptake in these cells and found that
it is also significantly lower in RMG2-HNF1B-sh1 and
RMG2-HNF1B-sh2 cells than in the RMG2-control
cells. Expression of the glucose transporter GLUTI
mRNA as well as GLUT1 protein was found to be lower
in RMG2-HNF13-sh1 and RMG2-HNF1B8-sh2 than in
the RMG2-control cells. Conversely, forced expres-
sion of HNF-1B in Hey cells increased glucose uptake
as well as expression of GLUTI1. Furthermore, the
observed significant reduction in glucose uptake in
RMG2 cells following GLUT1 knockdown confirmed a
major role of GLUT1 in mediating glucose transport
in these cells (Supplementary Figure 1). In addition,
GLUT1 had HNEF-1 binding motif according to
TRANSFAC dataset provided by Jeffrey T. et al.
(2006) [21] (Supplementary Table 4). These data
suggest that HNF-1pB increases glucose uptake at least
in part by upregulating a glucose transporter gene.

We further evaluated the role of HNF-18 in glucose
metabolism using an assay that measures glycolytic
flux within cells. Knockdown of HNF-18 in RMG2
cells decreased the glycolytic flux rate in comparison
with the control cells, while forced expression of HNF-
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1B in Hey cells had the opposite effect, suggesting that
HNF-18 not only increases glucose uptake but also
promotes glycolysis in cancer cells. In fact, further
evaluation of gene expression related to the enzymat-
ic activity associated with the glycolytic process
revealed that a majority of the genes examined were
repressed by HNF-1B knockdown. As shown in
Supplementary Table 4, some of these glycolytic
enzymes have HNF-1 binding motif according to
TRANSFAC dataset [21]. It has been reported that
activation of HIF-1a causes upregulation of GLUT1,
glucose uptake, and glycolysis under hypoxic con-
ditions [25-27]. Stany et al. [28] also showed that HIF-
o pathway was activated as one of specific signaling
pathways related to glucose metabolism in OCCC
compared with those in high-grade serous ovarian
cancer. HIF-1a protein is regulated at the posttransla-
tional level via the ubiquitin-proteasome system
under normoxic condition. In this study, we found
that HNF-18 did not alter either mRNA or protein
expressions of HIF-la (Supplementary Figure 3).
Therefore, HNF-1B is not likely to affect transcrip-
tional or posttranscriptional levels of HIF-1« protein.
On the other hand, HIF-2« is highly homologous and
has similar binding motif as HIF-1a [29]. Therefore,
we cannot exclude the possibility that HNF-1p might
regulate the glycolytic pathway through HIF-2a.

The characteristically high glycolytic rate in cancer
cells was first described by Otto Warburg and is
referred to as the “Warburg effect” [30]. According to
Warburg’s observations, unlike normal tissue cells,
cancer cells use glycolysis instead of using mitochon-
drial oxidative phosphorylation to obtain ATP, which
leads to high glucose consumption and lactate
production. Although not completely understood, it
is presumed that this mechanism is used to meet the
metabolic requirements to support rapid proliferation
of cancer cells. Indeed, a similar metabolic switch is
sometimes observed in normal physiological process-
es, such as embryonic development, wound healing,
or immune reactions during which rapid cell prolifer-
ation is required [22]. In cancer cells, some oncogenic
alterations have been shown to evoke the Warburg
effect [31-34]. In this study, for the first time, we
demonstrated that an important function of HNF-18
is to promote the glycolytic process, namely the
Warburg effect.

The reason why HNF-1B functions in this manner
in OCCC is yet to be elucidated. However, it is
noteworthy that this study also found that HNF-1p
suppresses cell proliferation along with promoting
glycolysis. Hence, increased glycolytic metabolism
does not occur in parallel to increased cell prolifera-
tion with regard to HNF-18 function, similar to the
case of many oncogenes [35]. These findings may
indicate that the reasons for overexpression of HNF-
1B in OCCC may not necessarily be to meet energy
requirements for cell proliferation. Inversely, serous
ovarian cancer, typically more rapidly growing
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tumors than OCCC, seldom show HNF-1B over-
expression. Recently, elevated glycolytic rates have
been shown to contribute to the inhibition of
oxidative stress-induced apoptosis in cancer cells as
well as in normal cells, under some conditions
[36,37]. We have shown that OCCC arises in the
extraordinarily stressful environment of oxygen free
radical-enriched endometriotic cysts and expresses
significantly more stress-related genes as compared to
other histologic types of epithelial ovarian cancers [8].
In this context, HNF-1B may act as a stress-reducer
that allows for survival of OCCC cells, although
further study is needed to test this hypothesis.
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Epithelial ovarian cancer (EOC) is halimarked by a high degree of heterogeneity.
To address this heterogeneity, a classification scheme was developed based on
gene expression patterns of 1538 tumours. Five, biologically distinct
subgroups — Epi-A, Epi-B, Mes, Stem-A and Stem-B — exhibited significantly
distinct clinicopathological characteristics, deregulated pathways and patient
prognoses, and were validated using independent datasets. To identify subtype-
specific molecular targets, ovarian cancer cell lines representing these molecular
subtypes were screened against a genome-wide shRNA library. Focusing on the
poor-prognosis Stem-A subtype, we found that two genes involved in tubulin
processing, TUBGCP4 and NAT10, were essential for cell growth, an observation
supported by a pathway analysis that also predicted involvement of microtubule-
related processes. Furthermore, we observed that Stem-A cell lines were indeed
more sensitive to inhibitors of tubulin polymerization, vincristine and vinorel-
bine, than the other subtypes. This subtyping offers new insights into the
development of novel diagnostic and personalized treatment for EOC patients.
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INTRODUCTION

Epithelial ovarian cancer (EOC) is the most lethal gynaecologic
malignancy. The global disease burden is approximately
225,000 new cases per year with a survival rate of 30% (Bray
et al, 2013). EOC, like most other cancers, represents a
heterogeneous collection of distinct diseases that arise as a
consequence of varied somatic mutations and epigenetic changes
acquired during the process of tumourigenesis and tumour
progression. This heterogeneity is apparent in tumour histo-
pathology such as serous, mucinous, endometrioid and clear cell
histotypes. It is now established that the discrete histological
types differ with respect to variable clinical features, including
epidemiological risk, spread patterns, somatic mutations,
chemotherapeutic response and patient prognosis (Gilks & Prat,
2009). The histologically distinct subtype, high-grade serous
adenocarcinoma, is the most common subtype and accounts for
approximately 70% of all ovarian carcinoma. Although this
histotype has distinguishing clinical characteristics from the other
subtypes, patients with this histological subtype still show
diverse outcomes and usually low survival rates, even after the
same or very similar treatment regimens (Gilks & Prat, 2009). One
possible reason for this low survival rate is that the high degree of
heterogeneity of EOC is not considered in the current standard of
care (Vaughan et al, 2011). Thus, it is critically important to
develop a systematic scheme to dissect the heterogeneity of
EOC (Bast et al, 2009; Vaughan et al, 2011).

Genome-scale expression data has been instrumental in
characterizing the complex biological diversity of human cancer
(Alizadeh et al, 2000; Perou et al, 2000; Verhaak et al, 2010).
Subtypes identified through expression microarray analyses are
coupled with multiple clinical parameters, such as patient
prognosis, age of onset and molecular marker expression
(Alizadeh et al, 2000; Perou et al, 2000; Verhaak et al, 2010).
Efforts to dissect EOC heterogeneity have correlated expression
patterns with clinical features, such as histological types,
aggressiveness and patient outcomes (Denkert et al, 2009;
Helland et al, 2011; Mok et al, 2009; The Cancer Genome Atlas
Research Network, 2011; Tothill et al, 2008). However, due to
varied sample sizes and analytical criteria, the reported subtypes
of EOC are similar but not completely the same (Helland et al,
2011; The Cancer Genome Atlas Research Network, 2011; Tothill
et al, 2008; Verhaak et al, 2013), with reports of six molecular
subtypes in 285 serous and endometrioid EOC (Tothill et al,
2008), yet only four molecular subtypes in 489 high-grade serous
EOC (The Cancer Genome Atlas Research Network, 2011). Thus,
a refined classification scheme with intense phenotypic char-
acterization remains to be established. Also, the molecular targets
relevant to cancer cell growth in these transcriptional subtypes
have not been identified. The development of diagnostic and
therapeutic strategies based on such a scheme is paramount for
improving therapeutic efficacy in patients with EOC.

Despite recent successes with molecular targeted therapies
for chronic myelogenous leukaemia, ER- or Her2-positive breast
cancer, and EGFR-mutated lung cancer, targeted therapies for
EOC have not been as encouraging (Quintas-Cardama et al,
2009; Rosell et al, 2010; Yaziji et al, 2004). One approach for the
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identification of specific targets for EOC subtypes is the use of a
genome-wide, systematic, functional assessment of cancer cell
growth (proliferation and/or viability). The recent success in
suppressing the growth of cultured lung cancer cells with
activating EGFR mutations by siRNA (Sordella et al, 2004)
unveiled the sensitivity of siRNA-based approaches in distin-
guishing drivers of tumour growth. RNAI libraries, such as The
RNAI Consortium (TRC) lentiviral library (Moffat et al, 2006;
Root et al, 2006), have enabled systematic genetic studies in
mammalian cells, and have identified the genes responsible for
proliferation and viability in human cancer cell lines, particu-
larly in the context of synthetic lethality (Barbie et al, 2009; Luo
et al, 2008; Scholl et al, 2009).

The TRC library contains 80,000 lentivirally expressing short
hairpin RNAs (shRNAs), corresponding to 16,000 human genes.
In a systematic screen, a library such as this could be employed to
help isolate key regulators of cancer cell growth on a genome-wide
scale in a pooled format. Cultured cells would be infected with
a pool of the shRNA-expressing lentivirus library such that a
typical cell is subjected to only one integration event of an shRNA-
expressing lentiviral genome into the host. Infected cells would
then be allowed to proliferate for a period of time to permit the
amplification or depletion of hairpins accordingly. Although the
vast majority of shRNAs have minimal effects on cell proliferation
and/or viability, an shRNA that silences the expression of a
critical gene will be relatively depleted. Conversely, the relative
amplification of an sShRNA suggests that it targets a gene with an
inhibitory role in cell growth. These integrated hairpins are
then subsequently retrieved from the genomic DNA by PCR
amplification, and the abundance of each shRNA sequence can be
measured with microarray hybridization (Luo et al, 2008) or with
next-generation sequencing technology (Sims et al, 2011).

Notably, the successful application of this platform led to
the discovery of PAX8 as having a more essential role in
proliferation and survival in ovarian cancer cell lines than in cell
lines from other tissues (Cheung et al, 2011). Furthermore, TBK1
was identified as a synthetic lethal partner of oncogenic KRAS in
an earlier report using this method (Barbie et al, 2009). Despite
these successes, this technology has not been used to identify
subtype-specific growth-promoting genes, particularly in the
context of ovarian cancer.

Here, we describe a functional genomic approach to dissect the
heterogeneity of EOC. We established a large-scale meta-analysis
of EOC microarray datasets to determine EOC molecular subtypes.
Next, we integrated EOC cell line data into the molecular
subtyping scheme to derive an in vitro working model
representative of each molecular subtype. Finally, we utilized
genome-wide shRNA screening to identify molecular targets
crucial for cell growth in a selected subtype, which linked the
subtype with tubulin polymerization inhibitory drugs.

RESULTS

Molecular heterogeneity of epithelial ovarian cancer
We used a large collection of ovarian tumour gene expression
data (n=1538; serous: 1335, mucinous: 27, clear cell: 25,
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endometrioid: 96, and others: 55 samples; note that the
histological distribution is largely biased toward serous
adenocarcinoma as opposed to typical clinical setting) derived
from 16 independent studies (Supporting Information Table 1)
(Anglesio et al, 2008; Bild et al, 2006; Bowen et al, 2009; Denkert
et al, 2009; Hendrix et al, 2006; Hogdall et al, 2003; Hsu et al,
2007; Iorio et al, 2010; Jochumsen et al, 2007, 2009; Mok et al,
2009; Pejovic et al, 2009; The Cancer Genome Atlas Research
Network, 2011; Tone et al, 2008; Tothill et al, 2008; Tung et al,
2009). Among the 16 datasets, the dataset from TCGA was the
largest in sample number (n=406; 26.4% of all samples). All
publicly available datasets were included at the time of the study
(April 2010), and compiled with an Oslo cohort dataset (BD
and JMN). A strong batch-effect was removed by ComBat,
eliminating technical differences across data collection sites,
while conserving meaningful variations (Supporting Informa-
tion Fig 1A and B) (Chen et al, 2011; Johnson et al, 2007).
A preliminary statistical power analysis showed that 1500 or
more samples were required to achieve sufficient statistical
power (> 0.8) in capturing the complexity and dynamicity of
EOC (Supporting Information Fig 2; Supporting Information
Materials and Methods) (Fox & Mathers, 1997). In this
collection, known prognostic factors were correlated with
patient overall survival by univariate and multivariate Cox
proportional hazards analyses (Table 1).

To identify EOC molecular subtypes, we applied consensus
clustering (CC) to the collection and detected five clusters (Fig 1A)
that were characterized by markers of differentiation or cell-type
status and stromal components, including the presence of
infiltrated inflammatory cells (Supporting Information Table 2).
Subtypes were annotated by applying single sample gene set
enrichment analysis (ss-GSEA) (Verhaak et al, 2010) with
literature-curated gene signatures for epithelial, mesenchymal
and stem cells (Supporting Information Text), and confirmed this
characterization with the use of appropriate markers. The
silhouette plot and SigClust (Liu et al, 2008b) analysis confirmed
tumour similarity within each subtype, indicating the robustness
of the classification (Supporting Information Fig 3A). The
subtype distribution by cohorts and histology is presented in
the Supporting Information Text and Supporting Information
Figs 4A and B. Subtype distribution within the samples, taken by
laser capture microscopy (GSE10971, GSE14407 and GSE18520),
implied that the subtypes were intrinsic to cancer cells, and not
dependent on stromal cells (Supporting Information Text).

We compared our subgrouping with a previous classification
(285 samples; GSE9891) included in our combined dataset
(Tothill et al, 2008). An overall concordance of 82.9% for all of
the subtypes was found (Supporting Information Table 3;
Supporting Information Fig 3B); thus, our large-scale analysis
confirmed the previous study, and provided finer distinctions
not detectable with fewer samples. Also, we noted that the
proposed molecular subtypes were akin to that of serous ovarian
carcinoma as proposed by The Cancer Genome Atlas Research
Network (2011) (Supporting Information Fig 3B). However, the
subtyping schemes from the previous studies did not show a
one-to-one match with our proposed classification (Supporting
Information Table 3; Supporting Information Fig 3B; Supporting
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Information Text; see the mutual relationships among Epi-A or
Epi-B/C2, C3 or C4/Immunoreactive or Differentiated). This
discrepancy may suggest a shared biological feature across these
subgroups and hence may cause an imperfect distinction among
the subtypes with predictive models as described later (Fig 1D;
Supporting Information Fig 8C; Supporting Information Table 8;
Supporting Information Text). We also noted that TCGA
molecular subtyping did not include a Stem-B/C6 population
(Supporting Information Fig 3B; Supporting Information Text).
The proposed subtypes in the current study are similar to the
previously identified molecular subtypes yet reveal novel
biological features.

Correlation of subtype with clinicopathological parameters
We correlated the subtypes with various clinicopathological
parameters to ascertain their clinical relevance (Supporting
Information Fig 6A; Supporting Information Tables 4A and B;
note that the clinicopathological information obtained with each
dataset was neither standardized nor centrally reviewed across
the datasets; therefore, there might be misdiagnosed or mis-
evaluated samples included). We found a significant correlation
between subtype and patient outcome: Epi-A, Epi-B and Stem-B
subtypes had a better prognosis in a Kaplan-Meier analysis
(Fig 1B), while Mes and Stem-A tumours were linked with
poorer outcomes. The Mes subtype included more advanced
staged and metastasized tumours (Supporting Information
Fig 6A; Supporting Information Tables 4A and B), whereas
some Stem-A tumours were already found to be at stages 1 and 2
(Supporting Information Fig 6B), with poorer outcomes than
those of other subtypes, even at stages 1 and 2 (Supporting
Information Fig 6B), Furthermore, Stem-A tumours were
enriched in older patients (Supporting Information Fig 6A;
Supporting Information Tables 4A and B). The Stem-B subtype,
on the other hand, was characterized by multiple histological
types, including the majority of mucinous, endometrioid and
clear cell carcinoma and some serous carcinoma (Supporting
Information Figs 4B, 5 and 6A; Supporting Information
Tables 4A and B). Focusing solely on ‘serous tumours
(Supporting Information Fig 6D), the frequency of Epi-A-
classified tumours decreased significantly as tumour classifica-
tion moved from serous tumours with low malignant potential
(LMP) through to high-grade tumours, whereas the opposite
shift in pattern was true for Mes and Stem-A serous tumours. All
subtypes displayed high-grade serous carcinoma, with distinc-
tions in survival in Kaplan-Meier curves (Supporting Informa-
tion Fig 6C). The effect of molecular subtyping on prognosis
was significant in both the univariate and multivariate Cox
regression analyses with multiple combinations of clinically
relevant parameters and status (Table 1; Supporting Information
Tables 5A-E; Supporting Information Text).

Clear distinctions were also observed in the enrichment of the
gene expression signatures for various pathways. The ss-GSEA
analysis of 1538 samples using 6898 gene sets (GSEA databases
Supporting Information Table 6) revealed a subtype-specific
enrichment of 207 gene sets (Fig 1C; Supporting Information
Table 7) (Subramanian & Simon, 2011). Mes tumours correlated
with Metastases and TGF-g-related pathways, consistent with
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Table 1. Univariate and multivariate Cox proportional hazards regression analysis for multiple clinical variables and tumour subtypes.

Clinical variables Sample size (total n=539) Univariate (HR, 95% CI) p-value Multivariate (HR, 95% ClI) p-value
Age (year)

<55 175 (32.47%) 1 1

>55 364 (67.53%) 1.403 (1.071-1.839) 0.0141 1.285 (0.9781-1.687)* 0.07173°
Stage

Lorll 47 (8.72%) 1 1

Hlor IV 492 (91.28%) 3.907 (1.843-8.285) 0.00038 3.429 (1.591-7.389)° 0.00165°
Grade

1 17 (3.15%) ) 1 1

>2 522 (96.85%) 2.58 (0.9578-6.949) 0.0608 1.365 (0.494-3.763)? 0.54799%
Metastasis

Primary 500 (92.76 %) 1 1

Metastasis 39 (7.24%) 1.349 (0.8323-2.185) 0.224 1.391 (0.854-2.27)* 0.1853?
Subtype

Non-Epi-A 483 (89.61%) 1 1

Epi-A 56 (10.39%) 0.7103 (0.4498-1.122) 0.142 0.9449 (0.5834--1,53)b 0.8176°

Non-Epi-B 384 (71.24%) 1 1

Epi-B 155 (28.76%) 0.69 (0.5206-0.9144) 0.0098 0.7347 (0.5532—0.976)b 0.033"

Non-Mes 361 (66.98%) 1 1

Mes 178 (33.02%) 1.171 (0.907-1.513) 0.225 1.01 (07771—1.324)b 0.9164°

Non-Stem-A 411 (76.25%) 1 1

Stem-A 128 (23.75%) 1.417 (1.075-1.868) 0.0135 1.382 (1.045-1.83)° 0.0234°

Non-Stem-B 517 (95.92%) 1 1

Stem-B 22 (4.08%) 1.204 {0.6383-2.271) 0.567 1.14 (0.6033-2.149)° 0.6886°

Epi-A, epithelial-A; Epi-B, epithelial-B; Mes, mesenchymal; Stem-A, stem-like-A; Stem-B, stem-like-B.

p-values below 0.05 are shown in red.

3Multivariate Cox regression analysis of clinical variables with Stem-A subtype.

®For multivariate Cox regression, each subtype was independently analysed with the other clinical variables (age, stage, grade and metastasis) from the remaining

subtypes.

their link with epithelial-mesenchymal transition (EMT) and
metastasis (Supporting Information Fig 6A) (Maruyama et al,
2000; Yin et al, 1999). In comparison, chromatin modification
gene sets were highly enriched in the Stem-A subtype (Fig 1C;
Supporting Information Table 7). Overall, this expression-based
subtyping scheme dissected ovarian serous carcinoma hetero-
geneity into subgroups with similar biological properties.

Predictive framework for EOC subtype classification

We next developed a predictive model with BinReg as a
potential diagnostic tool for quantitative gene expression-based
subgroup assignment (Supporting Information Fig 7A and B)
(Gatza et al, 2010). This was performed using microarrays of
representative samples for each subtype (=50 per subtype).
Fig 1D shows predicted probabilities for subtype status of the
remaining samples (n=1413) not used in building predictive
model. A comparison of the subtype predicted by BinReg with
that classified by the CC (Fig 1A) revealed an overall 78.8%
concordance for all subtypes (78.5% for core samples) (Fig 1D;
Supporting Information Table 8), and a highly similar pattern of
patient outcomes (Fig 1B; Supporting Information Fig 7C). This
demonstrated the powerful predictive capability of the method,
with the concordance comparable with those reported in
previous studies for multiple breast cancer cohorts (Supporting
Information Text) (Calza et al, 2006; Haibe-Kains et al, 2012).
We affirmed the accuracy of this method using 10-fold cross-

© 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

validation (Supporting Information Figs 8A-C) (Blum et al,
1999; Kim, 2009; Konavi, 1995), 3-way split cross-validation
(Ewens & Grant, 2001), and also by comparing BinReg to
ClaNC (Supporting Information Fig 9; Supporting Information
Materials and Methods).

To ensure the robustness of the classifier, we performed
validation on five independent ovarian cancer datasets (total
n=418; Supporting Information Table 1) (King et al, 2011;
Konstantinopoulos et al, 2010; Meyniel et al, 2010) that were
not included in the prediction modelling. We observed
high concordance for the gene expression patterns and clinico-
pathological characteristics in the predicted molecular subtype
(Fig 1E; Supporting Information Tables 4A, C and D). Using 260
samples from the validation set (GSE19829 [n = 28], GSE30311
[n=47] and GSE26712 [n=185]), for which patient outcome
information was supplied (Konstantinopoulos et al, 2010), the
Kaplan-Meier analysis on the BinReg-predicted molecular
subtypes revealed a similar pattern of patient prognoses with
that of the original CC analysis (p =0.0372 by the log-rank test;
Fig 1B; Supporting Information Fig 7D) for subtypes other than
Stem-B (Supporting Information Text). ClaNC (Dabney, 2006;
Verhaak et al, 2010) further confirmed the highly comparable
and predictive capability of this EOC subtyping (Supporting
Information Fig 8D). Thus, the molecular subtype prediction
model can assign clinical samples with unknown subtype status
with high accuracy.
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Figure 1. CC analysis revealed five subtypes of epithelial ovarian carcinoma.

A.

Gene expression heatmap for the five tumour clusters {red = high; green = low expression). CC of 1538 samples identified five subtypes, designated by the
associated gene components. Note the similarities between Epi-A/Stem-B subtype tumours, between Epi-A/Epi-B subtypes for epithelial genes, and the
expression pattern of Epi-A/Stem genes. Also note that none of cultured cell-line data was included in this analysis.

Kaplan—Meier survival analysis for each subtype. Among data for 1538 patient samples, survival information for 978 samples was available {GSE3149: 143,
GSE9891: 277, TCGA: 400, GSE14764: 80, GSE18520: 53 and Oslo cohort: 25 samples) (Epi-A: 80, Epi-B: 264, Mes: 284, Stem-A: 220, Stem-B: 61 and others: 69
samples) and used for the Kaplan—-Meier analysis.

Subtype-specific pathway enrichment. Heatmap shows subtype-specific single sample gene set enrichment analysis (ss-GSEA) scores (false discovery rate
(FDR) in significance analysis of microarrays (SAM) g = 0%, receiver operating characteristic (ROC) >0.85) for 1538 ovarian cancer samples. Red = high;
green = low enrichment scores. Gene sets are aligned in descending value of ROC. Samples are aligned by subtype classification and SW. Deep colour = positive
SW (core samples); pale colour =samples classified, but negative SW. “Others” indicates the unclassified samples not grouped in any of the five subtypes in the
initial CC analysis in Fig 1A. Arrows indicate positions of selected pathways.

Ovarian cancer subtype predictors (BinReg). A heatmap is shown for the predicted probabilities of subtype status on 1413 clinical samples not used in the
subtype predictor generation. Red =high; blue =low. Samples were aligned according to subtype classification by CC and SW. Colour as for (C). “Others” is
represented as for (C).

Heatmap of Spearman correlation Rho between the subtype of training data {n=1538) and the BinReg predicted subtype of samples in five independent
datasets (GSE19829, GSE20565, GSE30311, GSE26712 and GSE27651; total n=418). The validation samples are aligned horizontally according to the
predicted subtype, whereas the training samples are aligned vertically according to the subtype. Yellow = high correlation; black == low correlation.
Abbreviations: Epi-A, epithelial-A; Epi-B, epithelial-B; Mes, mesenchymal; Stem-A, stem-like-A; Stem-B, stem-like-B.

Identification of representative cell lines for each subtype

Cell lines corresponding to each EOC subtype were identified for
in vitro modelling. We performed two rounds of CC on a pool of
datasets from 142 cultured EOC cell lines, resulting in Epi-A: 29,
Epi-B: 10, Mes: 34, Stem-A: 42 and Stem-B: 27 cell lines
(Supporting Information Figs 10A and B); the results were
unambiguously supported by similarity matrices, the silhouette
values with significant p-value by SigClust (Fig 2A) (Liu et al,
2008b), as well as consistent subtype assignments amongst

EMBO Mol Med (2013) 5, 1051-1066

biological replicates of 28 cell lines (Supporting Information
Table 9; Supporting Information Text). The cell-line subtype
predictors (Fig 2B) were then applied to tumour core samples to
estimate the molecular similarity of the subtypes between
in vivo tumours and in vitro cell lines. We observed a high level
of accuracy in the area under the curve (AUC: 0.744 to 0.918)
and a high concordance between the predicted tumour subtype
by a cell-line classifier with the initially assigned tumour
subtype (75.8-87.9%) (Fig 2B). Furthermore, we found a high

© 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
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Figure 2. Identification of cell line subtype status.
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Five subtypes in ovarian cancer cell line classification. Left panel. CC matrix of 142 ovarian cell lines. Red = high; white =low similarity. Middle panel. Gene
expression heatmap of ovarian cell lines. Red = high; green =low expression. Right panel. Silhouette analysis for each subtype. Column to the right of
silhouette plot is the SigClust (Liu et al, 2008b) p-value indicative of cluster significance for each subtype.

Prediction of clinical samples by cell line predictors using BinReg. Upper panel. Gene expression heatmaps for subtype predictors based on cell line expression
data. Red = high; blue = low expression. Middle panel. Predicted probability of core clinical samples for cell-line subtype predictor by BinReg. Each subtype
signature detected the probability difference between the corresponding subtype from the remaining subtypes with statistical significance {p <0.0001;
Mann-Whitney U-test). Lower panel. Receiver operating characteristic (ROC) analyses of subtype predictors. Overall accuracy is shown by the area under the
ROC curve (AUC) (Pejovic et al, 2009). Concordance (%) of the subtype status derived from CC with the prediction based on the cell line subtype predictors.
Upper panel. Cell line subtype-specific pathway enrichment. Subtype-specific single sample gene set enrichment analysis (ss-GSEA) scores {false discovery rate
(FDR) of the significance analysis of microarrays (SAM) g == 0%, ROC > 0.85 as overexpressed gene sets) for 142 ovarian cell lines are shown as a heatmap.
Red = high; green = low enrichment scores. Gene sets aligned in descending value of ROC; samples are aligned according to the subtype classification by CC
and the SW. Deep colour = positive SW (core samples); pale colour =samples classified to a subtype, but negative SW. Arrows indicate positions of selected
pathways. Lower panel: Concordance (%) of the subtype status (from CC by genes) with the prediction result (from BinReg based on the subtype predictors by
enrichment scores). The number in parentheses indicates the accuracy of the prediction against core samples.

Characterization of in vitro phenotypes of cell lines in each subtype. Upper panel. Population doubling time of a cell line was measured with the MTS assay
(Matsumura et al, 2011) and is shown as dot plots. Lower panel. Anchorage-independent cell growth ability for each cell line was measured using the
methylcellulose assay (Mori et al, 2009). Log;o-transformed colony number is shown. p-values were computed by Mann-Whitney U-test. Abbreviations: Epi-A,
epithelial-A; Epi-B, epithelial-B; Mes, mesenchymal; Stem-A, stem-like-A; Stem-B, stem-like-B.

correlation between clinical tumour subtype and cell line
subtype in the Spearman correlation map analysis (Supporting
Information Fig 10C). These findings indicated a high level of
similarity between ovarian cancer cell lines and tumour
transcriptomic expression patterns (Fig 2B; Supporting Informa-
tion Fig 10C).

We next compared the pathway activation for these 142 cell
lines with that of the clinical tumours using ss-GSEA analysis

© 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

(Figs 1C and 2C; Supporting Information Table 10). Epi-A cell
lines were characterized by cell adhesion-related gene sets,
reflecting enrichment of epithelial cell markers. Importantly,
33 of the 402 cell line subtype-specific gene sets were shared
with tumours, including enrichment of fibrinolysis pathway and
chromatin modification in the Mes and Stem-A subtypes,
respectively (Supporting Information Table 10); this was
confirmed with BinReg analyses using a statistical model with
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