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lentiviruses was also measured, and there were no
significant differences between R424H mutant-expressing
and control cultures (GFP, 71.2 +£41.2 nM, 1n=86; WT,
69.7 +£38.0 nM, n=118; R424H, 63.6 +32.9nM, n=72;
P =0.365 between GFP and R424H; P = 0.423 between
WT and R424H).

To examine whether the elevated basal [Ca**]; induced
PC death in R424H mutant-expressing cultures, we
performed a similar experiment to that in Fig.2. In
this experiment, w-agatoxinIVA (0.2 uM) was added
to the culture medium at DIV2 (see Methods),
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Figure 8. Significantly higher basal [Ca?*]; in PCs expressing
R424H mutant

A, representative fluorescence images of a fura-2 AM-loaded
cerebellar culture expressing GFP alone. Arrows indicate PCs.

Aa, GFP fluorescence (excitation, 470-495 nm; emission,

510-550 nm). Ab, fura-2 fluorescence (excitation, 375-385 nm;
emission, 470-550 nm). B, the time course of free [Ca2*]; in PCs. To
depolarize PCs, high-K* ACSF (High K™) was bath applied during
the time indicated by the grey bar. C, summary of averaged [Ca%*];
in PCs. Basal [Ca2*]; was obtained as the average of a 7 min period
from the beginning of the recordings (Ca), and elevated [Ca2*]; from
a 5 min period during high-K* ACSF perfusion (Cb). ***P < 0.001.
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and WT-expressing cultures were omitted to simplify
the experimental design. Treatment of GFP-expressing
cultures with w-agatoxin IVA did not affect relative PC
density (Fig. 9D, filled circles) but increased the branch
number and the total length of dendrites at DIV 14
(Fig. 9E and F; filled circles in Fig.9I and J), in good
agreement with a previous report (Schilling et al. 1991;
see Discussion). Treatment of R424H mutant-expressing
cultures with w-agatoxinIVA significantly increased
relative PC density at DIV 11 and 14 (Fig.9D, red
triangles) and significantly rescued dendritic development
in PCs (Fig. 9Gand H; red trianglesin Fig. 9T and J). These
results clearly indicate that P/Q-type Ca®" channels play
a critical role in the PC death and impairment of dendrite
development caused by R424H mutant expression, and
support our hypothesis.

Discussion

In this study, we found that the expression of R424H
mutant. subunits in cerebellar cultures significantly
impaired dendritic development and survival in PCs (Figs
2and 3). Prior to cell death, R424H mutant-expressing PCs
showed broadened action potential waveforms, altered
firing properties and elevated basal [Ca**]; (Figs 6-8).
Moreover, chronic inhibition of P/Q-type Ca*" channels
by w-agatoxin IVA rescued the PC death and dendritic
maldevelopment caused by expression of R424H mutant
subunits (Fig.9). This is the first report to show that
a missense mutation found in SCA13 patients induces
maldevelopment of PC dendrites and eventually PC death,
most probably due to elevated basal [Ca*"]; in PCs.

Biophysical properties of R424H mutant channels

The biophysical properties of hKv3.3 channels with the
R423H mutation, which corresponds to the R424H
mutation in mKv3.3 channels, have been previously
reported (Figueroa et al. 2010; Minassian et al. 2012).
Our results in Supplemental Fig.S2 agreed well with
the previous reports and suggest that the properties
of R424H mutant mKv3.3 were essentially identical to
those of R423H-mutant hKv3.3. Moreover, we found
that coexpression of R424H mutant and WT subunits
accelerated the inactivation kinetics and slowed recovery
from inactivation compared with expression of WT
subunits alone (Fig. 1). Therefore, we predict that the
properties we found in R424H mutant mKv3.3 are shared
with R423H mutant hKv3.3.

We confirmed that homomeric R424H mutant channels
showed negligible currents and that R424H mutant sub-
units exerted a dominant-negative influence on WT
mKv3.3 channels in Xenopus oocytes (Supplemental
Fig. S2A and B; Figueroa et al. 2010, 2011). Very recently,
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Zhao etal. (2013) reported that in heterologous expression
systems using Chinese hamster ovary cells, the surface
protein level of R423H mutant hKv3.3 channels is 30%
of that of WT hKv3.3 and that the conductance density
of the mutant is 16% of that of the WT. Therefore, we
cannot exclude the possibility that the reduced surface
expression of mKv3.3 channels by the mutation would
also contribute to the broadening of action potentials
(Fig. 6) and lower firing frequency (Fig. 7) in transduced
PCs. However, the reduction of the conductance density
cannot be explained fully by the reduced surface protein
expression.

To  explain  the  negligible  activity and
dominant-negative property of R424H mutant channels,
we propose two hypothetical mechanisms. First, the
positively charged arginine at position 424 in mKv3.3 may
be a critical residue in the $4 segment, serving as a part of
the voltage sensor domain (Seoh et al. 1996). The partial
disruption of the sensor domain by R424H mutation
would make the subunits less sensitive to membrane
voltage changes, resulting in the loss of channel function.
Second, an arginine residue at position 174 in the S4
segment of KAT1, which is a voltage-gated K* channel
in Arabidopsis, plays an essential role in the appropriate
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integration of the S3 and S4 segment into the endoplasmic
reticulum membrane (Sato et al. 2003). Given that the
R174 is homologous to R424 in mKv3.3, defective
membrane insertion of R424H mutant subunits could
occur in Xenopus oocytes, leading to a defect in channel
activity.

Purkinje cell death by R424H mutant expression and
the inhibition by blockade of P/Q-type voltage-gated
Ca?* channels

In this study, we revealed that expression of R424H mutant
subunits caused cell death and impaired dendritic growth
in PCs (Figs 2 and 3) and that these effects were reversed by
the blockade of P/Q-type Ca** channels (Fig. 9). Addition
of w-agatoxin IVA also enhanced dendritic elongation in
PCs expressing GFP alone (Fig. 9E and F; filled circles in
Fig. 91 and J). Together with a previous report showing
that chronic application of TTX in cerebellar cultures
caused dendritic elongation in PCs (Schilling et al. 1991),
activation of P/Q-type Ca** channels by neuronal activity
may adversely influence dendritic elongation in PCs.
Addition of w-agatoxin IVA in R424H mutant-expressing
cultures did not completely restore PC survival rates
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Figure 9. Pharmacological blockade of P/Q-type Ca?t channels rescues the PC death and dendritic

maldevelopment caused by expression of R424H mutant

A-C, cerebellar cultures expressing GFP alone (A) or R424H mutant with GFP (B and C). The cultures were
immunostained for calbindin at DIV 14. In C, w-agatoxin IVA was added to the culture medium every other day
from DIV 2. D, relative cell density of PCs plotted as a function of DIV. The density was normalized to the value of
PCs expressing GFP alone at DIV 4. E-H, calbindin-immunolabelled PCs expressing GFP alone (Fa and Fa) or R424H
mutant subunits with GFP (Ga and Ha) at DIV 14. Morphologies of PCs are depicted in the right-hand panels for
clarity. In F and H, w-agatoxin IVA was added. /, and J, summary of dendrite complexity measured by Sholl analysis
(/) and of total dendritic length (J). *P < 0.05, **P < 0.01, and ***P < 0.001.
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(Fig. 9D). This may be because some Ca*" currents in
cultured PCs are mediated by Ca?" channels other than
the P/Q-type (Gillard et al. 1997), and activation of
these channels may contribute to PC death. We therefore
performed the same rescue experiments using CdCl,
(0.2 mM; a non-selective Ca’t channel blocker) or a
combination of w-agatoxinIVA and verapamil hydro-
chloride (0.02 mm; an L-type Ca®* channel blocker), but
these chemicals markedly deteriorated the viability and
development of cerebellar cultures within 3 DIV (data not
shown).

In contrast to PCs, there were no significant decreases
in the numbers of granule cells upon R424H mutant
expression (Fig. 2E). This may be because granule cells
do not express endogenous mKv3.3 channels with
which R424H mutant subunits form oligomeric channels
(Supplemental Fig. S3C), resulting in the absence of the
dominant-negative influence on the endogenous channels
by the expression of mutant channel subunits.

Comparison with preceding papers on Kv3.3
knockout mice and zebrafish expressing mutant Kv3.3

In contrast to the impaired dendritic development
in R424H mutant-expressing PCs (Fig.3Cb” and D),
the cerebellum of Kv3.3 knockout mice shows neither
dendritic shrinkage of PCs nor cerebellar atrophy (Zagha
et al. 2010). Furthermore, the knockout mice display only
moderate motor dysfunction and no ataxic phenotype,
although SCA13 patients show severe ataxia (Joho
et al. 2006; Hurlock et al. 2008; Waters & Pulst, 2008;
Figueroa et al. 2010). This difference may be attributable
to the following factors. In PCs, mKv3.3 is thought to
form heteromultimeric channels by assembling with Kv3.1
and/or Kv3.4 (Goldman-Wohl et al. 1994; Weiser et al.
1994), and Kv3 channels contribute to repolarization
of both somatic Na* spikes and dendritic Ca*" spikes
(McKay & Turner, 2004). Genetic elimination of Kv3.3
subunits may be insufficient to exhibit the dendritic
shrinkage and severe ataxia phenotypes because of
functional compensation by Kv3.1 and Kv3.4 in PCs
(Goldman-Wohl et al. 1994; Weiser et al. 1994; Martina
et al. 2003). We detected the expression of Kv3.4 sub-
units in cultured PCs (Supplemental Fig.S3D). It is
therefore reasonable to hypothesize that R424H mutant
subunits form heteromultimeric channels not only with
endogenous mKv3.3 but also with other members of
Kv3.3, including Kv3.4, resulting in total inhibition of
the K channel activity in PCs. This may account for the
differences in the morphological phenotypes of PCs in our
results versus the knockout mice.

Zebrafish expressing infant-onset mutant zebrafish
Kv3.3 (homologous to the F448L mutant in SCA13
patients) in spinal motoneurons show defective axonal
pathfinding (Issa et al, 2012). Indeed, the zebrafish is an
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interesting model for understanding the effects of mutant
Kv3.3 expression in spinal motoneurons. However, as they
used a motoneuron-specific enhancer of Mnxl (Hb9)
gene, the exogenous proteins were not expressed in the
cerebellar neurons. To examine the effects of mutant Kv3.3
in the cerebellum, it would be necessary to express the
mutant protein directly in the cerebellar neurons using a
different method.

Comparison of our culture results with SCA13
patients harbouring the R423H mutation

Spinocerebellar ataxia typel3 patients harbouring
the R423H mutation generally show early-onset,
slow-progressive ataxia and cerebellar atrophy (Figueroa
et al. 2010, 2011). Our immunohistochemical analyses
demonstrated that expression of R424H mutant subunits
impaired dendritic development and induced cell death
in cultured PCs (Figs 2 and 3). Those defects may be
responsible for the cerebellar atrophy and ataxia observed
in SCA13 patients, although it is necessary to verify that
similar impairments are also observed in post-mortem
cerebellum of the patients.

In functional aspects, we found that expression of
R424H mutant subunits significantly decreased outward
current mediated by voltage-gated K™ channels, reduced
SEPSCs, broadened action potentials and altered firing
properties (Figs 4-7 and Table 2), suggesting the existence
of similar functional changes in SCA13 patients. As
PCs are the sole output neurons from the cerebellar
cortex and make inhibitory synaptic contacts directly onto
neurons in the deep cerebellar nuclei and the vestibular
nuclei in the brainstem, PCs play crucial roles in motor
co-ordination (Zheng & Raman, 2010). Accordingly, it
is easily assumed that the reduction of spontaneous
excitatory inputs and the changed firing properties in
PCs disrupt synaptic transmission to neurons in the
deep cerebellar nuclei and vestibular nuclei, resulting in
impaired motor co-ordination. To examine the effects of
the R424H mutation on electrophysiological properties
of PCs and animal behaviour, we tried expressing R424H
mutant.subunits in PCs in vivo by directly injecting the
virus solution into mouse cerebellar cortex as described
in our previous papers (Torashima et al. 2006, 2008;
Shuvaev er al. 2011). However, despite the presence of the
infection, sufficient overexpression of mKv3.3 channels
and apparent ataxia were not observed (data not shown).
This may be because endogenous mKv3.3 proteins are
abundantly expressed in PCs and the overexpression failed
to reach the endogenous protein level. Efficient reduction
of KT currents in PCs in vivo as observed in cultured
PCs may be attained by using a different type of viral
vector, such as adeno-associated virus vectors (Nathanson
et al. 2009). Alternatively, K* currents in PCs in vivo
may be effectively decreased using viral vector-mediated
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expressions of R424H mutant subunits in Kv3.3™/~ or
Kv3.3"/~ mice, which express no mKv3.3 proteins or only
half the normal amount.

Currently, three different missense mutations in hKv3.3
channels have been reported from distinct pedigrees, and
the disease onset and clinical phenotypes also differ among
them (Waters ef al. 2006; Figueroa et al. 2010, 2011). In the
present study, we focused on only one mutation (R423H
in hKv3.3) because of the drastic changes it induced
in channel properties in the Xenopus oocyte expression
system and its early-onset phenotype in SCA13 patients.
Further studies of the effects of other mutants (R420H
and F448L in hKv3.3) on cultured PCs may provide
explanations for the differences in the disease phenotypes.

Possible significance of this study

We developed an in vitro SCA13 model using mouse
cerebellar cultures and lentivirus vector-mediated gene
expression. This model has advantages over in vivo models,
such as transgenic mice, in the ease of controlling culture
conditions by applying chemical compounds. Therefore,
this model would be useful in screening drugs for SCA13
and in detailed investigations of the signalling cascades
that promote the observed cell death. Given that blockade
of P/Q-type Ca®' channels rescued the phenotypes
found in this research, the channel blockers may be
potential therapeutic drugs for SCA13. Furthermore, this
culture method, in combination with virus-mediated gene
expression, may be applicable to the study of other types
of hereditary spinocerebellar ataxia.
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Kv3.3 channels harboring a mutation of spinocerebellar ataxia type 13 alter excitability
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Supplemental Figure S1. Amino acid sequence alignment of hKv3.3 (accession number AF022150) with the mKv3.3
used in this experiment

The two sequences were aligned using Clone Manager 6 software (Scientific & Educational Software, Cary, NC). Hyphens
represent gaps introduced to optimize the alignment. The six transmembrane domains are surrounded by squares. Residues

conserved between hKv3.3 and mKv3.3 are colored blue.
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Supplemental Fig. S2

R424H

Aa Ab Ac Ad ¢, .., ba . Db,,
wr W R424H  Water = WTsRG2AH 21) i i

N T T

200 ms = -
E 200 ms 200 ms 200 ms
T _—

+70 T 50 0 50 0 20 40 60 80
i Voltage (mv)  -80 (mV) Voltage (mV)

- R — R )

e A [
'é > T I 1] WT+RA424H (21)
£ g 10 T foup TEEE R424H (17)
- | | |
o2 L e water (12)
o3 | :

= ;
:.2_, £ 0.54 I 5 T e,
S = e |
o 0717 1079
o M 1
0.0
60 70
Voltage (mV)

Supplemental Figure S2. R424H mutant subunits work as a dominant-negative on WT mKv3.3 channels expressed
in Xenopus oocytes

A, Representative traces evoked by stepping from —80 mV holding potential to voltages ranging from —70 to +70 mV in
10-mV increments. cRNA of WT mKv3.3 (4a, WT), a mixture of WT and R424H mutant subunits at 1:1 ratio (45,
WT+R424H), R424H mutant subunits (4c, R424H), or nuclease-free water (4d, Water) was injected into Xenopus oocytes.
B, Summary of the mean relative current amplitude. The amplitude was calculated from peak amplitude normalized by
mean peak amplitude of WT-expressing oocytes at +70 mV voltage pulse. C, Normalized conductance (G) of
WT-expressing and WT+R424H-expressing oocytes are plotted as a function of voltage. G was obtained by dividing peak
current by electrochemical driving force: [G = /(V — Ex)]. The activation (G/G,,) curves were fit with the Boltzmann
function, G/Guex = 1/ [1 + exp (V1n — V)/k]. D, Comparison of activation 1 between WT-expressing and WT+R424H
mutant-expressing oocytes. Da, Representative traces evoked by stepping from —80 mV holding potential to +40 mV. The
current traces are scaled to the same peak amplitude to compare the activation kinetics. Db, Comparison of T, of WT
mKv3.3 with that of WT+R424H mutant channels in Xenopus oocytes. T,.; Was obtained by fitting current traces with a

single exponential function on the rising phases of the traces.
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Supplemental Figure S3. Immunohistochemical

Supplemental Fig. S3
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Cultures double-immunostained with anti-GABA
and anti-NeuN antibodies at DIV 16. GABAergic

interneurons (GABA-positive small cells in Ba

and Bc, arrowheads) were also NeuN-negative.

Double arrowheads in Ba and Bc indicate a

=)
§<
22
0
°oc
32
Tag ]

putative PC. C, Cultures triple-immunostained
. i o with anti-GFP, anti-Calbindin, and anti-Kv3.3
8 W) (26) Q38 antibodies at DIV 14. PCs but not other cerebellar

neurons expressed mKv3.3 channels. In C, GFP-expressing cerebellar cultures were used to visualize the neurons. D,
Cerebellar cultures double-immunostained with anti-Kv3.4 and anti-Calbindin antibodies, showing the expression of Kv3.4
in PCs. E, Immunofluorescence images of cerebellar cultures infected with lentiviral vectors expressing GFP (Ea-Ea”) or
WT subunits (Eb and Eb’). The cultures were double-immunostained with anti-GFP and anti-Kv3.3 antibodies. The
fluorescence images were taken in the same conditions for the quantitative analysis. PCs are indicated by arrowheads. Panel
Ea” is a contrast-enhanced image of Ea’ that shows faint but some expression of endogenous mKv3.3 in PCs expressing
GFP alone. Ec, Quantitative analysis of immunofluorescence intensity for Calbindin and Kv3.3. AU, arbitrary unit. In 4-E,
The following primary and secondary antibodies were used. Primary antibodies: mouse monoclonal anti-Calbindin antibody
(4, C, and D, 1:2,000-diluted, No.300, Swant; Bellinzona, Switzerland), mouse monoclonal anti-NeuN antibody (4 and B,
1:2,000-diluted), and rabbit polyclonal anti-GABA antibody (B, 1:1,000-diluted, A2052; Sigma-Aldrich), guinea pig
polyclonal anti-GFP antibody (C and £, 1:1,000-diluted), and rabbit polyclonal anti-Kv3.3 antibody [C and E,
1:2,000-diluted, APC-102; Alomone labs, Jerusalem, Israel; This antibody is raised from the peptide
KSPITPGSRGRYSRDRAC corresponding with residues 701-718 of rat Kv3.3a channels, which have a sequence that is
identical to 692-709 of the mKv3.3 channels (Chang et al., 2007)]. Secondary antibodies: AF 568-conjugated goat
anti-rabbit IgG antibody (34), AF 680-conjugated goat anti-mouse IgG antibody (4 and D), AF 488-conjugated goat
anti-rabbit IgG antibody (B, A-11008; Invitrogen), AF 568-conjugated goat anti-mouse IgG antibody (B, C , and E,
A-11031; Invitrogen), AF 488-conjugated goat anti-guinea pig IgG antibody (C and E), AF 680-conjugated goat anti-rabbit
IgG antibody (C and E, A-21109; Invitrogen). All secondary antibodies were used at the concentration of 5 pg/ml. The
incubation conditions were same as Fig. 2. For immunolabeling of Kv3.4 protein in cerebellar cultures (D), goat serum was
excluded from the incubation buffer. Cerebellar cultures were immunolabeled with goat polyclonal anti-hKv3.4 antibody
(1:500-diluted, sc-104343; Santa Cruz Biotechnology, Santa Cruz, CA) and mouse monoclonal anti-Calbindin antibody, and
then with AF 568-conjugated donkey anti-goat 1gG antibody (A-11057; Invitrogen). After blocking with the incubation
buffer containing 10% normal goat serum, the cultures were further incubated with AF 680-conjugated goat anti-mouse IgG

antibody.
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Supplemental Fig. S4
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Supplemental Figure S4. Recordings of spontaneous action potentials from PCs

A, Immunohistochemical identification of PCs. PCs were stained intracellularly with biocytin infused via patch pipettes,
fixed in 4% (w/v) formaldehyde, and incubated with mouse monoclonal anti-Calbindin antibody and guinea pig polyclonal
anti-GFP antibody. The samples were further incubated with AF 568 streptavidin (S-11226, Invitrogen), AF 488-conjugated
goat anti-guinea pig IgG antibody, and AF 680-conjugated goat anti-mouse IgG antibody. The incubation conditions were
the same as in Fig. 2. B and C, Representative spontaneous firing recorded from GFP-expressing PC (B) and R424H
mutant-expressing PC (C) at DIV 8.
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