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pierisins and mosquitocidal toxin. We found ADP-ribosylating activity for the SC05461
protein product through its co-incubation with guanosine and NAD", which resulted in the
formation of N?-(ADP-ribos-1-yl)-guanosine (*?Guo), with a K, value of 110 pM. SCO5461
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Modified bases SC05461 showed maximum ADP-ribosylation activity towards guanosine at 30 °C, and
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the ADP-ribosylation of guanosine and guanine mononucleotides among the family
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putative gene product, SCO5461, in liquid cultures of S. coelicolor. We thus designated the
SCO5461 protein product as S. coelicolor ADP-ribosylating protein, ScCARP. Our current
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1. Introduction

ADP-ribosylation is the post-translational modification
of proteins and involves the transfer of an ADP-ribose
moiety from B-nicotinamide adenine dinucleotide (NAD™)
to specific residues in target proteins. Mono-ADP-ribosyl-
transferase activity is well-known to be present in several
bacterial toxins that effectively target G proteins, elongation
factors, and actins [see (Aktories and Just, 2000) for review].
Emerging studies have also revealed the existence of
non-toxic mono-ADP-ribosyltransferases. Nitrogenases in
Azospirillum brasilense, Azospirillum lipoferum, and Rhodo-
spirillum rubrum are regulated by dinitrogenase reductase
ADP-ribosyltransferase (DraT) and dinitrogenase reductase-
activating glycohydrolase (DraG) during nitrogen fixation
(Huergo et al., 2009; Masepohl and Hallenbeck, 2010),
and vertebrate ecto ADP-ribosyltransferases (ARTs) target
human neutrophil peptide-1 and cell surface P2X; receptors
(Scheuplein et al., 2009; Stevens et al., 2009). Poly(ADP-
ribose) polymerase 10 (PARP-10/ARTD10) also shows
mono-ADP-ribosylation activity towards histones (Messner
and Hottiger, 2011).

Some of the ADP-ribosyltransferases also target non-
protein molecules. The pierisins, originally identified from
Pieris rapae and Pieris brassicae as proteineous toxin against
mice and cell lines (Marsh and Rothschild, 1974; Feltwell,
1982; Watanabe et al., 1999), target the N> amino groups
of 2’-deoxyguanosine in double stranded DNA, causing
mutations and an apoptotic response in cultured cells
(Carpusca et al., 2006; Matsumoto et al., 2008; Orth et al.,
2011; Yamamoto et al., 2009). The non-toxic CARP-1 from
shellfish Meretrix lamarckii also target the same bases of
DNA in vitro (Nakano et al., 2006). In contrast, tRNA 2’-
phosphotransferases initially ADP-ribosylate a 2’-phos-
phate at the splice junction of pre-tRNA, then remove it
by forming ADP-ribose 1”-2” cyclic phosphate, resulting in
the formation of a correct tRNA anticodon loop
(Kato-Murayama et al., 2005; Sawaya et al., 2005; Steiger
et al., 2005). Some small molecules can also be targets for
ADP-ribosylation. For example, both Arr and Arr2 from
opportunistic pathogens inactivate rifampicin through
ADP-ribosylation (Baysarowich et al., 2008). In addition,
some ADP-ribosyltransferases show low NAD™ glycohy-
drolase activity that targets water molecules.

We observed from a BLAST search that the SCO5461
protein product, annotated as a secretion protein in the
genome of Streptomyces coelicolor A3(2) (Bentley et al.,
2002), shares homology with the activity domains of
the pierisins and the mosquitocidal toxin from Bacillus
sphaericus SSII-1 (MTX). MTX is an NAD*:arginine ADP-
ribosyltransferase that kills mosquito larvae (Schirmer
et al., 2002a,b; Thanabalu et al., 1993), whereas pierisins
are NAD*:DNA(guanine-Nz) ADP-ribosyltransferases that
induce apoptosis or gene mutation in mammalian cells in
culture and in vivo (Shiga et al., 2006; Takamura-Enya
et al.,, 2001; Totsuka et al., 2003; Watanabe et al., 2004).
Streptomyces are gram-positive, soil-bacteria, and are
unique organisms in terms of their metabolite profiles,
most notably in relation to antibiotics, and in their
properties as soil cleaners (Chater et al., 2010; Hodgson,
2000). In our present study, we demonstrated the

ADP-ribosylating activity of SCO5461 and found that it has
strong activity against the N? amino groups of guanine
residues in nucleosides and mononucleotides. This is
therefore the first report of an ADP-ribosyltransferase that
mainly targets nucleosides, mononucleotides, and their
5’-phosphorylated forms. We also discuss the physiolog-
ical roles of the ADP-ribosylation of nucleosides and
mononucleotides.

2. Materials and methods
2.1. Bacterial strains, culture conditions, and a plasmid

S. coelicolor A3(2) M145 (SCP1-SCP2~) was grown on
Tryptic Soy Broth (Difco, Detroit, MI), with shaking in
a Sakaguchi-flask at 28 °C. Escherichia coli K-12 JM109
(Toyobo, Osaka, Japan) was grown on LB for subcloning;
E. coli K-12 ER2508 (New England Biolabs, Ipswich, MA)
was grown on Terrific Broth for protein expression. A
plasmid vector, pMALp2x (New England Biolabs), was used
for subcloning and protein expression.

2.2. cDNA subcloning and expression of SCARP

We performed genome DNA extraction, PCR cloning and
subcloning of cDNA using standard protocols (Kieser
et al., 2000; Sambrook and Russell, 2001). SCO5461 and
SC0O5461(43-204) genes were ligated into pMALp2x. We
introduced point mutations into these genes via overlap-
PCR (Nakano et al., 2006). Proteins encoded in pMALp2x
vectors were expressed as maltose-binding protein (MBP)-
fused products in E. coli (Riggs, 1990). Following affinity
purification, the MBP tag was cleaved from these
recombinant products with factor Xa protease, followed by
Mono-S column chromatography. Details of all of these
procedures are included with the Supporting information.

2.3. ADP-ribosylation of nucleic acids

The standard reaction conditions employed for nucleo-
sides and mononucleotides were as follows: nucleosides
(final 1 mM) were incubated with SC05461(43-204)
protein (final 0.2 nM) and NAD™ (final 0.01-3 mM) in 200 pl
of 50 mM Hepes-NaOH pH 7.0 and 50 mM Nadl, for 10 min
at 30 °C. The reaction mixture was immediately injected
into an HPLC column. When oligo- or polynucleotides were
used as substrates, reacted nucleotides (final 0.1 mg/mi)
were injected into HPLC columns after digestion with
micrococcal nuclease, phosphodiesterase 1I, and alkaline
phosphatase (Nakano et al., 2006). The products were
quantified from the Ajs7 values in a standard curve
generated using an equimolar mixture of ADP-ribose and
Guo. Details of the digestion and HPLC conditions are
included with the Supporting information.

2.4. Chemical synthesis of N°~(p-ribofuranos-1-yl)-guanosine

The chemical synthesis of N?-(p-ribofuranos-1-yl)-
guanosine was performed in accordance with the synthesis
route determined previously for N?-(p-ribofuranos-1-yl)-
2'-deoxyguanosine (Takamura-Enya et al, 2001). The
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Fig. 1. Similarities between SCO5461 and its homologues. (A) Multiple
alignments of the deduced amino acid sequences of SCO5461 and its
homologues. Conserved motifs (LXR, STT, and reaction center glutamic
acids) were boxed. Amino acid residues located two residues upstream of
the reaction center are indicated in bold type. The source organisms and
DDBJ/EMBL/GenBank accession numbers are indicated in Table S1. Note
that SSPG_02248 from S. lividans TK24 (EFD66608) corresponds exactly to
SCO5461 in this region and is not included in the alignment. (B) Schematic
representations of the primary structure of SCO5461 and its homologues.
Boxes with horizontal lines, activity domains; dotted boxes, ricin-fold like
receptor-binding domains; cross-hatched ovals, secretion signals; “E”,
reaction center glutamic acids; arrowheads, regions sensitive to proteases.
For details on binding domains, see Kanazawa et al. (2001) and Carpusca

details of these procedures and the 'H NMR and MS data
are described in the Supporting information.

3. Results

3.1. Subcloning of the SCO5461 gene, a putative ADP-
ribosyltransferase from S. coelicolor

SCO5461, a putative gene from S. coelicolor, encodes
a protein (204 amino acids, MW 22385.60) that comprises
a secretion signal motif (amino acids 1-42) and a possible
ADP-ribosyltransferase domain (amino acids 43-204, MW
18426.99). The latter activity domain has a 30% homology
with the activity domains of the mosquitocidal toxin from
B. sphaericus SSII-I (MTX) and pierisin-1 from P. rapae
(Fig. 1A and B). MTX and pierisin-1 have lectin-like
receptor-binding domains at their C-termini which facili-
tate their entry into eukaryotic cells and repress the ADP-
ribosyltransferase activity of these proteins until cleaved
by proteases (Carpusca et al., 2006). However, SCO5461 has
no putative receptor-binding domain.

Recent genome projects have revealed homologues of
SCO5461 in some actinomycete genomes (Fig. 1A and C, and
Table S1 on Supporting information), the products of which
contain three characteristic motifs of cholera toxin-like ADP-
ribosyltransferase motifs; an LXR motif, an STT motif, and
a catalytic center glutamic acid (Domenighini and Rappuoli,
1996; Otto et al., 2000). All SCO5461 homologues in acti-
nomycete lack putative binding domains, and those in
Streptomyces lividans, Streptomyces scaviei, and Streptomyces
albus harbor secretion signals at their N-terminal ends.
However, a SCO5461 homologue in Streptosporangium
roseum lacks a putative secretion signal. Interestingly,
avermectin-producing Streptomyces avermitilis has a pseu-
dogene lacking a clear ORF, and streptomycin-producing
Streptomyces griseus has no SC05461 homologue. All
known arginine ADP-ribosyltransferases, including MTX,
have a glutamic acid located two residues upstream of their
catalytic center glutamic acid (Laing et al., 2011). On the
other hand, pierisin-1 and most SCO5461 homologues have
glutamine, instead of glutamic acid, two residues upstream
of their catalytic center (Fig. 1A, bold type).

3.2. ADP-ribosylation of nucleic acids by ScARP, the SCO5461
gene product

We purified the activity domain of the SCO5461 gene
product as an MBP-tagged form following its expression in
E. coli and then removed the MBP tag with factor Xa. The
resulting peptide (SCO5461(43-204), MW 18903.51), which

et al. (2006). (C) Dendrogram for amino acid sequences having
homology to ScARP. Sequences were chosen from the DDBJ/EMBL/Gen-
Bank database using the BLASTp program (Altschul et al, 1990), and
similarities were calculated within the highly-homologous regions by
ClustalW (Thompson et al.,, 1994). A phylogenetic tree was drawn using
DendroMaker for Macintosh ver. 4.1 (Tadashi Imanishi, http://www.cib.
nig.ac.jp/dda/timanish/dendromaker/home.html). The scale represents
the number of substitutions per site. Names of genes, source organisms,
and INSDC accession numbers are listed in Table S1 of the Supporting
information.
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had a preceding ISEF residues derived from the multi-
cloning site sequence on its N-terminus, was confirmed to
be the single predominant band on an SDS-PAGE gel
(Figure S1 on Supporting information) and was therefore
used in the subsequent experiments.

When SCO5461(43-204), expressed in E. coli, was incu-
bated for 4 h with calf thymus DNA in the presence of NAD,
two new peaks appeared at the same retention times seen
for N?>-(ADP-ribos-1-yl)-2/-deoxyguanosine by HPLC anal-
ysis (Fig. 2A-1). Both peaks were clearly enhanced by
co-injection of N?-(ADP-ribos-1-yl)-2'-deoxyguanosine,
synthesized by the incubation of deoxyguanosine and
pierisin-1 in the presence of NAD™ (Figure S2 on Supporting
information). Since these peaks were much smaller than
those made by pierisin-1 and calf thymus DNA, we searched
for more desirable substrates. Many RNA species, including
tRNA and oligo(G)y4, and oligo(dG)y4 can be more easily
modified compared with calf thymus DNA, suggesting that
SCO5461(43-204) recognizes single stranded oligonucleo-
tides as substrates (Fig. 2A; details described later).

Interestingly, when SC05461(43-204) was incubated for
10 min with guanosine (Guo) and NAD", two new HPLC
peaks appeared (Fig. 2B-I). UV spectra of these two new
peaks were found to be similar to that of N?>-(ADP-ribos-
1-yl)-2’-deoxyguanosine (Fig. 2B-I). Similar results were
obtained with deoxyguanosine (dGuo; Fig. 3 and detailed
analysis described later). However, when SCO5461(43-204)
was incubated with (deoxy)adenosine, (deoxy)cytidine,
thymidine, or uridine, in the presence of NAD, no new
peaks appeared (Figure S3A on Supporting information).

The replacement of glutamic acid at the putative reac-
tion center of the SCO5461 product with aspartic acid
(Figure S1 on Supporting information) resulted in a >90%-
decrease in the peaks (Fig. 2B-IlI), and no new peaks
appeared with the use of ADP-ribose instead of NAD*
(Fig. 2B-1V), suggesting that the SCO5461 product had ADP-
ribosylated guanine residues. We hereafter refer to the
SC0O5461 protein product as S. coelicolor ADP-ribosylating
protein (ScARP).

We further analyzed the structure of compounds in the
two newly appeared peaks in the reaction of Guo, NAD™,
and ScARP (Fig. 2B-I, indicated with an arrow and an
arrowhead). As shown in Figure S3B on Supporting
information, the area of both peaks on the HPLC charts
increased linearly up to 1 h. The ratio of the backward peak
(minor peak, indicated by an arrowhead) to the forward
peak (major peak, indicated by an arrow) from the reaction
of Guo, NAD™, and ScARP then increased during a 4-h
reaction. When the isolated forward peak was re-
analyzed by HPLC after incubation at 30 °C, the ratio
changed to about 1:1 within 4 h, suggesting that both peaks
can easily anomerize to each other (Figure S3C on
Supporting information). Moreover, LC-ESI-MS analysis
indicated that both the compounds in these peaks have
a molecular ion peak at m/z 825, corresponding to ADP-
ribosylated guanosine, and an ion peak at m/z 693, arising
from the loss of a ribose moiety commonly observed in
nucleoside separation, and an ion peak at m/z 926 corre-
sponding to a triethylamine addition, derived from the
HPLC eluent, to the parent mass at m/z 825 (Fig. 4A). We
concluded that both peaks were ADP-ribosylguanosine and
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Fig. 2. Structural analysis of ADP-ribosylated nucleic acids formed by
SCO5461(43-204) (ScARP). (A) HPLC elution patterns of hydrolysates of
(I) calf thymus DNA, (II) tRNA, and (IIl) oligo(dG)y4, after incubation with
ScARP (final 625 nM) and NAD* (final 2 mM) for 4 h. The arrows indicate
newly appearing peaks. Note that unreacted NAD* was removed by ethanol
precipitation prior to nuclease digestion. (B) HPLC elution patterns of
guanosine incubated with (I) SCARP (0.2 nM) and NAD™ (1 mM), (II) NAD™
(1 mM), (III) SCARP(E164D) (0.2 nM) and NAD* (1 mM), and (IV) ScARP
(0.2 nM) and ADP-ribose (1 mM). The arrow and arrowhead indicate newly
appearing peaks. UV absorption spectra of compound a (Amax 257 nm) and
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imposed in the elution pattern I.
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guanine) with ScARP (0.2 nM) and NAD" (1 mM) are shown.

the initial-reaction product was the forward peak, whereas
the backward peak was its anomerized form at the C1’-
position of ADP-ribose.

We further confirmed the structure of ADP-ribosylated
Guo using HPLC, LC-MS, and 'H NMR. We first digested
ADP-ribosyl-Guo to ribosyl-Guo using phosphodiesterase I
and calf intestinal alkaline phosphatase, and compared the
resulting products by HPLC with independently synthe-
sized N?-(ribos-1-yl)-Guo (Scheme S1 on Supporting
information). As shown in Fig. 4B, the retention times of
the four peaks from enzymatic digest coincident with
those of the synthesized (a- and B-ribofuranos-1-yl)-Guo
and their further anomerized form, (a- and B-ribopyranos-
1-y1)-Guo, as found for N2-(ribos-1-yl)—2’-deoxyguanosine
(Takamura-Enya et al, 2001). 'H NMR analysis of ADP-
ribosyl-Guo revealed that most of the signals could be
assigned to the same as those of N?-(ADP-ribos-1-yl)-2/-
deoxyguanosine (Takamura-Enya et al, 2001), except
presence of a newly absorbance peak of around 4.5 ppm
derived from a proton at the 2’ position of the ribose moiety
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Fig. 4. Structural confirmation of N?-(ADP-ribos-1-yl)-guanosine. (A)
LC-ESI-MS elution patterns of reaction products formed from tRNA
(0.1 mg/ml), NAD™ (2 mM), and ScARP (625 nM). The HPLC profile (UV) and
the ion chromatograms (m/z 926, 825, and 693) are shown. Both compounds
in these peaks had a molecular ion peak at m/z 825 corresponding to [ADP-
ribosyl-Guo + H*]™, an ion peak at m/z 693 arising from the loss of a ribose
moiety, and an ion peak at m/z 926 corresponding to a triethylamine addi-
tion, derived from the HPLC eluent, to the parent mass at m/z 825. The
forward peak is indicated by an arrow, and the backward peak is indicated
by an arrowhead. (B) HPLC elution patterns of hydrolysate of (ADP-ribos-1-
yl)-guanosine (top) and chemically synthesized N?-(ribos-1-yl)-guanosine
(bottom). Ado, adenosine.

with missing protons around 2.00 ppm derived from two
protons of 2’ and 2” position of the deoxyribose moiety that
was presented in the ADP-ribosylated 2’-deoxyguanosine
(Figure S4 on Supporting information). This result strongly
indicated that the product was Nz-(ADP-ribos—l—yl)-
guanosine (Fig. 5). Similar results were obtained using
either HPLC or LC-MS analysis when dGuo was used instead
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Fig. 5. Structure of N’-(ADP-ribos-1-yl)-guanosine.
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of Guo. Moreover, retention times for two peaks corre-
sponding to ADP-ribosylated dGuo were the same as those
of N?-(ADP-ribos-1-yl)-2/-deoxyguanosine (i.e. the enzy-
matic digest of ADP-ribosylated DNA produced by pierisin-
1). We thus concluded that ScARP ADP-ribosylates the N?
amino groups of guanine residues in Guo and dGuo in the
same manner as pierisin-1 does for the N? amino groups of
guanine residues in dsDNA.

3.3. Kinetics of NAD":guanosine ADP-ribosylation by ScARP

We next performed kinetic analyses to determine the
structural preferences of nucleic acids for ADP-ribosylation
by ScARP. Neither the 3’- and 5’-phosphate groups showed
much effect on the ADP-ribosylation rate of Guo and dGuo,
and cyclic GMP was also effectively modified. Guanine was
also modified but at a lower rate than Guo (Fig. 3, Table 1).
All of the tested DNAs and RNAs containing guanine resi-
dues were modified more slowly than their monomers;
50% of the bases in both oligo(G)i4 and oligo(dG)4 were
modified at a relatively faster rate than yeast tRNA, E. coli
rRNA, mRNAs from Hela cells, and synthesized dsRNA, but
only a small amount of guanine residues in calf thymus
dsDNA were modified (Table 1, Fig. 2A, Figure S2 on
Supporting information).

We next tried to optimize the reaction conditions for the
kinetic analysis of SCARP, NAD*, and Guo. The quantity of
ADP-ribosylated products increased linearly for up to
60 min (see Figure S3B on Supporting information), and the
enzymatic kinetics were thus determined using 0.2 nM
ScARP in a 10-min reaction. The optimum pH range was 6-
7, but activities were relatively low under weak acidic
conditions compared with weak basic conditions. The
optimum temperature was 30 °C, and 20% of the maximum
activity was retained even at 0 °C. The optimum NaCl
concentration was 50 mM but the effect of the NaCl
concentration was not appreciable within the 0-300 mM
range (Figure S5 on Supporting information). Similar
activities were observed in the presence of KCl or Na;SO4
(50 mM each) in the place of NaCl, and neither the addition
of Ca®*, MgZ*, EDTA, EGTA, NH4Cl, nor dithiothreitol (5 mM
each) interfered with this activity. We used Lineweaver-
Burk plot analysis to determine the K, value for NAD*"
at 110 pM, and the kg value for Guo at 325 g1 (Fig. 6;

Table 1
Acceptors for ADP-ribosylation by ScARP.
Acceptors keat [s7"] K [1M]
Guo 325 31
dGuo 278 52
GMP 204
dGMP 512
cGMP 148
GTP 460
dGTP 379
guanine 63 174
oligo(G)14 0.26
oligo(dG)14 0.20
tRNA, yeast 0.14
DNA, calf thymus 0.001
Ado, Cyd, Urd <0.0001
dAdo, dCyd, dThd <0.0001

kear and Ki, values were obtained using Lineweaver-Burk plot analysis.

0.04
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o
Q
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£
w
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Fig. 6. Lineweaver-Burk plot analysis of ADP-ribosylation of 1 mM Guo by
0.2 nM ScARP in the presence of 0.01-3 mM NADT, in a 50 mM Hepes-
NaOH/50 mM NaCl buffer for 10 min at 30 °C. Product amounts were
determined by the Azs; values.

Table 1). K, values for Guo and dGuo are 31 uM and 52 pM,
respectively, supporting that both Guo and dGuo are
equally targeted. Both the 3'- or 5-phosphate groups
showed little effect on the k¢, values. These results suggest
that ScARP has relatively high activity compared with the
activity domains of MTX and pierisin-1, which have kg
values of 2.5 + 1 min~! for soybean trypsin inhibitor
(Schirmer et al., 2002a) and 55 s~! for dsDNA (Watanabe
et al., 2004) respectively.

3.4. Secretion of SCARP from S. coelicolor

This is the first report that characterizes a mono-ADP-
ribosylating enzyme for guanine nucleosides and mono-
nucleotides i.e. SCARP. Although Widdick et al. may have
previously detected secreted ScARP, their reporter-gene
assay could not determine twin-arginine translocation
pathway-dependent secretion from a plate culture of S.
coelicolor (Widdick et al., 2006). Since there is no UUALY
codon in the SCO5461 gene, the tRNA of which is specifi-
cally expressed upon differentiation (Lawlor et al., 1987),
ScARP must not be differentiation-specific. We thus vali-
dated its ADP-ribosyltransferase activity from liquid culture
medium of growing-phase S. coelicolor using in-gel enzy-
matic analysis and LC-ESI-MS (Figure S6A on Supporting
information). When the active fraction was separated with
an SDS-PAGE gel co-polymerized with yeast tRNA, and
ADP-ribosylated by soaking the gel with [32P][NAD* and
radioluminographed, a band corresponding to an ADP-
ribosyltransferase was detected at 18-kDa, with the same
mobility as that of the activity domain of SCARP (Fig. 7). We
also purified cultured medium partially, and the active
fractions with or without ScARP, as the internal standard,
were measured in duplicate by nano LC-MS/MS system
(2DICAL, Ono et al., 2009, 2006). As shown in Figure S6B
and C on Supporting information, the peak of 499.57 m/z
(RT 35.455 min) matched the doubly-charged ITPEPVWR
sequence with an iScore of 31 and an expect score of 44.0,
and the peak of 482.526 m/z (RT 36.310 min) matched the
triply-charged GPQVVFEEGFHAK sequence with an iScore
of 37 and an expect score of 6.5 of SC05461/gi21223819 in
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Fig. 7. In-gel analysis of NAD*:tRNA ADP-ribosyltransferase activity from
the culture medium of S. coelicolor. Lane 1, total protein from the culture
medium of growing phase of S. coelicolor, concentrated with an Amicon Ultra
MWCO 10 kDa devise (10 pug); lane 2, secretion-form, 18-kDa (10 ng) ScARP;
lane 3, secretion-form, 18-kDa ScARP(E164D) (10 ng).

the MASCOT database. Both peaks were clearly enhanced in
the samples supplemented with ScARP, indicating that S.
coelicolor secreted ScARP protein in liquid culture medium.

4. Discussion

We revealed in our current study that ScARP is
an enzyme lacking receptor-binding domains, secreted
from S. coelicolor, and that ADP-ribosylates the N* amino
groups of guanine nucleosides as well as mononucleotides.
This is therefore the first report to identify an ADP-
ribosyltransferase that mainly targets mononucleotides and
nucleosides, since pierisin-1 shows weak ADP-ribosylation
activity on dGuo (Figure S2 on Supporting information;
Takamura-Enya et al., 2001), but the ADP-ribosylation of Guo
by MTX was undetectable at least in the condition used in
present study (Figure S3D on Supporting information).
Hence, ScARP could be classified as a pentosyltransfer-
ase [EC 2.4.2x] with a systematic designation of
NAD*:guanine-NZ—ADP—D—ribosyltransferase, or as an N-
glycosidic cholera toxin-like-ADP-ribosyltransferase cata-
lyzing mono-ADP-ribosylation [EC 2.4.2.30.1.X.1.2] with
a systematic name NAD":mono-ADP-p-ribosyl-guanine-
N2-ADP-p-ribosyltransferase (GADPRT), according to the
new extended EC numbering system proposed by Hottiger
et al. (2010).

Pallen et al. (2001) have also predicted by PSI-BLAST
analysis that a 219-aa secretion protein (ID 7105990),
identified in the unfinished genome project of S. coelicolor,
could be an ADP-ribosyltransferase. However, their pre-
dicted reaction center in the B-5 strand of this protein
product corresponds to E189, and not E164, in the SCO5461
product. This somewhat contrasting finding may be due to
the preliminary nature of the sequences in unfinished
genome projects. Previous reports have described the
existence of NAD':protein ADP-ribosyltransferases and
ADP-ribosylated proteins not only in S. coelicolor (Penyige
et al.,, 2009; Shima et al., 1996; Sugawara et al., 2002) but

also in Streptomyces grieus, a species that has no SCO5461
homologue (Ochi et al., 1992; Penyige et al., 1996). Since
ScARP also targets basic proteins, such as soybean trypsin
inhibitor with a kg value of less than 0.001, SCARP might
not ADP-ribosylate protein substrates that were previously
identified in S. coelicolor.

The formation of only a single isomer and the ready
anomerization of N?>-(ADP-ribos-1-yl)-2/-deoxyguanosine
has been proposed as the mechanism underlying the
ADP-ribosylation of deoxyguanosine residues in DNA by
pierisins (Takamura-Enya et al., 2004). Our present study
revealed that ScARP produces only a single isomer
of Nz-(ADP—ribos—l—yl)—guanosine, and it anomerized
within 4 h. Although we couldn’t determine which isomer
had been the initial product, an inversion at the C1’-position
of ADP-ribose moiety from B to « occurs in some ADP-
ribosyltransferases [see (Laing et al, 2011) for review].
Future structural analyses of SCARP co-crystallized with Guo
and NAD" will likely elucidate the reaction mechanism.

ScARP is a secreted protein without a receptor-binding
domain, but the accumulated data indicate that the C-
terminal receptor-binding domain is indispensable for
toxic activities of MTX and pierisins (Carpusca et al., 2006).
Moreover, SCARP seems not to be an acute toxic enzyme,
since it could be expressed in E. coli; even expression
vectors for pierisins have not been successfully generated,
possibly due to the toxic effects of their basal expression
during subcloning (Yamamoto et al.,, 2009). Nevertheless,
the wide distribution of the SCARP homologues lacking a C-
terminal receptor-binding domain in streptomycetes
suggests that they must have an important function. If
ScARP is an enzyme which functions extracellularly, it could
be possible that ADP-ribosylguanosine (*?Guo) functions
in response to environmental changes. Many bacteria
use guanosine derivatives in response to environmental
changes, such as guanosine penta- or tetraphosphate ((p)
ppGpp)-mediated stringent responses (Srivastava and
Waters, 2012), or cyclic di(3’-5')GMP (c-di-GMP)-mediated
regulation of motility and biofilm formation (Krasteva et al.,
2012). In this respect, it is interesting to speculate that SCARP
disregulates these signals by direct ADP-ribosylation of
these guanosine derivatives, or by synthesizing *?Guo as
mimicking or competitively inhibiting molecules. Since the
damaged nucleotide pool induces genomic instability and
gene mutation [for reviews, see Henderson et al. (2010)],
it might be possible to speculate the 2?Guo-mediated
increasement of DNA replication errors in bacteria living
near S. coelicolor.

Although streptomycetes are known to secrete a large
amount of extracellular enzymes to obtain soluble nutri-
ents (Chater et al.,, 2010), there is a “topological paradox”,
similar to that found in vertebrate ARTs and CD38 (De Flora
et al., 1997; Koch-Nolte et al., 2011), since both NAD' and
guanosine mainly exist inside cells. Possible sources for
NAD™ and guanosine are dead or damaged bacteria and
eukaryotes, the major nutrition source for streptomycetes.
The other possible sources for guanosine are secreted
extracellular nucleic acids [see (Kikuchi and Rykova, 2010)
for review]. Further studies, such as screens for naturally
formed ADP-ribosylated guanine nucleotides, elucidation
of the responses of bacteria to ADP-ribosylated guanosine,
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and phenotypic analysis of a SCARP-deletion strain will be
necessary in the future to better understand the biological
significance of SCARP.

The other remaining question is the origin of ADP-
ribosyltransferase such as ScARP. The SCARP homologue in
S. avermitilis (Save_pseudo in Fig. 1A and C) is overlapped by
the SAV_1763 lipoprotein gene and therefore has an imper-
fect ORF. Save_pseudo is located on the border between the
region for non-essential secondary metabolite genes and the
region for essential genes (Ikeda et al., 2003). Our present
hypothesis is that this gene could have once been distributed
among some Streptomyces strains, but then disappeared by
recombination with the other gene in S. avermitilis. There are
many actinomycete genome projects currently underway,
reflecting the importance of these bacteria in ecology,
pharmacy, and industry. Both phylogenetic and biological
studies of these microorganisms may help to elucidate
the origin and physiological roles of nucleoside- and
mononucleotide-specific ADP-ribosyltransferases.
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