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Figure 3. S1P, expression in Cer7 "™ T, cells. A: Western blotiing of 1P,
in Ty, cells from WT and Cor7’™ mice (n'= ¥/group) was performed.
GAPDH expression was used as a housekeeping protein. B: Relative expres-
sion of 51P, to GAPDH was quantified using the protein band intensities in
A Data are presented as means & SD (s = 3). C: Phosphorylation of Rac-1
in Tieq cells of LNs from WT and Cer7™/” mice was analyzed under confocal
microscopy. Nuclei were stained with DAPIL Images are representative of
three mice in each group. Scale bar =10 pm. D: Western blot analysis
of Rac-1 and phosphorylated Rac-1 was performed, Results are representative
of three independent experiments. E: Migration assay of WT and Cer7™""
Tyeg Cells was performed using anti-CD3 mab (0.5 mg/mL), S1P (100 nmol/L),
CCL19 (50 ng/mL), CCL21 (50 ng/mL), and pretreatment (6 hours) with
FTY720 or PTX. Data are presented as means * 5D (u = 3) and are
representative of three independent experiments. *P < 0.05.

with anti-CD3 mAb in the presence of S1P (Figure 5A). In
support of these findings, the immunoblot analysis
showed much stronger phosphorylation of c-Jun in WT
Treq Cells stimulated with anti-CD3 mAb and S1P than in
Cor7 ™~ T.eq cells (Figure 5B). Furthermore, the tran-
scriptional activity of c-Jun was significantly increadsed
using nuclear extracts from WT T, cells stimulated
with anti-CD3 mAb and S1P, compared with extracts
from Cer7 ™/~ T,eq cells (Figure 5C). These results show
that the CCR7-dependent TCR/CD3-S1P/S1P, signal-
ing pathway is critical for T,og function through AP-1
activation.

To examine whether the transcriptional activity of c-Jun
is controlled by CCR7 ligands (CCL21 and CCL18), we
analyzed the activity of WT T cells stimulated with

anti-CD3mAb in the presence of both S1P and CCL21 or
CCL18. The transcriptional activity of ¢-Jun in anti-
CD3mAb-engaged T,., cells was enhanced by S1P and
CCL21 or CCL19 (Figure 6, A and B). On the other hand,
the transcriptional activity of c-Jun of Cer7=/~ Treg Cells
was enhanced by CCR7 ligands, in addition to CD3 en-
gagement and S1P {Figure 6, A and B). These resulis
suggest that the cooperative action of CCR7 signaling
with the TCR/CD3-S1P/S1P, signaling pathway plays an
important role in the AP-1-mediated function of T o  cells. .

Abnormal Nuclear Localization of Foxp3 in
Cer7™!= T,og Cells

As a unique finding regarding the localization of Foxp3 in
Cer7™'™ T,qq cells, Foxp3 was positioned like a ring in the
perinuclear region of unstimulated T, cells in Cor7™"~
rnice, whereas in WT T, cells it was positioned in the
center of the nucleus (Figure 5A). In further analysis using
confocal microscopy, in Cer7 ™~ mice Foxp3 was de-
tected in the nuclear membrane and perinucleus, or a
small amount of Foxp3 protein was detected in the cyto-
plasm near the nuclear membranes of LN T, cells,
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Figure 4. Signaling pathway downstream of S1P; in Cor7 ™™ T,., cells. A:
Phosphorylation of ERK in Foxp3™* T, cells of LNs from m,an? cerr T
mice was detected under confocal microscopy. Scale bar = 10 um, B:
Phosphorylation of ERK and total ERK in Foxp3™ T, cells of LNs from WT
and Cer7"" mice were detected by Western blotting. C: Migration assay of
WT and €er7 "™ Ty cells was performed using anti-CD3 mAb (0.5 mg/mL),
$1P (100 nmol/L), CCL19 (50 ng/mL), CCL21 (50 ng/mL), and pretreatment (6
hours) with rapamyein (10 and 100 nmol/L), SB203580 (1 and 10 pmol/L), or

PDY80SY (1 and 10 pmol/L). Data are presented as means = SD (n = 3} and

are representative of three independent experiments, *P < 0.05;* P < 0.005,
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Figure 5. MAPK and AP-1 sxgnalmg in T, cells through S1P, amd CCRY, A
Foxp3 and phospho-c-Jun in LN Treg ceiis?fom WT and Cor7™"™ mice were
analyzed under confocal microscopy. Nuclei were stained with DAPY. Results
are representative of three independent experiments, Scale bar = 10 gm. B:

Detection of phospho—cjun and total ¢Jun in LN T, cells from WT and
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two indepenﬂem expenmem;s G c-Jun transcriptional activity of LN T
cells from WT and Cer7™/ mice was meastred using an AP-1 binding probe.

Datz are presented as means % SD (n = 3) and are representative of two
independent experiments: **P < 0. Q05 versus WT.

whereas in WT T, cells it was present exclusively in the
nucleus (Figure 7, A and B). Even when Cer7 ™"~ Treg
cells were cultured without stimulus (medium only),
Foxp3 was. localized in the perinuclear region of the cell
(Figure 5A,). When Ceor7 ™/~ T,q cells were stimulated
with anti-CD3 mAb or anti-CD3 mAb + S1P, Foxps was
localized both in the perinucleus and in the center of the
nucleus (Fsgure SA) These findings suggest that CCR7
regulates the nuclear localization of Foxp3. According to
a recent report, Foxp3 szgmticamfy suppresses the tran-
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scriptional activity and promoter DNA binding of AP-1 by
interacting with c-Jun, indicating that Foxp3 is a suppres-
sor of c-Jun-based AP-1 transcriptional activity.'” The
binding of Foxp3 to c-Jun in WT T,eg cells stimulated by
anti-CD3 mAb and S1P, was observed by immunopre-
crpltancm with ‘anti-Foxp3 mAb; however, this binding was
not present in Ccr7 ™" T,eq cells (Figure 7C). In contrast,
there were no dnfferences in mRNA expression of Foxp3
between WT and Ccr7~/~ T, Tieq Cells (Figure 7D). It is may
be that Foxp3 is localized in the perinuclear region of the
cells because of impaired c-Jun activation in Cer7~"~
Treg Cells.

Discussion

In the present study, we confirmed two possible molec-

ular mechanisms underlying Treg Cell function mediated
by CCRY7. In one mechanism, our results suggest that the
ccoperatwe action of CCR7 with TCR/CD3 controls the
internalization of S1P/S1P, with Gi after the phosphoryla-
tion of c-Jun as well as MAPK activation in T, celis (see
Supplemental Figure S3 at http://ajp.amjpathol.org). The
other mechanism shows that Foxp3 can bind to phos-
pharylated c-Jun in the nucleus to inhibit the transcrip-
tional activity required for the migratory function or unre-
sponsiveness of Treg cells. In contrast, ¢-Jun unbound
from Foxp3 in the nucleus may act as a transcription
factor for the migratory function of peripheral Treq Cells
(see Supplemental Figure S3 at http.//ajp.amjpathol.org).
We hypothesize that the migratory function of T, cells is
controlied by c-Jun activation, which is regulated by the
S1P/S1P; pathway through the cooperative action be-
tween TCR/CD3 and CCR7 signaling and the molecular
interaction of Foxp3 with c-Jun. In contrast, in Cer7™"™
Treg Cells, defective internalization of S1P/S1P, after ac-
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Figure 6. Control of ¢Jun transcriptional ‘activity in Tng cells by ligation
with CCR7. The c-Jun transcriptional activity of WT and Cor7 ™™ T,. cells
stimulated with plate-coated anti-CD3mab (0.5 pg/mL) in the presence of
S1Pand CCL21 (0, 20,50 ng/mL} (A) or €CLI9 (O, 20, 50 ng/mL) (B) was
evaluated, For Cer7™ Z Toéz cells, CCL19 and CCL21 were used (50 ng/mL),
Data are presemed as means +:50 (n = 3) and are representative of two
independent experiments, OD, optical density.
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Figure 7. Abnormal nuclear localization of Foxp3 and impaired binding of
Foxp3 1o c-jur: A and B: Nuclear localization of Foxp3 was evaluated by
confocal microscopy analysis with DAP! staining. Relative fluorescence in-
tensity of Foxp3 and DAP! along the axis of the arrow in the direction pointed
by the arrow is shown. Results are representative of two independent ex-
periments. Scale bars 10 wm. C: impairment of interaction between Foxp3
and cJun in Cer7™ Tiey Was detected by immunoprecipitation with anti-
Foxp3 mab and by Western blotting with anti-c-jun pAb. Results are repre-
sentative of two independent experiments. D: Foxp3 mRNA expression Was
quantified by real-time PCR. Data dre presented as means % 5D (n= 3).

tivation of MAPK and c-Jun may result in an impaired
mlgratory response. It was reported that Foxp3 sup-
presses both the transcriptional activity and promoter
DNA-binding of AP-1 by interacting with c-Jun, and thisis
related to the unresponsiveness of T,eg cells.” Our find-
ings suggest that CCR7/S1P, signaling through the inter-
action of c-Jun and Foxp3 in T4 cells controls migratory
functions, in addition to the unresponsiveness of Teg
function. This may explain the defective in vivo function of
Cor7™™ Togq cells.

S1P is one of the natural lysophospholipids that control
various functions of immune cells, such as migration,
profiferation, and cytokine secretion.?-2% S1P is se-
creted by macrophages, mast cells, dendritic cells, and
platelets.>*25 The concentration of S1P is higher in the
blood and lymph (range, 0.1 to 3 wmolll) than in the
lymphoid organs and other tissues (range, 3 to 100 nmol/
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L).2627 The S1P concentration gradient in each organ or

tissue can control the chemotactic emigration of thymo-
cytes and egress of lymphocytes from LNs during the
differentiation or activation of certain pathological condi-
tions.2®2° More importantly, the condition of cell surface
expression of S1P receptors regulates immune cell func-
tions such as egress from LNs.*>3! Among the five S1P G
protein-coupled receplors (ig, S1P, though S1Pg), S1P,
is the major S1P-receptor responsible for the direct che-
motactic response in T-cells. %34 S1P, expressed on the
T-cell surface is internalized when T cells are activated
through the binding of S1P-S1P,."7 In the present study,

although total expression of S1P, in Cer7™/~ T, cells
was not significantly changed compared with that nWT
T,eg cells, migratory function of WT T,,, celis in the re~
sponse ta CD3 signaling and S1P was impaired by treat-
ment with a- Gi inhibitor, In addition, CCR7 ligand-en-
hanced migratory response of WT Teg Cells was also
inhibited by treatment with a Gi inhibitcr. This finding
suggests that CCR7 controls S1P/S1P,-mediated T,
specific functions through CD3 signaling. However, the
precise mechanism underlying CCR7 and $1P, signaling
remains to be clarified.

TCR/CD3-dependent stimulation of T cells induces the
down-regulation of plasma membrane S1P,,"” and acti-
vation of several molecules downstream of S1P, includ-
ing Rac-1, ERK, and c-Jun, after AP-1 activation plays a
critical role in S1P/S1P,-mediated T cell functions. '35
Our results show that the activation of signaling mole-
cules in MAPK and AP-1 pathways through TCR/CD3 and
S1P, in Cer7 ™™ T,eq cells was abrogated. In addition,
CD3/S1P-induced transcriptional activity of ¢c-Jun in nor-
mal Treg cells was enhanced by the addition of a CCR7
ligand (CCL21 or CCL19). This result suggests that the
possible crosstalk between CCR7 and S1P/S1P; signal-
ing plays an important role in TCR/CD3-mediated activa-
tion or peripheral T, cell migration. A recent report
indicates that S1P, de%{vers an intrinsic negative signal to
restrain thymic generation, peripheral maintenance, and
suppressive activity of Teq cells. 38 Furthermore, it was
demonstrated that S1P, induces the selective activation
of the Akt-mTOR kinase pathway to impede the develop-
ment and function of T, cells.'® Although the present

‘study was focused on the migratory function of peripheral

T g Cells and not the development and function of thymic

Treg Cells, we note mat the Akt-mTOR pathway may be
associated with the S1P,-AP-1 pathway. Because the
phosphorylation of ERK in Cer7™/~ Treg Cells was abro-
gated by stimulation with anti-CD3 mAb and S1P, but
ERK activation in WT T, cells was detectable, it is pos-
sible that the Akt-mTOFt pathway can act at any step in
the S1P,-AP-1 pathway. Our results show that ERK acti-
vation through CCR7/CD3/S1P, signaling is more crucial
than Akt-mTOR for the migratory functions of T, cells.
Further analysis of the molecular interactions between
various signaling molecules is warranted.

Foxp3 plays an essential role in suppressing AP-1
DNA-binding activity and consequently inhibiting AP-1
transcription activity, because the expression of Foxp3
significantly blocked AP-1 transcriptional activity and
promoter DNA binding.'" A previous report suggested



that the blocking of AP-1 transcriptional activity by Foxp3
is associated with the unresponsiveness of T, cells
because of inhibition of AP-1-mediated activation of T,eg
cells.’” In addition, transcriptional activation of ¢-Jun is
inhibited in anergic T cells.3"%° In the present study,
signaling after AP-1 activation of Cer7~/~ Teq Cells was
impaired. As a result, binding of Foxp3 to c~Jun in the
nucleus was also undetectable in Cer7™/" T4 cells. The
unresponsiveness of T.g cells through the abrogated
activation of c-Jun may be related to in vivo defects in the
function of Cer7™"~ Treg Cells, as we have previously
reported.® Mutations wd:hm a putative nuclear localiza-
tion signal near the C-terminal end of the forkhead do-
main in the Foxp3 gene abrogate nuclear import of the
Foxp3 protein.*° Although the specific abnormality in the
Foxp3 gene of Ccr7™~ mice is unclear, the impaired
signaling of c-Jun by binding Foxp3in Ccr7 ™~ T,.q cells
may influence the localization of the Foxp3 protein. How-
ever, it is still unclear whether differentiation in the thymus
or maturation in the periphery causes abnormal localiza-
tion of Foxp3 in the nucleus of Ccr7;”™ T, célls.
in summary, the present data show that CCR7 signal-
ing can control the migratory response of T4 cells
through a possible crosstalk between Foxp‘a and the
S1P/S1P-AP-1 pathway. The characterization of this mo-
lecular mechanism is importantin defining the pathogen-
‘esis of autoimmunity based on defects in T4 cellular
function.
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Abstract

Backgraund Although the activation of dermal dendntsc cells (DCs) or i.angerhans cells {LCs) via p38 mitogen-activated
protein kinase {MAPK) plays a crucial role in the pathugenes;s of metal allergy, the in vivo molecular. mechanisms have not
been identified and a possible therapeutic strategy usmg the control of dermal DCs or LCs has not been established. in this
study, we focused on dermal DCs to define the in vivo mechanisms of metal allergy pathogenesis in a mouse nickel (Ni)
allergy model. The effects of DC therapy on Ni allergic responses were also investigated.

Methods and Finding: The activation of dermal DCs via p38 MAPK triggered a T cell-mediated allergic immune response in
this model. In the MAPK signaling cascade in DCs, Ni potently phosphorylated MAP kinase kinase 6 (MKK6) following
increased DC activation. Ni-stimulated DCs could prime T cell activation to induce Ni allergy. %ﬂtefestmgty, when MKK6 gene-
‘transfected DCs were transferred into the model mice, a more pronounced allergic reaction was observed. In addition,
injection of short interfering (si) RNA targeting the MKK6 gene protected against a hypersensitivity reaction after Ni .
immunization, The cooperative action between T cell activation and MKK6-mediated DC activation by Ni played an
important role in the development of Ni allergy.

Candu,;%ns:ﬁc activation by Ni played an important role in the development of Ni allergy. Manipulating the MKK6 gene in
DCs may be a good therapeutic strategy for dermal Ni allergy.
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Introduction

Metal allergy is an inflammatory disease categorized as a
dclayed-typc hypcrsensmwty (DTH) reaction, similar to contact
dermatitis and eczema [1,2]. This skin disease is induced by a
complex process involving immune responses of numerous cell
types, and cooperation among these cells is crucial for symptom
development {3,4]:

Among various metals, nickel (Ni), when used in costume
jewelry or dental alloys, is the most frcqaem cause of contact
allergy [5-7]. Ni-specific T cell responses are crucial for the
dcvelapment of allergies in human and mouse models [8-10].
However, it is unclear how T cells recognize Ni presented to them
by antigen-presenting cells (APCs). In the skin, Langerhans cells
(LCs) or dermal dendritic cells (DCs play ftmdamental roles as
APCs for uptake, processing, and presentation of antigens 11 \12].
Although there is no evidence that DCs or LCs can’ dn'ﬁctly clear
Ni, these APCs may contribute to a Ni allergic response via other
molecular mechanisms.. ,

Ni ions (Ni”*) are known to be released from various alloys into
the skin and exert proinflammatory and irritant properties: as

potent allergens or haptens [13,14]. Ni penetrates the skin where it
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may associate with epithelial cells or become attached to MHC
molecules on LCs or DCs. APCs are activated by certain cytokines
such as IL-1 and TNF-GL produced by keratinocytes. The
cytokines regulate the expression of E-cadherin and chemokines.
like matrix metalloproteinase (MMP)-9, sccondary. 1ymphmd tissue
chemokine (SLC), and MIP-38 ?roduccd by ‘the APCs [15-18].
Subsequently, APCs migrate to draining lymph nodes where they
present haptens to naive T cells. R&cxpnsurc to-the same hapten
leads to a hypersensitivity reaction in an effector phase.

Recent  ailyo experiments have reported that contact sensitizers
like Ni activate epidermal DCs or LCs as shown by the upregulatmn
of CD80, CD83, CD86, and MHC class 11 [19]. Moremrer, n vitre
experiments using human DCs showed that Ni-induced phosphor-
ylation of p38 mitogen-activated protein kinase MAPK) was critical
for-the maturation of immature DCs [20-22] In aﬁdmnn, the
conditional induction of a dominant active form of MAP kinase
kinase 6 (MKK6) cfﬁcnenﬁy induced the activation of human LCs
[23]. However, it remains unicertain whether the in 2120 activation of
DCs in the skin is induced by Ni via the MAPK signaling pathway.
Furthermore, it is unclear whether the signaling pathway of DCs
stimulated by Ni is different from that of the other stimuli with
regard to signal strength or the pathway itself.
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The aim of this study was to determine the signaling pathway
for APC activation in dermal immune responses related to the
pathogenesis of Ni allergy in a mouse model. In addition, a
therapeutic strategy based on the in »ivo molecular mechanisms of
Ni allergy was applied to this model.

Results

Induction of Hypersensitive Reactions to NiCl,

To induce hypersensitive reactions to Ni, Ni is typically applied
to the skin surface as a secondary challenge after sensitization. In
the first series of experiments, we evaluated results of the mouse
ear swelling test, as described previously [24]. Using this protocol
(Figure 1A), we found flare reactions and slight increases in ear
swelling in response to NiCly (Figure 1B).

In order to elucidate the symptoms associated with hypersen-
sitive reactions to NiCly, we administered intradermal injections
into the ear pinnae of mice as previously described [25]. Although
attempts to induce Ni allergy in mice have often failed, a DTH
reaction to Ni has been achieved after injecting NiCly in
combination with an adjuvant or irritant [25]. Thus, we attempted
to induce DTH by injecting NiCl, in combination with either
incomplete Freund’s adjuvant (IFA) or complete Freund's
adjuvant (CFA) (Figure 1C). A DTH reaction to NiCl, was
induced in C57BL/6 (B6) female mice using the method shown in
Figure 1C.

Bneﬁy, NiCly with IFA was intraperitoneally m3ectcd into B6
mice -for initial immunization. Two weeks later, NiCl, together
with CFA was intradermally injected into the ear skin for a recall
immune response. DTH reactions were determined by measuring
the changes in ear thickness 48 hours after the challenge.

Although increased ear thickness of Ni-treated mice after
injection of Ni with IFA has been previously reported [25], in this
study, ear swelling was only around 0.2 to 0.3 mm (Figure 1D). In
contrast, the ear thickness of Ni+CFA-treated mice after Ni with
1FA was significantly higher compared with that of CFA-treated
and other mice (Figure 1D). Redness and swelling of the ear skin
was observed in Ni+CFA-treated mice after Ni with IFA
{Figure 1E). H:stologmal examination of the ear epidermis of
Ni+CFA-treated mice after Ni with IFA showed edema,
congestion, and extensive infiltration of inflammatory cells,
including mononuclear cells, monocytes, neutrophils, and macro-
phages, in the connective and muscular tissues; however, there was
no inflammation in control ears (Figure 1F, Figure S1A). In
addition, toluidine blue-positive cells, including degranulated mast
cells, found in the lesions of Ni allergy mice were significantly
increased compared with those in control mice (Figure 81B). This
Ni allergy model with severe inflammation was used to analyze the
cellular mechanisms and to develop a therapeutic strategy.

Cellular Mechanisms of Ni Allergy

To characterize Ni allergy, Immune responses to another
antigen or metal were compared with Ni immune responses in the
present allergy model. Briefly, NiCl, or the control metal/antigen
(PBS, ovalbumin [OVA], or TiO, [Ti]), along with IFA, was
intraperitoneally injected into B6 mice. Titanium has been known
as one of biocompatible metals, and so it is believed that the
allergic sensitivity induced by nickel is rarely occurred by titanium
[26]. Therefore, titanium was used as a control metal in this study.
Two weeks later; NiCl, or the abovementioned control metal/
antigen, along with CFA, was intradermally injected into the mice.
At 24 and' 48 hours after immunization, DTH reactions were
assessed by measuring ear thicknesses. In contrast to the swelling
seen in OVA- or Ti-treated mice, the ear thicknesses of Ni-treated
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mice were significantly increased at both 24 and 48 hours after the
second challenge (Figure 2A).

Flow cytometry was performed to identify the phenotypes of
infiltrating lymphocytes in the allergic lesions. Large numbers of
CD3" T cells and CD19" B cells were detected in the tissue
samples obtained from NiClyinjected mice (Figure 2B). In
addition, immunohistochemical ‘analysis indicated that a much
higher proportion of CD3* T cells were observed in the skin tissues
of NiCly-injected mice, compared with CD19"B cells (Figure 2C).
The infiltrating T cells were largely CD4™ T cells, with small

numbers of CD8* T cells and NKI1.1* natural Killer (NK) cells

(Figure S2A). Moreover, the proportion of NKT cells reactive to
anti-a-GalCer-CD1d complex in the ear tissues of NiCly-injected
mice was significantly increased compared with that of control
mice (Figure 52B). The number of MHC class II"CD11c" dermal
DCs was significantly higher in NiCly-injected mice than in
control mice (Flgure 2D). In addmon, the absolute numbers of
dermal DCs in N:Cig-mjectﬁd mice were significantly increased
compared with those in control mice (Figure 2E). In contrast, the
number of DCs in the cervical lymph nodes of Ni-injected mice
was not increased (Figure $2C). These results suggest that T cells
and dermal DCs in the skin lesions play important roles in the
devclopment of the hypersensitivity reaction induced by NiCl,.

Activation of DCs by NiCl; via MAPK

Numerous signaling molecules control the maintenance of DCs
in peripheral tissues [27]. Among these, MAPK is known to be a
key signal transducer for the activation of DCs in various immune
responses [28,29]. Regarding DCs in allergic reactions in humans,
p38/MKKS6 in the MAPK pathway plays a significant role in the
activation of DCs during the development of skin allergy [23]
Thus, we focused on p38/MKKG6 of DCs in mice. To define in vivo
p38/MKKS6 activation of dermal DCs in our Ni aﬂcrgy model,
Western blot analysis of MKK6 was performed using skin tissue
samples, MKK6 phasphorylanon was significantly increased in the
skin tissues of NiCly-injected mice (Figure 3A), but absent in the
skin tissues of PBS-, OVA-, and TiOy-injected mice (Figure 3A).
Further, phospho-MKK6 was detected in MHC class II" DCs in
the skin tissues of NiCly-injected mice (Figure 3B). These results
showed that dermal DC activation via MKK6 was important for
the pathogenesis of Ni allergy in the skin.

On the other hand, when phosphorylation of MKK6 and p38
in bane marrow-derived cells (BMDCs) stimulated with NiCl, was
examined by Western blot analysis, the phosphorylated levels of
MKK6 and p38 in NiCly-stimulated BMDGs. were. elevated
similar to those in LPS-stimulated BMDGCs (Figure S3A). When
stimulated with TiQy, however, no phosphorylation of MKK6
and p38 was detected (Figure S3A). We used real-time PCR to
examine the MKK6 mRNA expression in BMDCs stimulated
with NiCly. The mRNA expression level of MKXKS6 in BMDCs
stimulated with NiCl, was increased in a ime-dependent manner;
it was much higher than that in LPS-stimulated BMDCs during
the first' 24 hours (Figure S3B), but décreased after 36 hours
{Figure SSB} These results showed that Ni could directly trigger
the activation of DCs via p38/MKKG6 to induce an allergic
immune reaction.

Enhanced Allergy after Transfer of T Cells Primed by

NiCly-stimulated DCs

As shown in Figure 2, a large number of T cells had infiltrated
into the lesions of inflamed skin tissues. In addition, when purified
T cells from the lymph nodes of the Ni allergy model were
stimulated with anti-CD3 mAb, production of Thl-type cytokines,
including 1L-2 and IFN- y, was significantly increased compared
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with that in controls {Figure $4). On the other hand, the secretion
of Th2-type cytokines such as IL-4 and IL-10 from ant-CD3
mAb-stimulated T cells of Ni allergy model was similar to that of
the other control mice (Figure $4). These findings suggest that T
cells play a key role as effector cells in the pathogenesis of Ni

allergy. However, it was still unclear how Nisstimulated DCs were
related to T cell responses in allergic reactions.

Thus, T cells purified from the spleens of normal B6 mice were
co-cultured with Ni-stimulated BMDCs in wifro for 24 hours. Then,
the resulting primed T cells were transferred intraperitoneally into
normal B6 mice, and 2 weeks later, NiCl; with CFA was injected
intradermally to induce DTH (Figure 4A). The skin thickness of
the model mice with transferred Ni-BMDCs-stimulated T cells was
significantly increased compared with that of mice with transferred
nonstimulated T cells (Figure 4B). Pathological examination of the

'@ PLOS ONE | www.plosone.org

skin lesions in the mice with transferred Ni-BMDCs-stimulated T
cells showed more severe inflammation, including lymphocyte
infiliration, edema, and congestion, compared with those in the
mice with transferred nonstimulated T cells (Figure 4C). These
results suggested that the T cells primed by Ni-stimulated DCs

‘were important for the onset of Ni allergy.

Effects of Overexpression of MKK6 in DCs on Ni Allergy
To examine whether DCs activated by the engagement of p38/
MKKS6 signaling influenced the development of skin allergy,

‘BMDCs were transfected with the MKK6 gene (MKK6-DC) and

stimulated with NiCl, for 48 hours. Then, MKK6-DCs were
subcutaneously transferred into normal B6 mice, and 2 weeks
later, NiCly was intradermally injected to induce Ni allergy
(Figure 5A). The skin redness in MKK6-DC-transferred mice was
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enhanced compared with that in Mock-DC-transferred mice
(Figure 5B). In addition, pathological examination revealed
remarkable infiltration of immune cells along with congestmn
and edema in the skin lesions of MKK6-DC-transferred mice
(Figure 5C). Significantly enhanced car swellmg was detected
within 48 hours of injecting NiCl, into MEKK6-DC-transferred
mice compared with Mock-DC-transferred mice (Figure 5D). In
addition, we mvesngated producnon of a:ytokmes hy Ni-
stimulated DCs that are required for T cell priming, including
1L-12; IFN-y, and IL-10. The amounts of IL-12, IFN-y, and IL-

10 produced by BMDCs after stimulation with NiCl, were equal

to those after stimulation with LPS (Figure SS), and the cytokine

producmm by NiCly-stimulated BMDCs were significantly

higher compared with that by TiOy-stimulated BMDCs (Figure
§5). These results suggcsteci that Nl«mcthated DC activation
played a central role in T cell priming fqr the onset ‘and
development of Ni allergy.

Effective Therapy for Ni Allergy using MKK6 siRNA

We next tested a therapeutic strategy for Ni allergy using short
interfering (si) RNA targeting the MKKG6 gene. Before mducmg a
DTH reaction, MKK6 siRNA with atelocollagen as an in vivg gene
delivery system was subcutaneously injected into. the ear skin of the
model mice. Ear thickness was measured at 48 hours after
injecting NiCly or saline ‘control: (Figure 6A). We confirmed that
the MKK6 mRNA level in siRNA-treated DCs was significantly
reduced (< 1/6) compared with that in control siRNA-treated DCs
(data not shown).

1B, PLOS ONE | www.plosone.org

289

DC Therapy for Ni Allergy in Mice

Ear thickness of MKK6 siRINA-treated allergy model mice was
significantly’ reduced compared with those of control siRNA-
treated mice (Figure 6B). In addition, pathbiogxcai examination
showed no detectable inflammatory lesions in MKK6 siRNA-
treated mice, while severe inflammation with extensive lympho—
cytic infiltration, edema, and congestion was observed in the
lesions of the mice injected with control siRNA (Figure 6C).
Further, although phosphorylation of MKK6 of MHC class II"
dermal DCs in the skin sheets from MKKS siRNA-treated mice
was nearly undatectablc, there was phospharylation in the sheets
from control siRNA-treated mice (Figure 6D). This showed that an
effective therapy using siRNA targeting the MKKS6 gene could be
used for treating Ni allergy.

Discussion

DCs in the epidermis and dermis participate in the recognition
of pathogens. The two major populations of DCs present in
normal skin are epidermal LCs and dermal DCs; These DCs
function as APCs and play key roles in sensing pathogens and
initiating. aﬂexjgxc responses. Immatare DCs, such as epidermal
LGs, reside in the peripheral tissues. When these DCs are
activated by antigens and mature, they migrate from peripheral
sites to lymphoid organs where they stimulate T cells to induce an
immune response [11,30]. The cutaneous immune system depends
on multiple cell-cell contacts for antigen rtognition and
presentation, as well as mﬁammanan LC:s facilitate the develop-
ment of contact hypersensmwty responses by efficiently presenting
haptens to T eells [31]. However, it has been suggested that
dermal DCs can support LC functions [31].

From our results and those of other studies, allergy symptoms,
such as swelling and flare reactions, were minimal and transient
after applying a Ni-based ointment to the skin surface. Artik et al.
demonstrated contact hypersensitivity in model mice after
intradermally injecting Ni into the ear pinnae [25]. Our method
using intradermal injections of Ni with CFA in a new DTH model
was based on their report. Clinical skin tests (such as puncture tests
and intradermal injection tests) along with patch tests have been
used for the diagnosis. of metal allcrgy Therefore, we injected
NiCl, with CFA intradermally into mice in order to obtain clear
hypersensmvxty responses.

p38 MAPK isan evolutionarily highly conserved stress response
pathway in various cells [32]. p38 MAPK is activated by an
upstream kmase (MKKS6 or MKK,B) and then translocated into the
nucleus where target molecules are phospﬁorylated by p38 MAPK
[33,34]. A previous report showed that activation of human LCs
was mggered by MKK6 {23} In addition, several reports using in
vitro experiments showed that p38 MAPK phosphorylation played
an important role in the activation of DCs by Ni. [34-36]. Our
experimernts :zsmg a Ni allergy model strongly suggest that MKK6
phosphorylation in dermal DCs is the first important trigger for
the onset of an allergic response to Ni.

Ni is the most fi‘equent cause of metal allergy. It is poss;ble that
Ni in the skin may interact with proteins, after which dermal DCs
capture the Ni-antigen complex. At this stage, Ni xmght be a
potent factor for triggering activation of DCs via. MKKS. In our
model, the spccxﬁc activation of MKK6 in DCs was observed only
when the cells were stimulated with Ni but not another metal or
antigen such as Ti or OVA. ‘However, because the phosphory-
lation of MKKS6 in DCs was detectable after stimulation with LPS
in vitro, the signaling pathway induced by Ni could be modulated
by other stimuli. In addition, we could not identify the mechanism
by which Ni modulated MKK6 expression.
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It was recently reported that human Toll-like receptor (TLR) 4
plays a crucial role in the deveio;:ment of contact allergy to Ni [37]
and that only TLR4-deficient mice expressing transgenic human
TLR4 dcvclaped contact hypersensitivity to Ni, while animals
expressing mouse TLR4 did not develop DTH. Although the cell
type contributing to a TLR4-mediated allergic reaction was not
identified, immune cells such as DCs, macrophages, and
endothelial cells were associated with an allergic reaction to Ni
via TLR4. It is possible that TLRs other than TLR4 are related to
Ni allergy in mice. In our mouse model, although the signaling
pathway via TLR in DCs was not examined, MKK6 phosphor-
ylation was observed in LPS-stimulated DCs in sitro. Thus,
cooperative or synergistic actions of Ni with other signaling
pathways, including TLR, fbllowmg MEKKS6 activation may be
associated with Ni allergy in this mouse model. Our in vivo
experiments suggested that DCs activated by Ni enhanced T cell
migration to local lesions and T cell-dependent allergic response;
however, it remains unclear how Ni can stimulate or control DG
activation via MKKS6. Moreover, our result showed that
significantly increased number of NKT cells reactive to anti-
otetGalCler-CD1d complex was found in the ear lesion of Ni model
mice. CDId-restricted NKT cells have been referred to as natural
memory cells in both innate and acquired immune responses [38].
However, the relationship between metal allergy and the role of
NTK cell has been still unidentified. Further research using our

{B). PLoS ONE | www.plosone.org

model will be necessary for understanding the cellular mechanism
of metal allergy.

DC maturation c¢an be initiated by inflammatory stimuli, such
as cytokines, LPS, CD40 ligation, and contact allergens [39].
Activated DCs take up antigens and produce a variety of cytokines

‘and chemokines, which in turn attract and activate eosinophils,

macrophages, and NK cells to the site of antigen entry [30]. After
antigen capture, DCs migrate to regional lymph nodes and present
peptide-MHC: complexes to antigen-specific T cells that induce T
cell-dependent immune responses, such as Ni allergy [40].
Interestingly, our results showed a s&gmﬁcanﬁy increased number
of dermal DCs in the skin tissues of mice with Ni allergy. These
findings suggest that circulating precursor DCs might accumulate
at the NiCly injection site. Morcover; the experiments usmg skin
tissues demonstrated that phosphorylation of MKKGS in dermal
DCs and LCs was clearly detectable. These results indicated that
stimulation with Ni enhanced both accumulation and activation of
DCs.

DCs are activated by signaling via pattern recognition receptors
{PRRs), such as TLRs and retinoic acid-inducible gene IHike
receptors, in response to a variety of ligands [41;42]. PRR
signaling leads to the activation of nuclear factor (NF)-kB.
Although it s unclear whether Ni can interact with receptors
such as PRRs, previous reports showed that the differentiation of
human DCs is promoted by Ni via NF-xB activation [43,44]. It
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remains uncertain whether NF-kB signaling plays a role in the
pathogcnesis of metal allergy.

Our in vivo experiments demonstrated that manipulating the
MKKS gene of DCs could control Ni allergy. Many reports on
DC therapy for cancer or infection have indicated that antigen
presentation to T cells by DCis is important for controlhng these
discases [14,45 ,46]. However, there ar¢ no reports regardmg
DC therapy for metal allergy. Our new approach with SiRNA
targeting the MKK6 gene could be a powerful strategy for
the prevention and cure of metal allergy. Careful attention
should be paid to the thgrapeutm effects of MKK6 inhibition
on the immune system in the treatment of allergic immune
TESPONses.

In conclusion, the signaling pathway via, p38/MKKS6 plays a
key role in activating dermal DCs in the pathogenesis of metal
allergy. DC thcrapy using MKK6 gene manipulation could be

effective for treating metal allergy. Characterization of this cellular
mechanism could have clinical implications by supporting the
development of new diagnoses or treatments for these allergic

diseases:

Materials and Methods
Ethics

This study was conducted accx)rdmg to the principles expressed
in the Declaration of Helsinki. The study was approved by the

l@: PLoS ONE | www.plosone.org

Institutional Review Board of the University of Tokushima
(toku09021).

Mice

Female C57BL/6] mice (6-8 weeks old) were purchased from
CLEA Japan, Inc (Tokyo, Japan). All mice were maintained in
specific pathogen-free conditions in our animal: facility.

Histology and !mmunoh}stochemtstry

Skin was removed from the mice, fixed with 10% phosphate-
buffered. f‘orma?dehydc (pH 7.2), and prepared for histological
examination. Formalin-fixed tissuc sections were stained with
hematoxylin and eosin. Immunohistochemistry was performed for
freshly frozen sections by the biotin-avidin immunoperoxidase
method using an  avidin-biotin xmunopemmdase complex
reagent (Vector Laboratories, Burlingame, CA, USA). Monoclo-
nal antibodies against CD3 and CD19 (eBioscience, San Diego,
CA, USA) were used.

Induction of Ni Allergy

Ni allergy was induced using a modification of a method
described prevmusly [24,25]. To induce a hypersensitivity
reaction to Ni, 25ul of 1 pmol/ml NiCl, with 25 ul of IFA
(ICN Bnomedmals, Inic., Aurora, OH, USA) was intraperitone-
ally m_}ectcd into B6 mice for initial immunization. Two weeks
later, mice were administered intradermal injections of Nj,
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thickness was measured at 48 hours after injecting NiCly. Results are means = SD for 5 mice in each group. *P<0.05. (C) Pathological findings after in
vivo administration of MKK& siRNA and control siRNA. (D} Phosphorylation of MKKG of MHC class I dermal DCs was analyzed by confocal microscopy.
These results are representative of experiments with 5 mice in each group.

doir10.1371/journal.pone.0019017.9006

10 pl of 0.2 umol/ml NiCl, with CFA (ICN Biomedicals, Inc.)
using 28G1/2 needles (TERUMO Tokyo, Japan) for a recall
immune response. DTH reactions were determined by
measuring the changes in ear thickness at 24 or 48 hours after
the challenge [25].

DC Preparation

DCs were prepared from freshly isolated bone marrow cells as
described previously [26]. Briefly, bone marrow cells were seeded
in G-well culture plates (Nunc A/S, Roskilde, Denmark) in
RPMI-1640 medium sopplemented with 10% heat-inactivated
FCS, 2 mM L-glutamine, 100 U/ml penicillin, and 100 pg/ml
streptomycin, and then incubated for 1 hour at 37°C in a
humidified 5% CO, atmosphere. After nonadherent cells were
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removed, adherent cells were incubated and changed to 1 ml of
fresh medium containing 10 ng/ml GM-CSF (R&D System, Inc.,
Minneapolis, MN, USA} and 1 ng/ml IL-4 (eBioscience) on days
2, 4, and 6, Di:rmal DCs were prepared from the skin of female
B6 mice. Excised skin was cut into small pieces and the dermal
side was exposed to 1.0% trypsin at 37°C for 60 minutes.
Epidermis was incubated in 0.025% DNase for 20 minutes at
room temperature. After an equal volume of RPMI was added,
the solution was swirled for 5 minutes and filtered using a 70 um
cell strainer (BD Biosciences, Franklin Lakes, NJ, USA). The
dermal cell suspension that included DCs was washed three times
with RPMI, and the resulting pellet was re-suspended. Dermal
DCs were enriched by centrifugation using Opti-prep (Invitrogen,
Carlshad, CA, USA).
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Flow Cytometry

Expression levels of surface markers were examined by staining
1x10° cells with 1 pg/ml of antibodies against CD3, CD4, CD8,
CDI19, CD1lc, and MHC class II conjugated with either FITC or
PE (eBioscience). Cells: were analyzed on FACScan (BD

Biosciences).

Western Blot Analysis

Samples of stimulated or nonstimulated DCs. were subjected to
sodium dodccyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) with 10% acrylamide gel, transferred onto a polyvinyli-
dene fluoride (PVDF) membrane (on«Rad Laboratones, Hercu-
les, CA, USA), and the blotted membranes were incubated with
ant-MKKG, phosphmMKKG (Cell Signaling Technology, Inc.,
Denver, MA, USA), or glyceraldehyde-3-phosphate dehydroge-
nase (GAPI)H) {Santa Cruz ontechneiﬁgy, Inc., Santa Cruz,
CA, USA) mAbs. Immune complexes were &etected using

horseradish peroxidase (HRP)-conjugated ‘anti-mouse IgG (Bio-

Rad Laboratories) and ECL-plus reagents (Amersham Bioscience
Corp. szcataway, NJ, USA).

MKK6 Plasmid Construction and Transfection

MKK$6 cDNA obtained from RT-PCR was subcloned into an
expression vector, pcDNA3.1 (Invxtrogen) Transxent transfections
were carried out using a jet-PEI Mannose reagent  (Poly
evdransfection, H]im'ch France) before stimulation. DCs were
transfected with the MKK6 plasmid, and then stimulated with
either 1 pmol/ml NiCl, or 1 pmol/ml TiQ, for 48 hours.

SiRNA for MKK6 o

MEKKS6 and control scramble siRNA reagents were obtained from
B-bridge International, Inc. (Sunnyvale, CA, USA). Sequences of the
oligonucleotides were as follows: MKKG6: sense, 5-CUACAGUA-
GUGAAGAGAUUTT-3'; antisense, 5'-AAUCUCUUCACUA-
CUGUAGTT-3' and mmrol 5'-ATCCGCGCGATAGTA-
CGTA-3'. Using the in vivo. SIRNA transfection kit AteloGene
(KOKEN, Tokyo, J apan), siRNA was injected into ear skin aceordmg
to' the manufacturer’s instructions [47]. In brief, 10 uM siRNA was
mixed with AteloGene and rotated gently at 4°C for 20 minutes, This
solution (20 ul) was subcutancously injected into the ear pinnae; Five
days after injection, ear swelling was evaluated.

Confocal Microscopic Analysis

Skin sheets were isolated from ears of treated mice vmh 3.8%
ammonium thiocyanate, and stained with anti-phospho-MKK6
(Santa Cruz Biotechnology) mAb and MHC class II mAb
(eBioscience). These sheets were analyzed using Confocal Laser
Microscan (LSM: 5 PASCAL; Carl Zeiss. Inc., Oberkochen,
‘Germany).

Statistical Analysis

Results are given as means * standard deviations (SD).
Comparison was done using Student’s £ test or Mann-Whitney U
test. Dﬂferenccs were considered statistically significant for P
values of <0.05.

Supporting Information

Figure 81 Inflammatory lesions in Ni allergy model. (A) Edema
and inflammatory cell infiltrations were observed in the skin tissues
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of Ni allergy mice. Photos are representative of five mice in each
group, Original magnification is x100 (upper) and x200 (lower).
(B) The number of toluidine blue* cells including mast.cell in the
lesion of Ni aHergy model was sxgmﬁcantly ncreased compared to
that of control mice. Toluidine blue staining was pcrformed as
described in Methods S1. Photos are representahve of three mice
in each group: Data are means = SD of 3 mice. *P<0.05, vs
control.

(TIF)

Figure 52 Flow cytometric analysis of immune cells in Ni allergy
model. (A) CD4* and CD8" T cells or NK1.1" cells of car tissues
form controls and Ni allergy models were detected by flow
cytometry. Results are representative of three mice in each group.
(B) NKT cells of spleen cervical lymph nodes, and ear tissues were
detected by using PE~corx_}ugated anti-8GalCer mAb-CD1d
complcx Results are reprcsantatxve of three mice in each group.
(C) CD11c¢* MHC class II¥ DCs in cervical 1ymph nodes (LNs)
from control, OVA, TiOy, and NJC!Q"m}eCth ‘mice were analyzed
by flow cytometry as described in Method $1. The results were
representative of three to five mice in each group.

(TIF)

Figure $3 Activation of MAPK signaling of DCs by Ni. (A)
BMDCs were stimulated with NiCly; LPS or TiO, for 24 hours,
phosphorylatmn of MKK6 and p38, and total MKKG6 and p38
protein were detected by Western blot . GAPDH was used
as the respective internal control. Results “are representative of 3
independent experiments. (B) MKK6 mRNA expression of BMDCs
stimulated with NiCl, or LPS was analyzed by real-time PCR as
described in Method S1. Data are shown as relative expressions to
P-actin, and are representative of 3. mdepenﬂem experiments.

(TIF)

Figure S4 Cytokine secretions from Ni-stimulated T cells. T
cells from ¢LNs of control, OVA TiO3, and NiCly-injected mice
were enriched by negative selection using mAbs (anti-MHC class
11, B220, NK1.1, and CD11b) and magnetic beads. The T cells
were stimulated w;th plate-coated anti-CD3 mAb for 24 hours.
The secretions of IL-2, IFI\-y, 114, and IL~10 in the supernatants
were analyzed by ELISA as descnbcd -in-Method S1. Data are
means £ 8D of trxphcates *P<0.05, vs control.

(TIF)

Figure S5 Cytokine secretions from Ni-stimulated DCs, BMDGCs
were stimulated with I\xClg, LPS, and TiO; for 24 hours. The
cytokine secretions of IL-12, IFN-‘y, and I1-10 were: detected by
ELISA as described in Method S1. Data aré means * SD of
triplicates.

(TIF)

Methods §1

{DGGX)
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EGF, epidermal growth factor; ER, estrogen receptor; IGF, insulin-like growth factor,
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Abstract

Numerous studies support a role of Phosphatase and tensin homolog deleted
from chromosome 10 (Pten) as a tumor suppressor gene that controls epithelial cell
homeostasis to prevent tumor formation. Mouse vaginal epithelium cyclically exhibits
cell proliferation and differentiation in response to estrogen and provides a unique
model for analyzing homeostasis of stratified squamous epithelia. We analyzed vaginal
epithelium-specific Pten conditional knock-out (CKO) mice to provide new insights
into Pten/phosphoinositide-3-kinase (PI3K)/Akt function. The vaginal epithelium of
ovariectomized (OVX) mice (control) was composed of 1-2 layers of cuboidal cells,
while OVX CKO mice exhibited epithelial hyperplasia in the suprabasal cells with
increased cell mass and mucin production. This is possibly due to misactivation of
mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK).
Intriguingly, estrogen administration to OVX Pten CKO mice induced stratification and
keratinized differentiation in the vaginal epithelium as in estrogen-treated controls. We
found Pten is exclusively expressed iny‘the“supr:;xbasal cells in the absence of estrogens,
whereas estrogen administration induced Pten expression in the basal cells. This
suggests that Pten acts to prevent excessive cell proliferation as in the case for other
squamous tissues. Thus, Pten exhibits a dual role on the control of vaginal homeostasis,
dependent on whether estrogens are present or absent. Our results provide new insights

into how Pten functions in tissue homeostasis.
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Introduction
Phosphatase and tensin homolog deleted from chromosome 10 (Pten) is a
lipid phosphatase that functions as a tumor-suppressor, and mutations in Pten are

frequently found both in sporadic and hereditary cancers. Pten acts in opposition to

' phosphatidylinositol 3-kinase (PI3K) function. In the absence of Pten activity,

concentrations of phosphatidylinositol 3,4,5-trisphosphate (PIP3), a lipid second
messenger produced by PI3K, are increased, leading to enhancement of phosphorylation
and activation of the v-akt murine thymoma viral oncogene homolog (Akt). Akt kinase
activity exerts anti-apoptotic and pro-proliferative functions; therefore, mice with Pten
deletion and/or loss-of-function mutations are highly susceptible to tumor induction by
abnormal Akt activation. Pten plays a pivotal role in maintaining stratified squamous
epithelia because conditional knockout of Pren in the epithelium leads to hyperplasia,
hyperkeratosis, and tumor formation in skin, esophagus and stomach 1

Cell proliferation and differentiation of stratified squamous epithelia must be
tightly regulated and coordinated during homeostasis. Vaginal epithelium, despite its
similarity to other stratified squamous epithelia, is exceptional in one major way - the
vaginal epithelium exhibits cyclical, estrogen-dependent cell proliferation and
differentiation during the estrous cycle. The vaginae of ovariectomized (OVX) mice
contain an atrophied epithelium of 2-3 cell layers; estrogen administration rapidly
induces epithelial cell proliferation in the basal layer. The suprabasal cells are no longer
mitogenic but differentiate while moving up through the epithelium. Apical cells exhibit
keratinization. The fully stratified and keratinized vaginal epithelium resembles the
typical stratified and keratinized epidermis found in the skin and other organs. Thus, the

vaginal epithelium provides a unique model to study homeostasis in stratified squamous
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epithelia. There are several case reports of vaginal cysts in the patients with Cowden’s
disease, which is associated with Pren mutation >°, In addition, there is one reported
description of a vaginal squamous cell carcinoma in Pten mutant mice * However, little
is known about the usual function of Pten/PI3K/Akt signaling or its relationship with
estrogen signaling in the vagina.

In rodent reproductive organs such as vagina and uterus, the effects of
estrogen on the epithelia are mediated primarily via stromé.lly expressed estrogen
receptor o (ERo) >, Estrogen-induced growth factors secreted from the stroma
promote epithelial cell proliferation ', resulting in activation of cellular signal
transduction via PI3K/Akt and mitogen-activated protein kinase (MAPK) signaling
cascades *°. Epidermal growth factor (EGF)-like growth factors and insulin-like growth
factor (IGF)-I have mitogenic effects similar to estrogens and administratioxi of these
growth factors to OVX adult mice induced cell proliferation and differentiation in the
female reproductive tract '*'%. These results suggest that Akt and MAPK signalings are
functional mediators of estrogen-induced cell proliferation and differentiation.
Importantly, aberrant PI3K/AKkt activation results in complex atypical hyperplasia and
endometrioid carcinoma in the uterus **°, Therefore, repression of PI3K/Akt signaling
is considered to be essential during the absen;:e of estrogen in the vagina as well.

In the present study, we analyzed epithelium-specific Pten conditional
knock-out (CKO) mouse vagina to provide new insights into Pten/PI3K/Akt function.
We found that Pten is expressed in suprabasal epithelial cells where it prevents
abnormal cell proliferation and differentiation in the absence of estrogen. On the other
hand, in the presence of estrogen, Pten is predominantly expressed in basal epithelial

cells, where it may aid in preventing tumor induction. Thus, Pten exhibits a dual role on
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