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Fig. 2. Main Results from Lipidomic Analysis on Animal Models of Dilated Cardiomyopathy and Alzheimer’s Disease

Left: Changes of lipid metabolites on cardiomyocytes from a hamster model of dilated cardiomyopathy. Right: Correlative changes of eicosapentaenoic acid
(EPA) and docosahexaenoic acid (DHA) metabolites between the brain and plasma from a mouse model of Alzheimer’s disease expressing mutated human
amyloid precursor protein (APP) and tau protein. *p<{0.05, **p<{0.01, ***p<0.001.
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Table 2. Points to Consider for Researches on Biomarker
Identification

1. Selection of a theme that is required for the clinical set-
ting (with relatively high frequencies)

2. Clear standards for patient recruitment (standard pro-
tocol) and collection of minimum but sufficient clinical
information

3. Establishing a systematic framework for sample collec-
tion and data analysis (e.g., periodic meetings, employ-
ment of CRC)

4. Constructing two-step association studies (exploration
and validation)

5. Secure enough research budget

6. Mutual respect between clinical and basic sides in the
research
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Abstract Endobiotic metabolites are associated with
biological processes in the body and therefore may serve as
biomarkers for disease states or therapeutic efficacy and
toxicity. However, information is limited regarding how
differences between blood matrices, patient backgrounds,
and sample handling affect human metabolite profiles. Our
objective was to obtain metabolite profiles from Caucasian
individuals, based on different matrices (plasma and
serum), subject backgrounds (male/female and young/old),
and storage conditions (2 or 10 freeze~thaw cycles). In
total, 297 metabolites were detected by LC/MS and GC/
MS, and more than 75 % of them were highly represented
in all sample groups. The multivariate discriminant ana-
lysis (OPLS-DA as a model) singled out the matrix type as
the most important variable influencing global metabolic
profiles; that is, more than 100 metabolites were signifi-
cantly different based on the matrix type. The influence of
subject backgrounds on global metabolic profiles was
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consistent between plasma and serum. Age-associated
differences were more predominant in females than males,
whereas gender-associated differences were more prevalent
in young subjects than old individuals were. The relative
standard deviation of metabolite levels in subjects with the
same background ranked from 0.1 to 1.5. Moreover, the
changes of metabolite levels caused by freeze~thaw cycles
were limited, and the effect was more prominent in plasma
than serum. These data demonstrate the impact of matrix,
age, gender, and freeze—thaw cycles on the metabolite
profiles and reveal metabolites affected by these factors.
Thus, our results provide would useful fundamental infor-
mation for exploring and qualifying biomarkers for clinical
applications.

Keywords Metabolomics - Endobiotic metabolite -
Plasma and serum - Age - Gender - Freeze—thaw cycle

1 Introduction

Biomarkers reflecting the severity or the presence of dis-
eases are useful tools for their diagnosis and treatment
(Gowda et al. 2008; Zineh and Huang 2011). Discovering
biomarkers that can forecast therapeutic efficacy and tox-
icity of drugs is also becoming clinically important for
developing new drugs and avoiding adverse events.
Endobiotic metabolites, which reflect both genetic and
environmental factors, represent the biological processes in
the metabolic system of cells, organs, as well as bodies
(Psychogios et al. 2011; He et al. 2012), and are therefore
expected to be suitable biomarker candidates. Metabolo-
mics is a useful tool for high-throughput biomarker iden-
tification, because it can measure a wide range of
metabolites at once (Hollywood et al. 2006; Wishart 2007).
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To date, however, the fundamental information regarding
the profiles of the stability and variance of human blood
metabolites remains limited, thereby retarding biomarker
exploration.

Plasma and serum, two matrices that are fractionized
from blood and that contain abundant circulating metabo-
lites, can be easily obtained with low invasiveness. While
both plasma and serum are commonly used in metabolo-
mics studies for biomarker exploration, several groups
have reported differences between their metabolite levels.
By determining the levels of 72 metabolites in human
plasma and serum, Liu et al. (2010) demonstrated that
while most amino acids were present at higher levels in
serum, pyruvate and citrate were observed to be at higher
levels in plasma. In addition, a large population study has
reported higher serum levels of several amino acids, such
as arginine, serine, phenylalanine, and glycine (Yu et al.
2011). Moreover, the levels of phosphatidylcholine,
erythritol, creatinine, hexadecanoic acid and glutamine
were correlated with life expectancy for small-cell lung
cancer in plasma but not in serum (Wedge et al. 2011). Liu
et al. (2010) also showed that the levels of metabolites in
serum were less affected by incubation of blood specimens
at 37 °C, compared to those in plasma, suggesting higher
stability of serum metabolites at 37 °C. To date, the impact
of handling and storage on a wide range of metabolites
from blood and serum remains unclear. In addition, the
information regarding the metabolite profiles in association
with subject background, such as sex and age, is also
limited. Previously, several analyses of the human plasma
serum metabolome demonstrated gender- and age-associ-
ated differences in the metabolite profiles (Lawton et al.
2008; Mittelstrass et al. 2011; Yu et al. 2012). However,
because these studies combined all ages when comparing
the metabolite profiles between sexes, we speculate that
precise gender-associated differences were confounded by
age-associated differences, and vice versa. Therefore, there
remains an unmet need to reveal gender- and age-associ-
ated differences in the metabolite profiles using human
subjects. Inter-individual variations in each metabolite
level should be elucidated using subjects with the same
background, since high inter-individual variations could
mask metabolite level changes that reflect disease pro-
gression and drug response. Nevertheless, comprehensive
metabolomics studies of these differences would warrant
accelerated exploration and evaluation of biomarkers for
clinical applications.

In the present study, using a global metabolomics
approach, we determine the levels of 297 endogenous low-
molecular-weight biochemicals (mostly hydrophilic),
including amino acids, carbohydrates, and lipids, in plasma
and serum samples obtained from human subjects catego-
rized by either age or sex. To minimize the possibility of

unexpected variations affecting the differences we focused
on, we controlled subjects’ age (young population,
25-34 years old; and old population, 55-64 years old),
ethnic genetics (healthy Caucasians), and food intakes
(overnight fasting). To examine the variables tested in this
study (matrix, gender, and age), data were processed by the
multivariate statistical analysis, i.e., orthogonal partial least
squares discriminant analysis (OPLS-DA) modeling, and
matrix type gave the clearest separation. Plasma and serum
both presented clear gender- and age-associated differ-
ences. Based on our data, we addressed the metabolic
profile differences between plasma and serum samples,
young and old populations, or males and females, as well
as inter-individual variations of the metabolite levels in
subjects with the same background. In addition, we also
examined the effect of freeze—thaw cycles on the levels of
metabolites in plasma and serum samples. Overall, our
current study provides fundamental information for future
biomarker exploration and qualifications.

2 Materials and methods

2.1 Collection of human blood and preparation
of plasma and serum

Blood samples were purchased from ProMedDx (Norton,
MA). ProMedDx collected samples after informed consent
was obtained rightly from all participants; the ethics
committee of the National Institute of Health Sciences
authorized the company as a validated provider and
exempted us from the committee’s approval for the use of
purchased blood samples. Venous blood was collected
from 60 healthy Caucasian volunteers in the morning after
fasting for 14 h. Participants were categorized into 4
groups as follows: young males (25-33 years old), old
males (55-64 years old), young females (25-34 years old),
and old females (55-63 years old). Each group included 15
individuals, except for the old female group, which had 14
individuals due to the presence of EDTA in serum samples
of 1 individual. Subject information is displayed in Sup-
plemental Table 1. Fresh blood from each individual was
simultaneously drawn into 10-mL Vacutainer Plasma
Separator Tubes containing K2-EDTA (Becton—Dickinson,
Franklin Lakes, NJ) and 10-mL Vacutainer Serum Sepa-
rator Tubes with clot activators (Becton—Dickinson). Fol-
lowing the manufacturer’s instructions, samples were
centrifuged, and serum and plasma were separated within
2 h of blood collection and then immediately frozen. Upon
receiving samples from PromedDX, all samples were
thawed on ice, divided into aliquots, and refrozen at
—80 °C until sample extraction. An aliquot of plasma and
serum samples from young males was subjected to 10
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freeze—thaw cycles, with thawing and freezing being done
on ice for 2 h and at —80 °C for 30 min, respectively.
Samples were subsequently stored at —80 °C.

2.2 Determination of endobiotic metabolite levels

The non-targeted metabolic profiling instrumentation
employed for this analysis combined three independent
platforms: ultrahigh performance liquid chromatography/
tandem mass spectrometry (UHPLC/MS/MS) optimized
for basic species, UHPLC/MS/MS optimized for acidic
species, and gas chromatography/mass spectrometry (GC/
MS) (Evans et al. 2009; Bourdonck et al. 2009). For each
plasma and serum sample, protein was precipitated and low
molecular weight compounds were extracted with metha-
nol that contained four standards to report on extraction
efficiency. The resulting supernatant was split into equal
aliquots for analysis on the three platforms. Aliquots, dried
under nitrogen and vacuum-desiccated, were subsequently
either reconstituted in 50 puL 0.1 % formic acid in water
(acidic conditions) or in 50 pL. 6.5 mM ammonium bicar-
bonate in water, pH 8 (basic conditions) for the two
UHPLC/MS/MS analyses or derivatized to a final volume
of 50 pL for GC/MS analysis using equal parts bis-
trimethyl-silyl-trifluoroacetamide and solvent mixture
acetonitrile: dichloromethane: cyclohexane (5:4:1) with
5 % triethylamine at 60 °C for 1 h.

For UHLC/MS/MS analysis, aliquots were separated
using a Waters Acquity UPLC (Waters, Millford, MA)
instrument with separate acid/base-dedicated 2.1 mm X
100 mm Waters BEH C18 1.7 pm particle columns heated
to 40 °C and analyzed using an LTQ mass spectrometer
(Thermo Fisher Scientific, Inc., Waltham, MA, USA)
which consisted of an electrospray ionization (ESI) source
and linear ion-trap (LIT) mass analyzer (Evans et al. 2009).
Extracts reconstituted in formic acid were gradient eluted
at 350 pL/min using (A) 0.1 % formic acid in water and
(B) 0.1 % formic acid in methanol (0 % B to 70 % B in
4 min, 70-98 % B in 0.5 min, 98 % B for 0.9 min),
whereas extracts reconstituted in ammonium bicarbonate
used (A) 6.5 mM ammonium bicarbonate in water, pH 8,
and (B) 6.5 mM ammonium bicarbonate in 95/5 methanol/
water (same gradient profile as above) at 350 pL/min. The
MS instrument scanned 99-1000 m/z and alternated
between MS and MS2 scans using dynamic exclusion with
approximately 6 scans per second. Derivatized samples for
GC/MS were separated on a 5 % diphenyl/95 % dimethyl
polysiloxane fused silica column with helium as the carrier
gas and a temperature ramp from 60 to 340 °C and then
analyzed on a Thermo-Finnigan Trace DSQ MS (Thermo
Fisher Scientific, Inc.) operated at unit mass resolving
power with electron impact ionization and a 50-750 atomic
mass unit scan range (Bourdonck et al. 2009). Metabolites

_@ Springer

were identified by automated comparison of the ion fea-
tures in the experimental samples to a reference library of
chemical standard entries that included retention time,
molecular weight (m/z), preferred adducts, and in-source
fragments as well as associated MS spectra, and were
curated by visual inspection for quality control using
software developed at Metabolon Inc. (DeHaven et al.
2010).

Data extraction of raw MS files from both platforms was
performed as described previously (DeHaven et al. 2010).
Peaks were identified using Metabolon’s proprietary peak
integration software, and metabolites were identified by
automated comparison of the ion features in experimental
samples to a reference library of chemical standard entries
that included retention time, molecular weight (m/z), pre-
ferred adducts, in-source fragments, and MS/MS spectra.
The quality control and curation processes were designed
to not only ensure accurate and consistent identification of
true chemical entities but also remove systematic artifacts,
misassignments, and background noises. Processing of raw
ion feature data yielded 297 endobiotic metabolites of
known identity (75 metabolites from GC/MS, and 128 and
94 metabolites from negative and positive ion mode of LC/
MS, respectively). Since this study spanned multiple days,
samples from each experimental category were randomized
across run days and, following data collection, a data
normalization step was performed to correct variations
resulting from instrument inter-day tuning differences. For
monitoring of data quality and process variation, several
technical replicate samples created from a homogeneous
pool containing a small amount of all study samples were
injected throughout the run, interspersed among the
experimental samples in order to serve as technical repli-
cates for calculation of precision. In addition, process
blanks and other quality control samples are spaced evenly
among the injections for each day, and all experimental
samples are randomly distributed throughout each day’s
run. The median relative standard deviation (RSD) was
11 % for technical replicates and 6 % for internal stan-
dards. Each metabolite was corrected in run-day blocks by
registering the medians to equal one and normalizing each
data point proportionately. For samples with missing val-
ues for a metabolite, the minimum observed value of the
metabolite among all samples was applied as the missing
values. RSD of each metabolite was determined by divid-
ing standard deviation of each metabolite by the mean of
that metabolite in specific sample groups. Comparison of
the metabolite levels among groups was performed by ¢ test
analyses (the paired ¢ test, comparison between plasma and
serum or samples subjected to freeze—thaw cycles; and the
Welch’s ¢ test, comparison between young and old subjects
or males and females) to assess statistical differences. In
this study, p < 0.05 represents statistical significance and it
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was used for the pathway occupancy analysis. The average
values, standard deviation and RSD obtained from nor-
malized levels of each metabolite, filled values (% of
detectable samples), as well as the categories and pathways
of each metabolite, were displayed in Supplemental
Table 2.

2.3 OPLS-DA analysis

Metabolite data, following run-day normalization and
minimum value imputation, were loaded into SIMCA-P+
12 (Umetrics, Umea, Sweden), pareto-scaled, and analyzed
using OPLS-DA to visualize the variance among the
groups evaluated in this study. The OPLS-DA results were
given as score plots to represent the similarity of overall
metabolic profiles.

2.4 Pathway occupancy analysis

To construct pathway occupancy maps, pathways repre-
sented by more than four metabolites were picked and
scored with statistically different metabolites within spe-
cific pathways (p < 0.05, scored as 1). The scored values
were divided by the number of metabolites within specific
pathways, resulting in the ratio of occupied metabolites
that reached statistical significance within a pathway.

3 Results

3.1 Global profiles of low-molecular-weight
biochemicals in plasma and serum of young
and old males and females

To generate an overview of group-based variances of
global metabolic profiles in different matrices (plasma and
serum), subject backgrounds (young and old males and

females), and sample storage (2 or 10 freeze—thaw cycles),
the OPLS-DA model was applied. Because the examina-
tion of the effect of freezing and thawing on metabolic
profiles was limited to the subset of plasma and serum from
young males, data from this subset were excluded from
modeling. As shown in Fig. 1, the plasma and serum
samples clustered into two distinct groups separated mainly
by component 1 (R2Y = 0.448 and Q2 = 0.29). Within
each cluster of plasma and serum sample groups, young
and old sample groups clustered into two groups separated
mainly by component 2. By age-based clustering, young
male and female sample groups were separated distinctly
from each other, whereas old sample groups showed no
clear separation between sexes. Overall, the trend of clus-
tering for ages and sexes was similar between plasma and
serum. In addition, age-associated changes of the metabolic
profiles were more pronounced in females than males.

3.2 Differences in the metabolite levels
between sample matrices

Our results show that the difference in the overall metabolic
profiles between plasma and serum was the greatest. Of 297
metabolites we measured, around 25 % were detected in less
than 80 % of the samples with a given group. As shown in
Fig. 2a, four individual gender-age groups and their averages
were assessed for filled values of each metabolite (the per-
centage of detectable samples within a group), which were
found to be almost the same between plasma and serum. Only
five peptides (bradykinin, glycylphenylalanine, glycylvaline,
aspartylphenylalanine, and phenylalanylphenylalanine) and
two lipids (1-myristroylglycerol and 2-arachidonylglycerol)
showed markedly higher filled values (>80 %)in either plasma
or serum than the other matrix (<40 %). Specifically, the filled
values in serum were much higher for glycylphenylalanine,
glycylvaline, aspartylphenylalanine, phenylalanylphenylala-
nine, 1-myristroylglycerol, and 2-arachidonylglycerol but were

Fig. 1 OPLS-DA model of
overall metabolic profiles. Data
obtained from human plasma
(red) and serum (blue) samples
of young males (closed circle),
old males (open circle), young
females (close triangle), and old
females (open triangle) were
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Old male
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Old female
Young male
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analyzed. The goodness-of-fit
parameter R2 and the predictive
ability parameter Q2 were 0.448
and 0.297, respectively
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