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adjacent to the lymph node anlagen induced CXC13 expression in
stromal organizer cells and consequently led to the initial cluster-
ing of lymphoid tissue inducer cells (- ). Therefore, RA has diverse
functions in the regulation of versatile immunological events
including cell trafficking, differentiation, cytokine production, and
lymphoid organogenesis.

The various roles of RA in the mucosal immune system, espe-
cially regulating cell trafficking into the intestine, enable us to con-
sider clinical applications of this metabolite. In general, parenteral
immunization fails to achieve efficient antigen-specific immune
responses in the intestine because it does not induce the neces-
sary gut-homing molecules for the migration of antigen-sensitized
immune cells into the intestine. A recent study demonstrated
that the addition of RA at the time of subcutaneous vaccina-
tion increased the accumulation of antigen-specific T cells and
IgA-producing PCs in the intestine and concurrently induced
protective immunity against intestinal pathogens (e.g., Salmo-
nella) (©7). These findings suggest that exogenous RA treatment
might be used to stimulate the production of gut-migrating Treg
cells for the control of intestinal inflammation and allergy. Addi-
tional investigation into the immune functions of RA is war-
ranted to advance potential clinical applications of this vitamin
A metabolite.

MEMBERS OF THE VITAMIN B FAMILY CONTROL CELL
METABOLISM AND ACTS AS LIGANDS IN THE REGULATION
OF INTESTINAL IMMUNITY

Initially thought to be a single vitamin, vitamin B currently is
recognized as a family comprising eight different members. All
B vitamins are water-soluble, and they are involved in various
pathways of cell metabolism. Among the B vitamins, vitamin B6
is essential for metabolism of nucleic acids, amino acids, and
lipids and thus influences cell growth. Consequently, vitamin B6
deficiency leads to various impairments of immunity, such as
lymphoid atrophy and reduced numbers of lymphocytes (°°);
conversely, vitamin B6 supplementation bolsters these weakened
immune responses (). A previous study suggested the involve-
ment of the lipid mediator sphingosine 1-phosphate (S1P) in
vitamin-B6-mediated immune regulation. S1P has been shown
to regulate cell trafficking, especially cell egress from organized
lymphoid tissues in both systemic (e.g., thymus, bone marrow,
and lymph nodes) and mucosal (e.g., intestine) compartments
[reviewed in Refs. (7, ')]. The cell trafficking is determined by
the S1P gradient that is achieved through the coordinated pro-
duction of S1P and its degradation, which is mediated by S1P
lyase and S1P phosphohydrolase (:°). S1P lyase requires vita-
min B6 as a co-factor for the degradation of S1P (), and the
administration of a vitamin B6 antagonist impair SIP lyase activ-
ity and thus create an inappropriate S1P gradient. These defects
lead to impaired trafficking of lymphocytes from lymphoid tis-
sues and consequently reduced numbers of lymphocytes in the
periphery (55, 59).

Like vitamin B6, vitamin B9 (that is, folate or folic acid) is
essential for nucleic acid and protein synthesis (1), and inade-
quate levels of vitamin B9 dramatically alter the immune response.
Previous studies suggested that vitamin B9 deficiency inhibits the
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FIGURE 2 | Vitamin B9 is required for the survival of regulatory T cells
and subsequent r 1ance of imn gic homeostasis in the
intestine. Once naive T cells differentiate into regulatory T (T.) cells, they
express folate receptor 4 (FR4), and require vitamin B9 for their survival.
The absence of sufficient amounts of vitamin B9 induces the apoptosis of
Teeq cells, with decreased expression of Bel-2 and subsequent increased
intestinal inflammation.
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activity of CD87T T cells and NK cells; in turn, this inhibition is
associated with decreased resistance to infections (1 1).

Folate receptor 4, a vitamin B9 receptor, is highly expressed
on the surfaces of Treg cells (+2), implying a specific function
of this vitamin in these cells. In particular, our recent study
revealed that vitamin B9 is crucial in the maintenance of Treg
cells (7). In the absence of vitamin B9, naive T cells can differ-
entiate into Treg cells, but differentiated Treg cells fail to survive
owing to the decreased expression of anti-apoptotic molecules
(e.g., Bcl-2) (Figure 2). As a result, mice maintained on a vitamin-
B9-deficient diet have decreased numbers of intestinal Tyeg cells
(7). As a result, the impaired survival of Treg cells in these mice
leads to their increased susceptibility to intestinal inflammation
(Figure 2) (1 1).

A recent study demonstrated an additional function of the
vitamin B family in the control of immune responses via mucosa-
associated invariant T (MAIT) cells. MAIT cells are unconven-
tional T cells that express a semi-invariant aff T cell receptor that is
restricted by the MHC class I-related molecule MR1; these cells are
mostly found in the intestine, liver, and lung (' >). Because MAIT
cells can react rapidly to bacterial infections (e.g., Escherichia coli,
Klebsiella pneumnoniae, and Mycoplasma tuberculosis), it was sup-
posed that the antigen presented to MR1 was bacteria-derived
molecules. However, a recent study clarified that, in fact, bacteri-
ally produced metabolites of vitamin B9 and vitamin B2 bound
to MR1 are presented as antigen to MAIT cells (). Furthermore,
like vitamin B2 derivatives, the vitamin B9 metabolite 6-formyl
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FIGURE 3 | Vitamin D mediates innate and acquired immunity. The active
form of vitamin D, it metabolite 1,25-dihydroxyvitamin D, inhibits the
maturation of dendritic cells (DCs) and their production of I-12 but
simultaneously promotes their production of IL-10. In addition, T cells respond
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directly to 1,25-dihydroxyvitamin D for their preferential differentiation into T e,
cells. As a component of innate immunity, 1,25-dihydroxyvitamin D promotes
the production of anti-microbial peptides (AMP) by macrophages and Paneth
cells.

pterin binds to MR1 but, unlike vitamin B2 derivatives, fails to
activate MAIT cells (10). These findings suggest that, depending
on their metabolism by commensal bacteria and presentation by
MR1, members of the vitamin B family can act either as positive
or negative regulatory ligands for MAIT cells.

VITAMIN D IS AN INHIBITOR OF IMMUNE RESPONSES

In its typical role of maintaining optimal concentrations of serum
calcium, vitamin D is essential to a healthy mineralized skeleton
(4 7). In addition to its effects on calcium and bone metabolism,
vitamin D — especially its metabolite 1,25-dihydroxyvitamin D
[1,25(0H),D] — is an important regulator of the immune sys-
tem, and its deficiency is linked to aberrant immune responses,
including intestinal inflammation (/). Regarding a possible
mechanism linking vitamin D and intestinal inflammation,
1,25(0OH),D may be important in the creation of an immunologic
regulatory or suppressor environment. For example, 1,25(0OH),D
inhibits the maturation of DCs and the production of their effec-
tor cytokine, IL-12, and simultaneously promotes the production
of their inhibitory cytokine, IL-10, thus regulating T cell func-
tion and development (Figure 3) (). In addition, T cells directly
respond to 1,25(0H), D, with preferential differentiation into Treg
cells (Figure 3) (°0).

Furthermore, vitamin D enhances innate immunity (Figure 3).
More than 25 years have passed since the anti-microbial func-
tion of 1,25(OH), D against Mycobacterium tuberculosis in human
monocytes was reported (°1). Subsequent studies have revealed
the molecular and cellular mechanisms underlying this anti-
microbial activity. Once they are activated through Toll-like recep-
tors, macrophages—monocytes express CYP27B1, a key enzyme
in the synthesis of 1,25(0H),D ("), and the vitamin D recep-
tor (VDR) (52). These changes lead to intracrine synthesis of
1,25(OH), D, which enhances the gene expression mediated by vit-
amin D and the VDR axis. VDR-mediated genes include the anti-
microbial molecules cathelicidin (LL-37) and B-defensin 2 (°).
Similar 1,25(OH),D-induced production of these anti-microbial
molecules occurs in epithelial cells () and Paneth cells (*©). In

addition, 1,25(OH), D stabilizes tight-junction structures between
epithelial cells in the intestinal tract (© ). Together, these diverse
functions of vitamin D contribute to the creation of the first line
of defense against pathogens without the induction of aberrant
inflammatory responses.

CONCLUSION

Clinical evidence has long indicated that inadequate vitamin
intake disrupts host immunity, thus predisposing humans to
infectious and inflammatory diseases. Accumulating evidence
has revealed the molecular and cellular mechanisms underlying
myriad functions of vitamins in innate and acquired immune
responses. These findings clarify the beneficial roles of vitamins
in the maintenance of immunologic homeostasis and inform
the design of vitamin analogs as pharmacologic agents for the
generation and maintenance of a healthy immune condition. The
complex functions of vitamins in the regulation of the immune
system merit continued investigation, and these research efforts
likely will enable scientists to refine our understanding of the
mechanisms underlying the immunologic roles of various vit-
amins and to advance the development of vitamin-dependent
therapeutic agents for the control of infectious and immune
diseases.
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The intestinal enterocytes and other epithelial cells create physical barriers, including tight junctions
and mucus layers. These cells also actively transport antibodies across the epithelium and
simultaneously produce antimicrobial peptides and enzymes. These functions maintain intestinal
homeostasis by allowing the selective absorption of nutrients and simultaneously preventing
pathogenic infections. Recent evidence has revealed that both host-derived factors (e.g., cytokines) and
gut environmental factors (e.g., commensal bacteria, dietary materials, and their metabolites) regulate
the physical and immunological functions of the epithelium. Understanding the interactions between
host cells and these environmental factors should help us to develop new strategies to prevent and treat

immune diseases of the intestine.

The surface of the gastrointestinal tract is covered by a single layer
of epithelium that separates the outside world from interstitial
tissues. The intestinal epithelium is mainly composed of absorp-
tive enterocytes (ECs) but also includes enteroendocrine, goblet,
and Paneth cells [1]. Cross-communication among these cells
enables the selective absorption of nutrients while simulta-
neously preventing the penetration of antigens and pathogens.
The defense against pathogenic materials is at least partly
achieved by the physical barriers of the epithelium, which include
tight junctions and mucus layers. A large number of pathogens
disrupt these barriers to access deeper tissues for dissemination
[2,3]. The barriers also contribute to the establishment and main-
tenance of mucosal homeostasis. Indeed, a leaky intestinal barrier
is one of the characteristics of chronic intestinal inflammatory
diseases, such as inflammatory bowel disease and celiac disease
[4,5].

Intestinal tissues also show intense immunological activity,
and ECs contribute to the intestinal immune system by trans-
porting and processing antibodies and associated antigens,
by producing immunologically functional molecules, and by

Corresponding author:. Kunisawa, J. (kunisawa@ims.u-tokyo.ac.jp)

interacting with immunocompetent cells in the intestine [6].
Accumulating evidence has revealed that both host-derived
factors (e.g. cytokines) and gut environmental factors (e.g.
commensal bacteria, dietary materials, and their metabolites)
engage in molecular crosstalk with the intestinal epithelium and
affect intestinal barrier function and immune responses [7,8]. In
this review, we focus on the immunological functions of ECs in
the intestine and their regulation by commensal bacteria and
dietary materials.

Physical barriers at the intestinal epithelium
Tight junctions
ECs provide a physical barrier to prevent the paracellular transport
of luminal antigens and pathogens. Tight junctions are multi-
functional complexes that are crucial for the maintenance of
barrier integrity because they form a seal between adjacent ECs
[9]. The tight junction regulates the absorption of nutrients, ions,
and water while preventing the entry of pathogens into the host.
Tight junctions are composed of numerous interacting cellular
proteins, including claudin, occludin, and zonula occludens (ZO)
proteins (Fig. 1). Claudin and occludin are transmembrane pro-
teins that seal the paracellular space between adjacent ECs. Among

1359-6446/06/$ - see front matter © 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.drudis.2012.08.001
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Anti-microbial peptides and enzymes ;
(e.g. defensins, cathelicidins, Regllly,
lysozyme and phospholipase A2)
)1 Secretory
N N
Non-classical
MHC molecule
o YSTCR (e.g. MICA/B)
Tight junction
(e.g. claudin, Polymeric
occludin, and IgA
ZO proteins)
Plasma cell
Drug Discovery Today
FIGURE 1

Physical and immunological barriers mediated by ECs. ECs (including Paneth cells) produce several molecules that create physical barriers in the intestine. They
also produce antimicrobial peptides and enzymes, such as defensins, cathelicidins, Regllly, lysozyme, and phospholipase A2 to kill the bacteria and establish a
mucus layer to prevent bacterial attachment to the ECs. Tight junctions among ECs prevent bacterial penetration between the cells. ECs also have immunological
functions. They express polymeric immunoglobulin receptor (pigR), which binds and transports polymeric IgA produced from plasma cells into the intestinal
lumen. ECs exposed to stresses (e.g. infection or cancer) express non-classical MHC molecules (e.g. MICA/B). MICA/B acts as a ligand for v T cell receptors, which
are uniquely expressed on intraepithelial lymphocytes (y3IELs). Abbreviations: EC, enterocytes; MHC, major histocompatibility complex; ZO, zonula occludens.

the various types of claudins, claudin-1, -2, -3, -4, -5, -7, -8, -12, -15,
-18, -20, and -23 are expressed in the intestinal epithelium [10,11].
ZO proteins are adaptors that connect transmembrane proteins; in
particular, ZO-1 interacts with the claudin proteins and with F-
actin in the intestinal ECs [12,13].

The physical barriers created by ECs are at least partly regulated
by the immunological stimulation provided by commensal bac-
teria and dietary materials. Indeed, commensal and probiotic
bacteria, their metabolites, food extracts, and dietary materials
(e.g. fatty acids, polysaccharides, and flavonoids) have been shown
to promote intestinal barrier integrity by increasing the expression
of tight junction proteins [10].

Mucus

The mucus layer has been recognized as an important compo-
nent in the intestine (Fig. 1). Mucin 2 (MUC2), a large glycopro-
tein characterized by variable O-linked glycans, is abundantly
expressed by goblet cells located in the intestinal epithelium
[14]. Generally, mucus can be divided into two layers. Although
both layers have similar protein composition, the outer mucus
layer is loose, whereas the inner mucus layer adheres firmly to the
surface of the ECs. The firm mucus in the inner layer is an
efficient barrier against pathogens [15]. In addition to the phy-
sical and biological barrier function of mucus, mucus also
ensures the concentration of antimicrobial peptides and IgA
antibodies at the surface of ECs. As similar to tight junctions,
mucus expression is regulated by commensal bacteria, and the
mucus layer of germ-free mice is thicker than that of specific
pathogen-free mice [15].

Production of antimicrobial molecules at the
epithelium

Antimicrobial peptides

The epithelium also secretes a variety of antimicrobial peptides
[e.g. defensins, cathelicidins, and ReglIly (Fig. 1)]. The production
of these peptides is mainly mediated by ECs and Paneth cells [16].
Paneth cells reside at the base of the crypt regions of the intestine,
where they constitutively produce «-defensins. This does not
require bacterial stimulation, because Paneth cells produce normal
amounts of a-defensin in germ-free mice [17]. By contrast, ECs
require microbial stimulation for the production of p-defensins
[16]. ECs also produce cathelicidin, the expression of which is
regulated by short-chain fatty acids produced when polysacchar-
ides are metabolized by fermenting bacteria [18]. Both defensins
and cathelicidin are cationic small peptides that exhibit antimi-
crobial activity by damaging and permeabilizing the bacterial cell
membrane by pore formation [19].

RegllIIvy is a C-type lectin produced by ECs and Paneth cells in the
ileum, where it kills Gram-positive bacteria by binding to surface-
exposed carbohydrate moieties of peptidoglycans [20]. Commen-
sal bacteria, especially Gram-negative bacteria, induce RegIIly
expression on ECs, and a recent study demonstrated that
MyD88 intrinsically expressed on ECs controls the production
of Regllly, which establishes the physical separation between
the microbiota and the intestinal epithelial surface [21].

Unlike ReglIly, which specifically targets Gram-positive bac-
teria, bactericidal and/or permeability-increasing protein (BPI)
shows antimicrobial activity against Gram-negative bacteria.
The high affinity of BPI for lipopolysaccharide (LPS) leads to the
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destabilization of the outer membrane of Gram-negative bacteria
and also neutralizes LPS-induced inflammation [22].

Antimicrobial enzymes

Antimicrobial activity is also mediated by bacteriolysis enzymes
(e.g. secretory phospholipase A2 and lysozyme). Phospholipase
A2 is a small enzyme produced by Paneth cells that degrades
bacterial phospholipids and subsequently disrupts the integrity
of Gram-positive and -negative bacteria [23]. Phospholipase A2
enzyme activity is normal in the intestine of germ-free rats [24],
but caloric restriction increases the gene expression of lysozyme
and phospholipase A2 [25]. Therefore, it is likely that nutritional
conditions rather than commensal bacteria regulate the activity
of these antimicrobial enzymes in the intestine. Lysozyme is
produced by Paneth cells and ECs. Its bactericidal activity derives
from its cleavage of the glycosidic linkage between N-acetylglu-
cosamine and N-acetyl muramic acid of peptidoglycan. Because
Gram-positive bacteria express more peptidoglycan than Gram-
negative bacteria, lysozyme acts preferentially on Gram-positive
bacteria.

Transport of antibodies through ECs

IgA transport mediated by polymeric immunoglobulin
receptors

One function of the epithelial immune barrier is to transport anti-
bodies across the barrier. ECs express polymeric immunoglobulin
receptors (pIgR) for the transport of polymeric forms of IgA (pIgA)
and IgM (pIgM) in the basal-to-apical direction in association with
an extracellular proteolytic fragment of the pIgR (known as the
secretory component) [26]; together, the IgA and the secretory
component form secretory immunoglobulin A (S-IgA). After S-IgA
is secreted into the intestinal lumen, it inhibits adherence of patho-
gens to host ECs in the intestine and neutralizes pathogenic toxins
by binding to their biologically active sites (Fig. 1) [27]. Additionally,
IgA is able to exclude antigens and pathogens from the intestinal
secretions while it is transported through ECs, and it also prevents
viral replication inside ECs [28,29].

In addition to the function of S-IgA in the immunosurveillance,
several lines of evidence demonstrate that S-IgA has a key role in
preventing the penetration and/or growth of commensal bacteria
[30]. These functions of S-IgA achieve the immune responses
against commensal bacteria restricted in the intestinal but not
systemic immune compartments in normal mice, while IgA-defi-
cient mice exhibited systemic IgG responses against commensal
bacteria [31-33]. A recent study also demonstrated that, in the
absence of IgA, commensal bacteria-derived stimulation induced
the increased expression of interferon-regulated genes in the ECs
for the compensatory immunosurveillance with simultaneous
reduction of lipid metabolism-related Gata4-regulated genes,
which resulted in the lipid malabsorption and decreased lipid
deposition [34]. Thus, S-IgA mediates the regulation between
ECs and commensal bacteria, which is important not only for
the maintenance of immunological homeostasis but also for
metabolism [34].

Neonatal Fc receptor for IgG transport

Another receptor for immunoglobulin is the neonatal Fc receptor
for IgG (FcRn). Although early studies in rodents indicated
that FcRn was responsible for the passive acquisition of IgG

neonatally, subsequent studies indicated that FcRn is also
expressed by adult human epithelium and antigen-presenting
cells in the intestine and thus is not strictly limited to neonatal
life [35]. Unlike pIgR mentioned above, human FcRn binds IgG
and the transport pathway is bidirectional, both apical to basal
and basal to apical [36]. The bidirectional transport of IgG enables
retrieval of intestinal antigens in a complex with IgG into the
intestinal lamina propria, where the antigen and/or IgG com-
plexes are subsequently taken up by antigen-presenting cells to
prime T cell responses [37].

Intraepithelial T lymphocytes

The epithelium also includes lymphocytes that are commonly
termed intraepithelial lymphocytes (IELs) [38]. IELs reside
between the basolateral surfaces of ECs, and one IEL occurs for
every 4-10 ECs in the small intestine and for every 30-50 ECs in
the large intestine.

Most IELs are T cells. As similar to T cells observed at other sites
(e.g. spleen and intestinal lamina propria), some portions of IELs
express aff T cell receptors and act as cytotoxic T lymphocytes by
recognizing antigenic peptides presented by classical major histo-
compatibility complex (MHC) molecules on pathogenic ECs (e.g.
microbe-infected cells) and killing them by producing cytotoxic
molecules (e.g. perforin and granzymes) [38]. Other IELs express
the v8 T cell receptor (and are therefore known as ydIELs) and show
minimal pathogen-specific activity [38,39]. The innate immune
function of y3IELs enables the rapid removal of infected ECs. To
recognize the infected ECs, non-classical MHC molecules, such as
MHC class I chain-related protein A/B (MICA/B) in human, act as
ligands for y3IELs. MICA/B is generally not expressed on ECs, but is
induced by stresses such as heat shock and microbial infections.
The activated y3IELs then synthesize an array of cytokines, includ-
ing interleukin (IL)-2, IL-3, IL-6, interferon (IFN)-y, tumor necrosis
factor (TNF)-«, and transforming growth factor (TGF)-B, and cyto-
toxic molecules, such as perforin, granzyme, and Fas ligand to kill
the microbe-infected ECs [38].

Epithelium senses signals from commensal bacterial in
the regulation of T cell differentiation in the intestine
The immune system requires interactions with commensal bac-
teria for its development. Toll-like receptors (TLRs) act as sensors of
commensal bacteria although they were initially discovered as
pathogen recognition receptors. ECs express several kinds of TLRs
and the ligands from commensal bacteria promote immunological
functions of Ecs, such as IgA transport, tight junctions, and
expression of antimicrobial peptides [40]. Of note, ECs have
unique expression profiles and spatially restricted distribution
(apical vs. basolateral) of TLRs together with unique underlying
signaling pathways, which enables the prevention of deleterious
inflammatory responses in the intestine [40].

Because commensal bacteria express shared molecules which act
as a ligand of TLRs, it was previously thought that unspecified
commensal bacteria indiscriminately induced the development
of the immune system; however, accumulating evidence has
demonstrated that individual species of commensal bacteria have
specific roles in the determination of immunological balance by
regulating T cell differentiation in the intestine [8]. ECs have an
important role in this pathway.
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Segmented filamentous bacteria induce the differentiation of
Th17 cells

Several groups have shown that segmented filamentous bacteria
(SFB) induce components of the active immune system, including
IgA-producing cells, y3IELs, and IL-17-producing T (Th17) cells
[41-43]. SFB colonization on ECs results in the production of
serum amyloid A, which acts on intestinal dendritic cells (DCs)
to enhance the production of IL-6 and IL-23 [43]. Because these
two cytokines are Th17 cell-inducing cytokines, the immunolo-
gical environment mediated by SFB, ECs, and DCs results in the
preferential induction of Th17 cells in the intestine.

Preferential induction of Treg cells in the colon by Clostridium
clusters IV and XIVa

Another form of crosstalk between ECs and commensal bacteria in
the regulation of T cell differentiation is mediated by Clostridium
clusters IV and XIVa (also known as the Clostridium leptum and
coccoides groups) [44]. By contrast to the effects of SFB, colonization
by Clostridium clusters IV and XIVa induces regulatory T (Treg) cells
in the colon to achieve quiescent immunity. Clostridium clusters IV
and XIVa form a thin colonizing layer on the epithelium, where
they enhance the release of the active form of TGF-B by increasing
the expression of matrix metalloproteinases that convert latent
TGEF-B into the active form. Because TGF- is an essential cytokine
for the differentiation of Treg cells from naive T cells, colonization
with these Clostridium species converts non-Treg cells into Treg cells
locally in the colon with little effect on thymus-derived Treg cells.

Dietary metabolites regulate intestinal immunity
through the epithelium

Nutritional materials also influence intestinal immunity, and com-
mensal bacteria are involved in metabolizing indigestible dietary
materials into biologically active metabolites. Dietary materials (e.g.
polysaccharides, vitamins, and lipids) and their metabolites con-
tribute to the regulation of intestinal immunity (Fig. 2).

Polysaccharides

Dietary polysaccharides and endogenous mucus in the intestine
are digested and metabolized into short-chain fatty acids, such as
acetate, butyrate, and propanoate, by bacterial fermentation.
These short-chain fatty acids are an energy source for ECs and
affect immune cell functions. For example, acetate and butyrate
maintain epithelial barrier function by stimulating the release of
mucin and by facilitating the maintenance of epithelial integrity
[45,46]. Acetate and butyrate also regulate the proliferation of ECs
and their production of cytokines [47,48]. In addition, acetate
modulates the immunological function of neutrophils that
express G-protein-coupled receptor 43 [GPR43, also known as free
fatty acid receptor 2 (FFAR2)], a receptor for the short-chain fatty
acids. Neutrophils lacking GPR43 show decreased levels of pha-
gocytic activity and lower production of reactive oxygen species,
but also are more responsive to chemoattractants such as CS5a
and inflammatory chemokines [49]. Consistent with these find-
ings, intestinal inflammation is exacerbated in GPR43-deficient
mice.

V3

Lipids (e.g. linoleic
acid, a-linolenic acid,
sphingolipids)

Short-chain
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FIGURE 2

Dietary materials in the regulation of EC functions. Dietary lipids are metabolized into lipid mediators, and short-chain fatty acids are generated by fermentation of
polysaccharides by commensal bacteria. These products positively or negatively regulate the functions of inflammatory cells. ECs also absorb vitamin A, and both
ECs and dendritic cells (DCs) metabolize vitamin A into retinoic acid, which preferentially induces regulatory T (Treg) cells from naive T cells. The differentiated Treg

cells require vitamin B9 for their survival. Abbreviation: EC, enterocytes.
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Vitamins

Vitamins are supplied by both the diet and commensal bacteria.
Several lines of evidence have shown that vitamins are involved in
regulating immune responses through the epithelium. For exam-
ple, retinoic acid, a metabolite of vitamin A, is involved in the
preferential induction of regulatory T cells and the inhibition of
Th17 cells [50]. Both ECs and DCs in the intestine are the major
cell types that express retinaldehyde dehydrogenase, a key enzyme
for the conversion of vitamin A into retinoic acid, suggesting that
the unique gut environment mediated by ECs, DCs, and vitamin A
preferentially induces Treg cells for maintaining quiescent immu-
nity in the intestine. Because it was reported that Treg cells
enhanced the differentiation of IgA' B cells in the intestine
[51,52] and retinoic acid induced the expression of gut-homing
molecules (e.g. CCR9 and a4B7 integrin) on IgA-committed B cells
as well as T cells [53,54], it is likely that retinoic acid directly and
indirectly enhances intestinal IgA responses.

Vitamin B9 is another important vitamin in the maintenance of
Treg cells. Vitamin B9 receptor (folate receptor 4) is exclusively
expressed on Treg cells and can therefore be used as a cell surface
marker of Treg cells [55]. We recently showed that vitamin B9 is an
essential survival factor for Treg cells [56]. Indeed, Treg cells
differentiate from naive T cells but fail to survive in vitamin B9-
reduced conditions. Because vitamin B9 is supplied from both the
diet and commensal bacteria, and dietary vitamin B9 is predomi-
nantly absorbed by ECs in the jejunum and duodenum, depletion
of dietary vitamin B9 results in the reduction of Treg cells in the
small intestine.

Lipids

Dietary lipids also involved in the regulation of intestinal immune
responses. The ratio of omega-3 polyunsaturated fatty acids (w-3
PUFA) to w-6 PUFA in the diet may determine the presence and/or
levels of inflammatory conditions. Dietarylinoleic acid is the parent
fatty acid of w-6 PUFA which is metabolized into proinflammatory

lipid mediators, whereas w-3 PUFA, which is derived from dietary
linolenic acid, is metabolized into anti-inflammatory mediators
[57]. A possible molecular mechanism is that w-3 PUFA exert
anti-inflammatory effects through binding to GPR120, which is
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