

Fig.1 Structure of ZFN

CCR5-224		VF2468				
	# of sites in		# of sites in			
# of mutations	genome	# of mutations	genome			
0	1	0	1			
1	0	1	3			
2	1	2	245			
3	6	3	3,201			
4	99	4	35,995			
5	964	5	316,213			
6	9,671	6	2,025,878			
7	65,449					
8	372,801					
9	1,854,317					

Fig.2 Potential genomic target sites

Nature Methods, 8, 765 (2011) LU

Mutations	Off-target sites	Statistically expected
in site	to CCR5A	
0	1	1
1	0	0.0
2	0	0.0
3	0	0.0
4	0	0.0
5	0	0.0
6	0	0.0
7	0	0.3
8	8	3.6
9	7	34.1
	0	
10	634	275.9
11	4338	1956.3
12	27114	12226.7
13	149005	67716.9
14	648230	333747.3
15	2657598	1468488.3
16	9783617	5782172.6

Fig.4 Potential genomic off-target sites related to *CCR5A* on-target site (片側 18bp、両側 36bp TALEN 使用) Nature Methods, 11, 429 (2014)より

site	no tAlen (%)	CCR5A el/KK Foki (%)	<i>CCR5A</i> eld/KKr Foki (%)	CCR5A homo Foki (%)	number of mutation
OnCCR5A	<0.006	9.8	28	47	0 (on-target)
OffC-5	<0.006	0.53	2.3	2.3	11
OffC-15	<0.020	<0.014	0.23	0.043	
OffC-16	<0.006	< 0.006	0.031	<0.006	
OffC-28	< 0.009	0.014	0.16	0.056	
OffC-36	<0.006	< 0.006	0.15	0.028	
OffC-38	<0.006	ND	ND	0.067	
OffC-49	<0.006	ND	ND	0.110	
OffC-69	<0.010	ND	ND	0.089	
<u>OffC-76</u>	<0.006	ND	ND	0.149	9
		ATM el/KK	ATM eld/KKr	ATM	
site	no tAlen (%)	Foki (%)	Foki (%)	homo Foki (%)	
OnATM	0.007	6.8	16	18	<u>0 (on-target)</u>
OffA-1	<0.006	<0.006	0.026	0.077	
OffA-11	<0.006	<0.006	0.036	0.39	10
OffA-13	<0.006	0.008	0.025	<0.006	
OffA-16	<0.006	<0.006	<0.006	0.057	
OffA-17	<0.051	<0.14	<0.17	0.94	9
OffA-23	0.018	< 0.006	0.29	0.23	
OffA-35	<0.006	<0.006	<0.006	0.070	

Cellular modification induced by TALENs at on-target and predicted off-target genomic sites

Fig.5A Cellular modification rate (%) at on-target and off-target genomic sites Nature Methods, 11, 429 (2014)より改変

CCR5A				Spacer	
Site	Score	Mut.	Left half-site	length	Right half-site
OnCCR5A	0.008	0	TTCATTACACCTGCAGCT	18	AGTATCAATTCTGGAAGA
OffC-1	0.747	9	TaCATcACAtaTGCAaaT	29	tGTATCAtTTCTGGgAGA
OffC-2	0.747	9	TaCATcACAtaTGCAaaT	29	tGTATCAtTTCTGGgAGA
OffC-3	0.747	9	TaCATcACAtaTGCAaaT	29	tGTATCAtTTCTGGgAGA
OffC-4	0.747	11	TcCATaACACaTctttCT	10	tGcATCAtTcCTGGAAGA
★ OffC-5	0.804	11	TcCAaTACctCTGCcaCa	14	AGgAgCAAcTCTGGgAGA
OffC-6	0.818	10	TTCAgTcCAtCTGaAaac	16	gGTATCAtTTCTGGAgGA
OffC-7	0.834	14	TaCAaaACcCtTGCcaaa	27	taTATCAATTtgGGgAGA
OffC-8	0.837	12	TcCAagACACCTGCttac	26	tcTATCAATTtgGGgAGA
OffC-9	0.874	10	TTCATaACAtCTtaAaaT	27	AaTAcCAAcTCTGGAtGA
OffC-10	0.89	12	TcCAaaACAtCTGaAaaT	25	tGgATCAAaTtgGGAAGA

Fig.5B Predicted off-target sites

(2.3%で変異導入が検出された orr-target サイトOffC-5 でのミスマッチ塩基(小文字))

Nature Methods, 11, 429 (2014)より改変

Fig.6 Structure of CRISPR/Cas9 system

for mammalian expression

Hsu et al, Nat Biotech, 31, 827 (2013)より改変

Fig.8 Single-nucleotide specificity of Cas9

			Indel	mutation frequency (%	6) ± s.e.m.		-
Target	Site name	Sequence	U2OS.EGFP	HEK293	K562	Gene	
Target 1 (VEGFA site 1)	T1	GGGTGGGGGGGGGGGGTTTGCTCCTGG	26.0 ± 2.9	<u>105</u> ±0.07	3.33 ± 0.42	VEGFA	on-target
GC 含量 70%	011-3	GGAIGGAGTIGCICCIGG	25.7 ± 9.1	$\frac{18.9}{100} \pm 0.77$	2.93 ± 0.04	IGDUU3	off-target
	011-4	GGGAGGIGGAGIIIGCICCIGG	9.2 ± 0.8	8.32 ± 0.51	N.D.	LUC116437	U
	011-6	<u>C</u> GG <u>G</u> GG <u>A</u> GGGAGTTIGCTCCTGG	5.3 ± 0.2	3.67 ± 0.09	N.D.	CACNA2D	
	011-11	GGG <u>GA</u> GGGG <u>A</u> AGTTIGCTCCTGG	$1/.1 \pm 4.7$	8.54 ± 0.16	N.D.		
Target 2 (VEGFA site 2)	Т2	GACCCCCTCCACCCCGCCTCCGG	50.2 ± 4.9	38.6 ± 1.92	15.0 ± 0.25	VEGFA	on-target
	OT2-1	GACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	144 ± 34	33.6 ± 1.17	4 10 ± 0.05	FMN1	•
GC 含量 80%	OT2-2	GGGCCCCTCCACCCCGCCTCTGG	20.0 ± 6.2	15.6 ± 0.30	3.00 ± 0.06	PAX6	off-target
	OT2-6	CTACCCCTCCACCCCGCCTCCGG	82 ± 14	15.0 ± 0.64	5.24 ± 0.22	PAPD7	
	OT2-9	GCCCCCACCCCCCCCCCCCCCCC	50.7 ± 5.6	30.7 ± 1.44	7.05 ± 0.48	I AMA3	
	OT2-15		97 ± 45	6.97 ± 0.10	1.34 ± 0.15	SPNS3	
	OT2-17		14.0 ± 2.8	12.3 ± 0.45	1.80 ± 0.03	0/ 1100	
	OT2-19		170 ± 3.3	19.4 ± 1.35	ND	HDI BP	
	OT2-20		6.1 ± 1.3	N D	N D	ABLIM1	
	OT2-23		44.4 + 6.7	287 + 1 15	4 18 + 0 37	CALY	
	OT2-24		62.8 ± 5.0	29.8 ± 1.08	21.1 ± 1.68	O/IL/	
	OT2-29		138 ± 52	ND	ND	ACLY	
	OT2-34	AGG CCCC CA CACCCCGCCTCAGG	2.8 ± 1.5	N.D.	N.D.		
Target 3 (VEGEA site 3)	тз	GGIGAGIGAGIGIGIGG	494 + 38	357 + 126	27 9 + 0 52	VEGEA	on-target
	OT 3-1	GGTGAGTGAGTGTGTGTGTGTGAGG	74+34	8.97 ± 0.80	N D	(abParts)	e
GC 含量 60%	OT3-2		24.3 ± 9.2	23.9 ± 0.08	8.9 ± 0.16	MAX	off-target
	OT3-4	G C TGAGTGAGTGT A TGCGTGTGG	20.9 ± 11.8	11.2 ± 0.23	ND		
	OT3-9	GGTGAGTGAGTG C GTGCG G GTGG	3.2 ± 0.3	2.34 ± 0.21	N.D.	TPCN2	
	OT3-17	G T TGAGTGA A TGTGTGCGTGAGG	2.9 ± 0.2	1.27 ± 0.02	N D	SLIT1	
	OT3-18		134 ± 42	12.1 ± 0.24	242 ± 0.07	COMDA	
	OT3-20	<u>A</u> GAGTGAGTGTGTGCATGAGG	16.7 ± 3.5	7.64 ± 0.05	1.18 ± 0.01	C C MD/T	

On- and off-target mutations induced by RGNs designed to endogenous human genes

Fu et al, Nature Biotechnology, 31, 822 (2013)より改変

Fig.9 Single-nucleotide specificity of Cas9

Hsu et al, Nature Biotechnology, 31, 827 (2013)より改変

:CLTA 4 v2.1 s	gRNA	_	+	+	+	+	+	+	
		l		6	1	1			uncut DNA v2.1 sgRNA
			I						cut DNA cut DNA
		CLTA4-0	CLTA4-0	CLTA4-1	CLTA4-2a	CLTA4-2b	CLTA4-2c	CLTA4-3	_
			quonco		e	In vitro selectic enrichmo	o on ent	0/	out
		30	quence			value		/	
CLIA4-0	GCAGA	TGTAGT	GTTTCC.	ACAGGG		7.9		ξ	35%
CLTA4-1	G <mark>a</mark> AGA	TGTAGT	GTTTCC	ACAGGG		27.5		8	84%
CLTA4-2a	G <mark>a</mark> AGA	TGTAGT	GTTTCC.	AC <mark>t</mark> GGG		43.9		7	'9%
CLTA4-2b	GCAGA	TG <mark>g</mark> AGg	GTTTCC.	ACAGGG		1.0		3	35%
CLTA4-2c	GCAGA	TGTAGT	GTT <mark>a</mark> CC	A <mark>g</mark> AGGG		0.06	4	none	detected
CLTA4-3	G <mark>gg</mark> GA	TGTAGT	GTTTCC	AC <mark>t</mark> GGG		95.9		7	2%
	-	赤字け ミス	マッチ恒期	ŧ					

Pattanayak V et al, Nature Biotechnology, 31, 839 (2013)より改変

Tsai SQ, et al, Nature Biotechnology, doi:10.1038/nbt.2908 (2014)より改変

Fig.12 Off-target DNA sequence and cut ratio (%)

Deletions:

A wt	CTTGATGCCGTTCTTCTGGTCATCCTCATCCTGATAAACTGCAAAAGAACTTGTCGGCCATGATA
A -1	${\tt CTTGATGCCGTTCTTCTGGTCATCCTCATCCTGA-AAACTGCAAAAGAACTTGTCGGCCATGATA}$
A -4	${\tt CTTGATGCCGTTCTTCTGGTCATCCTCATC}{}{\tt TAAACTGCAAAAGAACTTGTCGGCCATGATA}$
A -7	${\tt CTTGATGCCGTTCTTCTGGTCATCCTCATCCTGACAAAAGAACTTGTCGGCCATGATA}$
A -10	${\tt CTTGATGCCGTTCTTCTGGTCATCCTC}{\ttACTGCAAAAGAACTTGTCGGCCATGATA}$
A -10	${\tt CTTGATGCCGTTCTTCTGGT}{\ttCTGATAAACTGCAAAAGAACTTGTCGGCCATGATA}$
A -13	${\tt CTTGATGCCGTTCTTCTGGTCATCCTCATCCTGAAACTTGTCGGCCATGATA}$
A -19	${\tt CTTGATGCCGTTCTTCTGGTCATCC}{\ttAAGAACTTGTCGGCCATGATA}$
A -22	CTTGATGCCGTTCTTCTGGTCAAAGAACTTGTCGGCCATGATA

Insertions:

CTTGATGCCGTTCTTCTGGTCATCCTCATCCTGATAAACTGCAAAAGAACTTGTCGGCCATGATA	wt
CTTGATGCCGTTCTTCTGGTCATCCTCtTttTGccg-ACTGCAAAAGAACTTGTCGGCCATGATA	+2
TGCCGTTCTTCTGGTCATCCTCATCCTGAtctgaggAACTGCAAAAGAACTTGTCGGCCATGATA	+5

Gaj T, et al, Nature Methods, 9, 805 (2012)より

(-は deletion の数、+は insertion の数を示す)

Fig.13-1	Indel pattern c	of the cleavage	site by	ZFN
----------	-----------------	-----------------	---------	-----

(a) noggin TALEN

(b)

TCCTAGTGAAAACCTACCACTGGTGGACCTTATTGAGCATCCGGATCCTA

(c) ets1 TALEN

TTACTCTGAAAGGAGTGGACTTTCAGAAGTTCTGTATGAGCGGAGCAGCA

TCCTAGTGAAAACCTA	(\$274)	TTACTCTGAAAGGAGTGGACTTT	(\$403)
GTCTTCCTG//GGAGGAGAGACTTGGAG	(\$197)	TATGAGCGGAGCAGCA	(\$400)
CCTTATTGAGCATCCGGATCCTA	(457)	TTACTCTGAAAGGAGCGGAGCAGCA	(425)
TCCTAGTTGAGCATCCGGATCCTA	(\$26)	TTACTCTGAAAGGAGTATGAGCGGAGCAGCA	(Δ19)
TCCTAGTGAAAAACCTACTGAGCtTCCGGATCCTA	(\$17,+1)	TTACTCTGAAAGGAGcGTATGAGCGGAGCAGCA	(\$18,+1)
TCCTAGTGAAAAACCTATTGAGCATCCGGATCCTA	(\$16)	TTACTCTGAAAGGAGTGGATGAGCGGAGCAGCA	(\$17)
TCCTAGTGAAAACCTTATTGAGCATCCGGATCCTA	(Δ15)	TTACTCTGAAAGGAGTGGACTGTATGAGCGGAGCAGCA	(Δ12)
TCCTAGTGAAAAACCTACCACTGAGCATCCGGATCCTA	(\$13)	TTACTCTGAAAGGAGTGTTCTGTATGAGCGGAGCAGCA	(\$12)
TCCTAGTGAAAAACCTACCTTATTGAGCATCCGGATCCTA	(\$11)	TTACTCTGAAAGGAGTGGoTCTGTATGAGCGGAGCAGCA	(\$12,+1)
TCCTAGTGAAAA-CTAGGAtgCTTATTGAGCATCCGGATCCT	(Δ11 ,+2)	TTACTCTGAAAGGAGTGGTTCTGTATGAGCGGAGCAGCA	(Δ11)
TCCTAGTGAAAACCTACCACTTTATTGAGCATCCGGATCCTA	(49)	TTACTCTGAAAGGAGTAGTTCTGTATGAGCGGAGCAGCA	(\$11)
TCCTAGTGAAAACCTACCACCTTATTGAGCATCCGGATCCTA	(Δ8)	TTACTCTGAAAGGAGTGGACTCTGTATGAGCGGAGCAGCA	(Δ10)
TCCTAGTGAAAACCTACCACTGGTATTGAGCATCCGGATCCTA	(\$7)	TTACTCTGAAAGGAGTGGAGoTCTGTATGAGCGGAGCAGCA	(Δ10 ,+1)
TCCTAGTGAAAACCTACCtCACCTTATTGAGCATCCGGATCCTA	(47.+1)	TTACTCTGAAAGGAGTGGACTTCTGTATGAGCGGAGCAGCA	(Δ9)
TCCTAGTGAAAACCTACCACCTACCTTATTGAGCATCCGGATCCTA	(A5, +1)	TTACTCTGAAAGGAGT-ACTCAGTTCTGTATGAGCGGAGCAGCA	(Δ8 ,+1)
TCCTAGTGAAAAACCTACCACTaccacctaccACCTTATTGAGCATCCGGA	$(\Delta 5, \pm 10)$	TTACTCTGAAAGGAGTGGACTGTTCTGTATGAGCGGAGCAGCA	(\$\D_7)
	(10), 120)	TTACTCTGAAAGGAGTGGACTTTTCTGTATGAGCGGAGCAGCA	(\$\D_7)
nongin 7EN		TTACTCTGAAAGGAGTGGACTTGTTCTGTATGAGCGGAGCAGCA	(Δ6)
noggin ZFN		TTACTCTGAAAGGAGTGGACaAAGTTCTGTATGAGCGGAGCAGCA	(\(\(\) 6, +1)\)
CCACCTTATTCACCATCCCCATCCTATCTATCATCCCAACCACAACCATCTT		TTACTCTGAAAGGAGTGGACTTAtGTTaTGTATGAGCGGAGCAGCA	$(\Delta 6, +2)$
SOACCITATION CATCOUNTCITATION COCCANO CANONA CONTENT		TTACTCTGAAAGGAGTGGACTTTtGTTCTGTATGAGCGGAGCAGCA	$(\Delta 5, +1)$
ACCTACCAC	(1332)	TTACTCTGAAAGGAGTGGACTgTAAGTTCTGTATGAGCGGAGCAGCA	(\$\$\Delta\$,+1)
	(468)		
	(423)		
	(414)	LeiV etal PN/AS 100 17484 (2012) E11	边立
	(414 +1)		122
CONCELENTION OF A CONCELENT OF A CONCELENTE OF A CONCELENTE OF A CONCELENT OF A CONCELENTE OF A CONCELENTO	(014, +1)	(Δは deletion の数、+は insertion の数	(を示す)

Fig.13-2 Indel pattern of the cleavage site by ZFN and TALEN

(a) EMX1 site 1 full-length gRNA

GAAGCTGGAGGAGGAAGGGCCT <mark>GAGTCCGAGCAG</mark>	GAAGAAGAAgGGCTCCCATCACATCAACCGGTGG	wild-type	x35
GAAGCTGGAGGAGGAAGGGCCTGAGTCCGAG	>	Δ202	
<	>	Δ 115	
GAA	>	Δ 94	
<	>	$\Delta 78$	
GAAGCTGGAGG	>	Δ72	
GAAGCTGGA	GG	Δ56	
GAAGCTGGAGGAGGAAGGGCCTGA	GTGG	Δ39	
GAAGCTGGAGGAG	GAAGGGCTCCCATCACATCAACCGGTGG	Δ26 x2	
GAAGCTGGAGGAGGAAGGGCCTGAGT	CCATCACATCAACCGGTGG	Δ22	
GAAGCTGGAGGAGGAAGGGCCTGAG	TCCCATCACATCAACCGGTGG	Δ21 x3	
GAAGCTGGAGGAGGAAGGGCCTGAGTCCGAG	CATCACATCAACCGGTGG	$\Delta 18$	
GAAGCTGGAGGAGGAAGGGCCTGAGTCCGA	GCTCCCATCACATCAACCGGTGG	$\Delta 14$	
GAAGCTGGAGGAGGAAGGGCCTGAGTCCGAGC-	AGAAGGGCTCCCATCACATCAACCGGTGG	Δ6 x3	
GAAGCTGGAGGAGGAAGGGCCTGAGTCCGAGC-	AGAAGAAGGGCTCCCATCACATCAACCGGTGG	Δ3 x3	
GAAGCTGGAGGAGGAAGGGCCTGAGTCCGAGCAGA-	AAGAAGGGCTCCCATCACATCAACCGGTGG	$\Delta 2 \mathbf{x} 2$	
GAAGCTGGAGGAGGAAGGGCCTGAGTCCGAGCA	GAAGA <mark>AC</mark> AGAAGGGCTCCCATCACATCAACCGGT	+2	

(b) VEGFA site 3 full-length gRNA

GAGGACGTGTGTGTGTGTGTG <mark>GGTGAGTGAGTGTGTGCGTGt</mark> GGGGTTGAGGGTGTTGGAGCGGGGA	wild-type x35
GAGGACGTGTGTGTGTGTGTGTGTG	Δ 117
GAGGACGTGTGTGTGG>	Δ 84
GAGGACGTGTGTGTCTGTGTG	$\Delta 75$
GAGGACGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT	Δ 49
GAGGACGTGTGTGTGTGTGGGTGAGTGAGTGTGTG	Δ43
GAGGACGTGTGTGTCTGTGTGGGTGAGTG	Δ 40
GAGGACGTGTGTGTGTGTGTGAGTGGGA	Δ39
GAGGACGTGTGTGTGTGTGGGGTGAGTGAGTGTNNG	Δ37
GAGGACGTGTGTGTGTGTGGGGTGAGTGAGNGNGGN	Δ30 x2
GAGGACGTGTGTGTGTGTGGGTGAGTGAGTGGGGCGGGGA	Δ25
GAGGACGTGTGTGTGTGTGGGTGAGTGAGTGTGGAGCGGGGA	Δ23
GAGGACGTGTGTGTGTGTGGGTGAGTGAGTGAGT	Δ22
GAGGACGTGTGTGTGTGTGGGTGAGTGAGTGAGTGTGTTGGAGCGGGGA	$\Delta 20$
GAGGACGTGTGTGTGTGTGGGTGAGTGAGGGTGTTGGAGCGGGGA	Δ20 x2
GAGGACGTGTGTGTGTGTGGGTGAGTGAGTGAGTGGGCGTTGGAGCGGGGA	Δ18
GAGGACGTGTGTGTGTGTGGGTGANNGTGGGGTTGAGGGTGTTGGAGCGGGGA	$\Delta 12$
GAGGACGTGTGTGTGTGTGGGTGAGTGAGTGTGGGGGTTGAGGGCGTTGGAGCGGGGA	$\Delta 8 x3$
GAGGACGTGTGTGTGTGTGTGGGTGAGTGAGTGTGT GGGTTGAGGGCGTTGGAGCGGGGA	$\Delta 7$
GAGGACGTGTGTGTGTGTGTGG-TGAGTGAGTGTGTGGGGTTGAGGGTGTTGGAGCGGGGA	$\Delta 6$
GAGGACGTGTGTGTGTGTGGGTGGGTGAGTGAGTGNGTGGGGTTGAGGGTGTTGGAGCGGGGA	Δ6 x5
GAGGACGTGTGTGTGTGTGGGTGAGTGAGTGAGTGTGTGTGGGGGTTGAGGGTGTTGGAGCGGGGA	$\Delta 4$
GAGGACGTGTGTGTGTGTGTGGGTGAGTGAGTGAGTGTGTGCTGGGGTTGAGGGTGTTGGAGCGGGGA	$\Delta 3$
GAGGANGNGTGTGTCTGTGTGGGTGAGTGAGTGTGTGTGTG TGGGTGAGTGAGT	+20
GAGGACGTGTGTGTGTGTGGGGTGAGTGAGTGTGTGTGC <mark>GTC</mark> GTGTGGGGGTTGAGGGTGTTGGAGCGG	+3
GAGGACGTGTGTGTGTGTGGGTGAGTGAGTGTGTGCAAAGTGTGGGGGTTGAGGGTGTTGGAGCGG	+3

Fu Y, et al, Nature Biotechnology, 32, 279 (2014)より改変

(Δは deletion の数、+は insertion の数, x は頻度を示

す)

Fig.13-3 Indel pattern of the cleavage site by CRISPR/Cas9

(c) Target 4 (EMX1): (EMX1 O off-target $\forall \uparrow \uparrow$)

от4-1

ACCTGTACATCTGCACAAGATTGCCTTTACTCCATG <mark>CCTTTCTTCTTCTGCTCTAACTCTG</mark> ACAATC	Wild-type x20
ATC	Δ 64
ACCTGTACATCTGCACAAGATTGCCTTTACTCCACAATC	Δ28
ACCTGTACATCTGCACAAGATTGCCTTTACTCCATACTCTGACAATC	Δ20
ACCTGTACATCTGCACAAGATTGCCTTCTGCTCTAACTCTGACAATC	Δ20
ACCTGTACATCTGCACAAGATTGCCTTTACTCCATGCCTTTCTCAATC	Δ19
ACCTGTACATCTGCACAAGATTGCCTTTACTCCATGCTCTAACTCTGACAATC	$\Delta 14$
TCCTGTACATCTGCACAAGATTGCCTTTACTCCCTTCTTCTGCTCTAACTCTGACAATC	$\Delta 8$

(d) <u>Target 3 (VEGFA Site 3)</u>: (VEGFA site3の off-target サイト)

от3-2

GAGTGAGAGAGCGAGTGAGTG <mark>AGTGAGTGAGTGTGTGTGTGGGGGG</mark> GGACTCGGCTTGTTGTTGTCGG GAGTGAGAGAGCGAGTGAGTGAGTGAGTGA GAGTGAGAGAGCGAGTGAGTGAGTGAGTGA GAGTGAGAGAGCGAGTGAGTGAGTGAGTGA	Wild-type x14 $\Delta 4$ $\Delta 6$ x2
OT3-9	
GTGTTGGGATGCGGGAGTG <mark>GGTGAGTGAGTGCGTGCGGGTGGC</mark> GATGCAAGCGTGTGCGAATGCGTG GTGTTGGGATGCGGGA	x173 Δ80
GTGTTGGGATGCGCGTG GTGTTGGGATGCGGGAGTGGGTGAGTGAGTGGCGATGCAAGCGTGTGCGAATGCGTG GTGTTGGGATGCGGGGGGGGGG	Δ50 Δ10
G1G11GGGA1GCGGGAG1GGG1GAG1GAG1GC <mark>AAG</mark> 1GCGGG1GGCGA1GCAAGCG1G1GCGAA1GCG	
OT3-18	
TTTCAAAGACAGTAGATCTTAAATGT <mark>CCTCACGCACACACTCACCCACAC</mark> ATAAAAGGTGGTAACTG	Wild-type x27
TTTCAAAGACAGTAGATCTTAAAAGGTGGTAACTG	Δ32
TTTCAAAGACAGTAGATCTTAAATGTCATAAAAGGTGGTAACTG	Δ23
TTTCAAAGACAGTAGATCTTAAATGTCCTCACATAAAAGGTGGTAACTG	Δ18 x4
TTTCAAAGACAGTAGATCTTAAATGTCCTCCACACATAAAAGGTGGTAACTG	Δ15
TTTCAAAGACAGTAGATCTTAAATGTCCTCACCCACACATAAAAGGTGGTAACTG	Δ12
TTTCAAAGACAGTAGATCTTAAATGTCCTCACACACACTCACCCACACATAAAAGGTGGTAACTG	Δ2
TTTCAAAGACAGTAGATCTTAAATGTCCTCACAGCTGGAGTACAGTGGCATGATATCAGCTCACTGC	CAATCTCGGGCTCCCGGGTTCAAG

CCATGCACACACCACACATAAAAGGTGGTAAC +63

Fig.13-4 Indel pattern of the cleavage site by CRISPR/Cas9

Arabidopsis: mutations in 12 out of 25 sequenced clones

CATGGAGCGCTTCAAGGTGCACATGGAGGACTAGTAAAGGAGAAGAAC	In/Del	Freq.
CATGGAGCGCTTCAAGGTCCCCATGGAGGACTAGTAAAGGAGAAGAAC	0 (-3,+3) 1x
CATGGAGCGCTTCAAGGTGCACAATGGAGGACTAGTAAAGGAGAAGAAG	: +1	1x
CATGGAGCGCTTCAAGGTGCAGGAGGACTAGTAAAGGAGAAGAAC	-3	4x
CATGGAGCGCTTCAAGGTGCAAGGACTAGTAAAGGAGAAGAAC	-5	3x
CATGGAGCGCTTCAAGGTGCAGGACTAGTAAAGGAGAAGAAC	-6	2x
CATGGAGCGCTGACTAGTAAAGGAGAAGAAC	-17	1x

Tobacco: mutations in 15 out of 28 sequenced clones

CATGGAGCGCTTCAAGGTGCACATGGAGGACTAGTAAAGGAGAAGAAC

	In/De	el	Freq.
CATGGAGCGCTTCAAGGTGCACATGGAAGGACTAGTAAAGGAGAAGAAG	: +1	(+1)	1x
CATGGAGCGCTTCAAGGTGCACATGCAGGACTAGTAAAGGAGAAGAAC	0	(-1,+1)	1x
CATGGAGCGCTTCAAGGTGCAGGAGGACTAGTAAAGGAGAAGAAC	-3		4x
CATGGAGCGCTTCAAGGTGTGGAGGACTAGTAAAGGAGAAGAAC	-4		1x
CATGGAGCGCTTCAAGGTGCAGAGGACTAGTAAAGGAGAAGAAC	-4		1x
CATGGAGCGCTTCAAGGTGCAGGACTAGTAAAGGAGAAGAAC	- 5		3x
CATGGAGCGCTTCAAGGTGCAGGACTAGTAAAGGAGAAGAAC	-6		3x
CATGGAGCGCTTCAAGGTGCAAGGAGAAGAAC	-16		1x

Jian W, et al, Nucleic Acid Research, **41**, e188 (2013)より改変 (-は deletion の数、+は insertion の数, x は頻度を示す)

Fig.14-1 Indel pattern of the cleavage site by CRISPR/Cas9 in Plants (Arabidpsis and Tabacco)

Lian Z, *et al, J. Genetics Genomics*, **41**, 63 (2014)より改変 (-は deletion の数、+は insertion の数を示す)

Fig.14-2 Indel pattern of the cleavage site by TALEN and CRISPR/Cas9 in Plant (Zea mays)

CRISPR plasmid construct

```
target in genome 5'-gctaggctatatttcggatGNNNNNNNNNNNNNNNNNNNNNNNGGattcaccgcatta-3' (+)鎖
3'-cgatccgatataaagcctaCNNNNNNNNNNNNNNNNNCCttaagtggcgtaat-5' (-)鎖
```


Fig.15 CRISPR/Cas9 plasmid we used in this study

Fig.16 TALEN and CRISPR/Cas9 design targeted for AIFM1 exon3 region 四角で囲んだ配列は、CRISPR 標的配列、太字黒または茶で示した配列は TALEN 標的配列を示す. 大文字(緑)は、exon3 を示す

·Platinum TALEN O Target: TTTCATCCCTAGTACTG-AAAAGTCAAATTCGC-CTTAGTAGTGTTTGCATA

·CRSIPR/Cas9 Ø Target:

Name	Length	Start	End	Strand	Nucleotide sequence	GC% in spacer	Ranking	Match-start	Match-end
U6-Rev-exon3mae2	23	20	42	minus	GAATTTGACTTTTCAGTACTAGG	30	100	135399601	135399625
U6-Rev-exon3mae	23	116	138	plus	G TTAGCCTATGTTATGATAT <mark>AGG</mark>	30	100	23972	23996
U6-Rev-left2	23	288	310	minus	GTCACACAGAAGAGACATAGGGG	45	100	23800	23824
U6-Rev-exon3us iro	23	419	441	minus	G GAAACTGCTCTCTGCTATG <mark>GGG</mark>	50	100	23669	23693

TALEN spacer (talen-VR-AIF-up-A)

			a contra provide an estado presenta a contra de		
SUR-PCR4 T1-2	109	TTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACTGA	AAAGTCAAATTCGCC1	TAGTAGTGTTTGCATAAAGGAGCTAACTAGCTCAATGTAGACAAAAGCTT	218
SUR-PCR4 T1-3	109	TTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACTGA	AAAGTCAAATTCGCC1	TAGTAGTGTTTGCATAAAGGAGCTAACTAGCTCAATGTAGACAAAAGCTT	218
SUR-PCR4 T1-13	109	TTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACTGA	AAAGTCAAATTCGCCI	TAGTAGTGTTTGCATAAAGGAGCTAACTAGCTCAATGTAGACAAAAGCTT	218
SUR-PCR4 T1-24	109	TTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACTGA	AAAGTCAAATTCGCCT	TAGTAGTGTTTGCATAAAGGAGCTAACTAGCTCAATGTAGACAAAAGCTT	218
SUR-PCR4 T1-9	109	TTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACTGA	AAAGTCAAATTCGCCT	TAGTAGTGTTTGCATAAAGGAGCTAACTAGCTCAATGTAGACAAAAGCTT	218
SUR-PCR4 T1-15	109	TTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACTGA	AAAGTCAAATTCGCC1	TAGTAGTGTTTGCATAAAGGAGCTAACTAGCTCAATGTAGACAAAAGCTT	218
SUR-PCR4 T1-19	109	TTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACTGA	AAAGTCAAATTCGCCI	TAGTAGTGTTTGCATAAAGGAGCTAACTAGCTCAATGTAGACAAAAGCTT	218
SUR-PCR4 T1-20	109	TTGATTAGTATGCATGAAGCTCTGGGTTTTATCCCTAGTACTGA	AAAGTCAAATTCGCCI	TAGTAGTGTTTGCATAAAGGAGCTAACTAGCTCAATGTAGACAAAAGCTT	218
SUR-PCR4_T1-22	109	TTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACTGA	AAAGTCAAATTCGCC1	TAGTAGTGTTTGCATAAAGGAGCTAACTAGCTCAATGTAGACAAAAGCTT	218
SUR-PCR4 T1-5	110	TTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACTGA	AAAGTCAAATTCGCCI	TAGTAGTGTTTGCATAAAGGAGCTAACTAGCTCAATGTAGACAAAAGCTT	219
SUR-PCR4_T1-18	109	TTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACTGA	AAAGTCAAATTCGCC1	TAGTAGTGTTTGCATAAAGGAGCTAACTAGCTCAATGTAGACAAAAGCTT	218
SUR-PCR4_T1-4	110	TTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACTGA	AAAGTCAAATTCGCC1	TAGTAGTGTTTGCATAAAGGAGCTAACTAGCTCAATGTAGACAAAAGCTT	219
SUR-PCR4_T1-23	110	TTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACTGA	AAAGTCAAATTCGCC1	TAGTAGTGTTTGCATAAAGGAGCTAACTAGCTCAATGTAGACAAAAGCTT	219
SUR-PCR4_T1-11	110	TTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACTGA	AAAGTCAAATTCGCCT	TAGTAGTGTTTGCATAAAGGAGCTAACTAGCTCAATGTAGACAAAAGCTT	219
SUR-PCR4_T1-10	110	TTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACTGA	AAAGTCAAATTCGCC1	TAGTAGTGTTTGCATAAAGGAGCTAACTAGCTCAATGTAGACAAAAGCTT	219
SUR-PCR4_T1-7	110	TTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACTGA	AAAGTCAAATTCGCC1	TAGTAGTGTTTGCATAAAGGAGCTAACTAGCTCAATGTAGACAAAAGCTT	219
SUR-PCR4 T1-16	110	TTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACTGA	AAAGTCAAATTCGCCI	TAGTAGTGTTTGCATAAAGGAGCTAACTAGCTCAATGTAGACAAAAGCTT	219
SUR-PCR4 T1-6	110	TTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACTGA	AAAGTCAAATTCGCC1	TAGTAGTGTTTGCATAAAGGAGCTAACTAGCTCAATGTAGACAAAAGCTT	219
SUR-PCR4_T1-8	110	TTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACTGA	AAAGTCAAATTCGCC1	TAGTAGTGTTTGCATAAAGGAGCTAACTAGCTCAATGTAGACAAAAGCTT	219
SUR-PCR4 T1-17	109	TTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACTGA	AAAGTCAAATTCGCC1	TAGTAGTGTTTGCATAAAGGAGCTAACTAGCTCAATGTAGACAAAAGCTT	218
PC12HS-tetoff10	111	TTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACTGA	AAAGTCAAATTCGCC1	TAGTAGTGTTTGCATAAAGGAGCTAACTAGCTCAATGTAGACAAAAGCTT	220
STID_DCD4 T1_33	111	COTTONTTACTATCONTONNOCTOTOCCTTCATCOCTACTACT	CANADGTCANATTCCC	CTTACTACTCTTCCATAAACCACCTAACTACCTCAATCTACACAAAAACC	220
SUB-DCD4 T1-42	111	COTTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACT	GAAAAGTCAAATTCGC	CTTAGTAGTGTTTGCATAAAGGAGCTAACTAGCTCAATGTAGACAAAAGG	220
SUP-DCD4 T1-27	110	CTTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACT	CARANGTCARATICOC	CTTACTACTOTICCATAAACCACCTAACTACCCAATCTACACAAAACC	210
SUD-DCD4 T1-35	100	CTTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACT	GARAAGTCARATTCGC	CTTAGTAGTGTTTGCATAAAGGAGCTAACTAGCTCAATGTAGACAAAAGG	218
SUD-DCD4 T1-30	110	CTTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACT	GAAAAGTCAAATTCGC	CTTACTACTOTICCATAAACCACCTAACTACCTCAATCTACACAAAACC	210
SUD-DCD4 T1-31	110	CTTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACT	GAAAAGTCAAATTCGC	CTTAGTAGTGTTTGCATAAAGGAGCTAACTAGCTCAATGTAGACAAAAGG	210
SUP-PCR4 T1-31	110	CTTGATTAGTATGCATGCATGCATGCCTCTGGGTTTCATCCCTAGTACT	GAAAAGTCAAATTCGC	CTTAGTAGTOTTIGCATAAAGGAGCTAACTAGCTCAATGTAGACAAAAGC	219
SUP-DCD4 T1-30	110	CTTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACT	CANAAGTCANATTCCC	CTTACTACTCTTTCCATAAACCACCTAACTACCTCAATCTACACAAAACC	210
SUP_PCP4 T1_32	110	CTTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACT	GAAAAGTCAAATTCGC	CTTAGIAGIGITIGCATAAAGGAGCTAACTAGCTCAATGIAGACAAAAGG	210
SUD-DCD4 T1-36	100	CTTGATTAGTATGCATGAAGCTCTGGGTTTCATCCCTAGTACT	GAAAAGTCAAATTCGC	CTTACTACTOTTTCCATAAAGGAGCTAACTAGCTCAATGTAGACAAAAGG	219
SUD-DCD4 T1-25	100	COTTOATTAGTATGCATGCATGCATGCATGCCTAGTACT	CAAAAGTCAAATTCGC	CTTAGIAGIGIIIGCAIAAAGGAGCIAACIAGCICAAIGIAGACAAAAGC	210
SUD-DCD4 T1-37	108	SCITICAL RELATIONATION CONTROL	GAAAAGTCAAATTCGC	CTTAGIAGIGITIGCATAAAGGAGCTAACTAGCTCAATGIAGACAAAAGC	217
SUD-DCD4 T1-45	100	CTTCATTACTATCCATCA COTCTCCCTTCATCCCTACTACT	CANADOTCANATICOC	CTINGINGIGITIGCATANAGGAGCIAACTAGCICAALGIAGACAAAAGC	217
SUD-DCD4 T1-44	100	COTTONTTACTATCCATCA ACCTCTCCCTTCCATCCCTACTACT	CANARGICAMATICOC	CTTACTACTOTTTCCATAAACCACCTAACTACCTCCATCTACACAAAACC	217
SUD-DCD4 T1-26	100	CTTCATTACTATCCATCA COTCTCCCTACTACTACT	GAAAAGICAAAIICGC	CTTAGINGIGIIIGCAIAAAGGAGCIAACIAGCICAAIGIAGACAAAAGC	217
SUR-PCR4 11-26	107	SCIIGAIIAGIAIGCAIGAAGCICIGGGIIICAICCCIAGIACI	CARAAGICAAAIICGC	CTTAGIAGIGIIIGCAIAAAGGAGCIAACIAGCICAAIGIAGACAAAAGC	211
SUR-PCR4 11-30	100	SCIIGAIIAGIAIGCAIGAAGCICIGGGIIICAICCCIAGIACI	CAAAAGICAAAAIICGC	CTTAGINGIGIIIGCAIMAAGGAGCIMACIAGCICAAIGIAGACAAAAGC	210
SUR-PCR4_II-46	100	GOTTONTIAGIAI GOATON & COTOTOCOTTONTOCOTAGIACI	CARARGICARATICGC	CTIAGIAGIGIIIGCAIAAAGGAGCIAACIAGCICAAIGIAGACAAAAGC	210
SUB_BCD4 T1 39	100	COTTONTINGIALGUALGUALGUAGULULGUGULLUCALGUCLAGIAGU	CARACTORA TTOO	OTTAGINGIGIIIGCAIAAAGGAGCIAACIAGCICAAIGIAGACAAAAGC	210
SUR PORT 11-28	109	SCITCATIAGIAIGCAIGAAGCICIGGGIIICAICCCIAGIACI	GAMMAGICAAAIICGC	CTTAGINGIGIIIGCAIAAAGGAGCIAACIAGCICAAIGIAGACAAAAGC	210
SUB DCD4 T1 40	109	COTTONTINGTALGOALGAAGUICIGGGIIICAICCCIAGIACI	CARAAGICAAAIICGC	CTTAGIAGIGIIIGCAIAAAGGAGCIAACIAGCICAAIGIAGACAAAAGC	210
SUR-PCR4_11-43	100	SCITCATIAGIAIGCATGAAGUICIGGGIIICAICCCIAGIACI	GAMAAGICAAAIICGC	CTTAGIAGIGIIIGCAIAAAGGAGCIAACIAGCICAAIGIAGACAAAAGC	217
CIID DCDA TA AT					1 1 1

Fig.17 AIFM1 遺伝子 exon3 前後 intron 領域を標的にデザインした sgRNA と切断活性 (SURVEYOR Assay), シークエンス解析

AIFM1 KO by disruption of exon3

(chicken DT40 exon 3 region)

intron2

(px330: Streptococcus pyogens Cas9, Nm3: Neisseria meningitidis Cas9)

surveyor nuclease assay

Fig.18 AIFM1 遺伝子 exon3-intron3 にデザインした sgRNA シークエンス と切断活性 (SURVEYOR Assay)

Fig.20 ENCODE データからみた各遺伝子標的部位のゲノム構造 (continued)

Joung's group, Nature Biotech, advanced online doi:10.1038/nbt.2908 (2014)

FANCF gene

cell type: HEK293& (Human Embryonic Kidney 293) target: FANCF (Fanconi anemia, complementation group F)

Fig.21 ENCODE データからみた各遺伝子標的部位のゲノム構造 (continued)

AIFM1 gene

Fig.22 ENCODE データからみた AIFM1 遺伝子 exon3 周辺のゲノム構造)

組換えウシ

カテゴリー	導入あるいは改変遺伝子	研究内容	開発国	遺伝子改変法	備考	文献
1	α-ラクトアルプミン、ラクトフェリン、リゾチーム	トランシジェニックウシの牛乳の成分を調べた	中国	-		1
	ヒトラクトフェリン	鉄貧血を起こしたラットにトランスジェニックウシの牛乳を飲ませた	中国	-		2
	ヒトラクトフェリン	鉄を結合させたヒトラクトフェリンをトランスジェニックウシの牛乳から 調製して、鉄貧血を起こしたラットに与えた	中国	体細胞核移植		3
	ヒトラクトフェリン	GMウシの牛乳を新生児ブタに飲ませて腸内細菌叢を調べた	中国	-		4
2	ラクトフェリシン、インターフェロン α	線維芽細胞に導入。細胞は乳腺炎と口蹄疫に耐性	中国	トランスフェクション	細胞の実験	5
	口蹄疫ウイルスの遺伝子に対する shRNA	口蹄疫に耐性のウシを作ることを目指す	中国	体細胞核移植		6
	ウシウイルス性下痢のウイルスに対する shRNA	ウイルスの複製を抑制することを目的とする	中国	トランスフォーメーション	細胞の実験	7
	β-ディフェンシン3	乳腺において発現させた	中国	体細胞核移植		8
	lysostaphin	ぶどう球菌の感染からウシを守ることを目指す	中国	-		9
	インテグリン av サブユニット、ノックアウト	口蹄疫の感染効率が低下した	中国	体細胞核移植		10
	インテグリン b6 サブユニット、ダブルノックアウト	口蹄疫に耐性になった	中国	体細胞核移植		11
	ウシラクトフェリシン、 ヒトインターフェロン α	インターフェロン α の発現を検出した	中国	トランスフェクション	細胞の実験	12
	Ipri	ウシ型結核菌に耐性になった	中国	体細胞核移植		13
	FMDV に由来するカプシドをコードする領域	アデノウイルスベクターの性質を調べた	米国	アデノウイルス		14
3	線虫 Fat1	不飽和脂肪酸の含量が増えた	中国	トランスフェクション	細胞の実験	15
	線虫 mfat-1	組織と牛乳中で不飽和脂肪酸が大きく増えた	中国	-		16
	線虫 fat-1	ゲノムに組み込まれ、タンパクが発現する胚を作った	中国	-		17
4	ミオスタチン遺伝子にフレームシフトを導入	肉の量を増やす、質を良くすることを目指す	中国	トランスフェクション	細胞の実験	18
	ミオスタチン遺伝子に対する shRNA	筋肉の量を増加させることを目指す	米国	体細胞核移植		19
	ミオスタチン遺伝子に対する miRNA	筋肉量が2倍になった	中国	体細胞核移植		20
5	ヒトラクトフェリン、ヒトラクトアルプミン α	GM 製品から外来遺伝子を検出できた	中国	-		21
	β-ラクトグロブリンに対する miRNA	β-ラクトグロプリンの発現を抑制した	ニュージーラ ンド	-		22
	プリオン	ウシ細胞で発現させた。狂牛病にならないウシの開発を目指す	中国	トランスフェクション	細胞の実験	23
	リパーゼ	低脂肪牛乳を作るために利用できる	中国	-		24
	ヒトトランスフェリン	導入遺伝子が染色体に導入されたことをFISH法で検出した	中国	-		25
	線虫 Fat1	3 通りにコドンを最適化して異なる触媒効率が得られた	中国	トランスフェクション	細胞の実験	26
	プリオン遺伝子に対する shRNA	プリオンの発現を抑制した	中国	トランスフェクション	細胞の実験	27
	ヒトα-ラクトアルプミン	血液学的、血清の生化学的指標は正常の範囲内だった	中国	-		28
	ヒトコラーゲン cDNA	胚は外来遺伝子を含んでいる	中国	体細胞核移植		29
	ヒトラクトフェリン	導入遺伝子を蛍光定量 PCR で検出する方法を作成した	中国	-		30
	ヒトラクトフェリン	導入遺伝子を次世代シークエンサーで調べた	中国	-		31
	プリオン遺伝子に対する shRNA	mRNA、タンパクの発現を抑制した。	中国	トランスフェクション	細胞の実験	32
カテゴリー						
1.牛乳に	抗菌性タンパクを含ませる	2.病原菌、ウイルスへの耐性付与	3.不飽和用	旨肪酸を作らせる		
4.筋肉の	量を増やす	5.その他	- , 00100			
	食用トランスジェニックウシ(2012年)					

組換えヤギ

カテゴリー	導入あるいは改変遺伝子	研究内容	開発国	遺伝子改変法	備考	文献	
1	ヒトラクトフェリン	マーカー1つ、2つで出生率などに差がなかった	中国	体細胞核移植		1	
	ヒトリゾチーム	高濃度のリゾチームを含むヤギミルクは腸細胞の損傷の修復を促進した	ブラジル	-		2	
	ヒトラクトフェリン	子孫の生殖能力、導入遺伝子発現の安定性に問題なかった	中国	-		3	
	β-ラクトグロブリンに対する shRNA	線維芽細胞中で β-ラクトグロブリンの発現を抑制した	中国	レンチウイルスペクター	細胞の実験	4	
	ヒトラクトフェリン	泌乳サイクルの期間すべてで安定に発現した	中国	-		5	
	ヒトリゾチーム	ミルクを子豚に飲ませると糞便中の微生物が変わった	米国	-		6	
	ヒトラクトフェリン	細胞を正確に選抜するために二重マーカーを使用し、悪影響はなかった	中国	体細胞核移植		7	
	リパーゼ	低脂肪牛乳を作るために利用できる	中国	-		8	
	ヒトリゾチーム	GM 胚盤胞を作った	中国	体細胞核移植		9	
	ヤギリパーゼ	F1 において導入遺伝子が発現した	中国	精巣注入		10	
	ヒトラクトフェリン	GM 個体作成のためのドナー細胞の調製法と受容側の卵母細胞供給源の効果を調べた	中国	体細胞核移植		11	
	ヒトラクトフェリン	組換えタンパクは天然の物と物理、化学的性質が同じだった	ロシア、ペラ ルーシ	-		12	
	ヒトラクトフェリン	ミルク中の組換えタンパクの量を経時的に調べた	ベラルーシ	-		13	
	ヒトラクトフェリン	細胞を正確に選抜するために二重マーカーを使用し、悪影響はなかった	中国	体細胞核移植		14	
	ヤギ成長ホルモン	乳腺特異的な発現ベクターを作成した。ミルクの増産を目指す	中国	-		15	
	ヒトラクトフェリン	生殖機能に影響はなく、導入遺伝子は次世代に伝達して安定に発現した	中国	-		16	
2	fat-1	脂肪組織で特異的に発現させるベクターを作り、線維芽細胞に導入した	中国	トランスフェクション	細胞の実験	17	
	ミオスタチン遺伝子に点突然変異を 導入	ミオスタチンタンパクの発現量が減少した	中国	エレクトロポーレーション	細胞の実験	18	
3	インテグリン b6 サブユニット遺伝子	口蹄疫に対する感染率が低かった	中国	体細胞核移植、マイクロイ		10	
	ダブルノックアウト		. —	ンシェクション		19	
	Toll-like receptor 2	個体に侵入したパクテリアの除去が促進された	中国	マイクロインジェクション		20	
	1.ミルクの改良 2.肉の改良 3.そ	その他					
	食用トランスジェニックヤギ (2012年)						

Fig.23-1 遺伝子組換え動物の開発動向調査 (2012)

組換えブタ

カテゴリー	導入あるいは改変遺伝子	研究内容	開発国	遺伝子改変法	備考	文献
1	SIGLEC1 遺伝子不活性化、 CD163 遺伝子不活性化	ブタ繁殖・呼吸障害症候群ウイルスに耐性のプタの作成を 目指す	米国	-		1
	O 型口蹄疫ウイルスの遺伝子に対 する shRNA	トランスジェニックプタの線維芽細胞はウイルスを阻害した	中国	-		2
	古典的ブタ熱ウイルスの遺伝子に 対する shRNA	細胞においてウイルスの複製を阻害した	中国	トランスフォーメーション	細胞の実験	3
	PBD-2	広い抗菌活性を持つ可能性がある	中国	体細胞核移植		4
	インテグリン b6 サフユニット遺伝子 ダブル / ックアウト	口蹄疫に対する感染率が低かった	中国	体細胞核移植、マイクロ インジェクション		5
	ブク繁殖・呼吸障害症候群ウイルス の遺伝子に対する shRNA	この疾患に耐性だった	中国	体細胞核移植		6
	IFITIM3	ウイルス性疾患に耐性かもしれない	中国	体細胞核移植		7
	FUT1 遺伝子に対する shRNA	腸管毒素原性大腸菌 F18 に耐性かもしれない	中国	体細胞核移植		8
	古典的フタ熱ウイルスの遺伝子に 対する siRNA	siRNA の発現を検出した	中国	-	細胞の実験	9
	口蹄疫ウイルスに対する ScFv	導入遺伝子を持つ細胞を選抜した	中国	レトロウイルス	細胞の実験	10
2	sFat-1	導入遺伝子が F1 から F2 へ伝わった	中国	-		11
	ブタ成長ホルモン	F1 において野生型よりも成長ホルモンの発現が多かった	中国	-		12
	ヒトリゾチーム	糞、周辺の土壌、胃腸の微生物相を調べた	中国	-		13
	線虫 Fat-1	筋肉と主要な組織で n-6/n-3 比が下がった	中国	体細胞核移植		14
	ブタ成長ホルモン	Tet-On システムを利用してコンディショナルに発現させた	中国	-	細胞の実験	15
	ブタ成長ホルモン	導入遺伝子が次世代に伝わった	中国	ナノ遺伝子キャリアー法		16
カテゴリー						
1.病原菌、	ウイルスへの耐性付与	2. その他				
	食用トランスジェニックブタ(2012年)					

組換えヒツジ

導入あるいは改変遺伝子	研究内容	開発国	遺伝子改変法	備考	文献
ミオスタチン、その RNAi	線維芽細胞でのミオスタチン遺伝子の発現を調べた	中国	レンチウイルスベクター	細胞の実験	1
線虫 fat-1	CMV プロモーターを用いたときはサイレンシングを受け、 高度なメチル化によるかもしれない	中国	体細胞核移植		2
ミオスタチンに対する shRNA	ミオスタチン遺伝子の発現が抑制された	中国	体細胞核移植		3
ミオスタチンに対する siRNA	ミオスタチンの発現を抑制した。GM 桑実胚を作った。	中国	体細胞核移植		4
ミオスタチンに対する shRNA	筋芽細胞の分化におけるミオスタチンの役割を調べた	中国	-		5
食用トランスジェニックヒツジ(20	012 年)				

組換えウサギ

導入あるいは改変遺伝子	研究内容	開発国	遺伝子改変法	備考	文献
とト fucosyltransferase 1	乳の分泌期間が短くなった	米国	-		1

Fig.23 遺伝子組換え動物の開発動向調査(2012)

組換え魚

カテゴリー	魚の種類	導入あるいは改変遺伝子	研究内容	開発国	遺伝子改変法	備考	文献
1	アマゴ	ベニザケ成長ホルモン 1	肝において脂肪酸の組成と量が変わった	日本	-		1
	コイ	成長ホルモン	ラットに食べさせて亜慢性毒性は現れなかった	中国	-		2
	サケ	成長ホルモン	酸化的ストレスを調べた	スウェーデン	-		3
	ドジョウ	ドジョウ成長ホルモン	トジョウレクチンプロモーターを使って成長速度を抑制した	韓国	-		4
	コイ	コイ成長ホルモン	大きくなった	韓国	-		5
	サケ	サケ成長ホルモン	プロモーターと魚の系統によって成長が異なった	カナダ	-		6
	コイ	成長ホルモン	子孫の間で成長にばらつきがあった	中国	-		7
	サケ	成長ホルモン	ウシ成長ホルモンを投与して成長と内分泌効果を調べた	カナダ	-		8
	不明	コイインシュリン様成長因子 2b	高い生存率を持った	中国	マイクロインジェクション		9
	サケ	成長ホルモン?	脳の大きさと構造を調べた	スウェーデン	-		10
	アマゴ	成長ホルモン1	脳下垂体の iTRAQ プロテオーム解析を行った	日本	-		11
	ニジマス	ミオスタチンノックアウト、ミオス タチン阻害剤	運動の成長への効果を調べた	米国	-		12
	サケ、マス、 ティラピア	成長ホルモン	Aqua Bounty 社のサケは FDA の審査を受けている	米国	-		13
	サケ	成長ホルモン	早熟性の雄の成熟が減少する	カナダ	-		14
2	サケ	抗凍結タンパク	凍結に耐性のサケを作ることを試みた	カナダ	-		15
カテゴリー							
1.体を大き	きくする	2.その他					
		食用トランスジェニック魚 (2012 名	手)				

組換えエビ・カニ

導入あるいは改変遺伝子	研究内容	開発国	遺伝子改変法	備考	文献
white spot syndrome virus env gene (VP28, VP19)、これらの 融合遺伝子	トランスジェニック藻は魚、エビ、カニなどに用いる 予防薬、治療薬、餌、添加物に使える	中国	トランスダクション		1
食用トランスジェニックエビ、カニ(2012年)					

導入遺伝子の説明

- ラクトフェリン 母乳・涙・汗・唾液などの外分泌液中に含まれる鉄結合性の糖タン パク質である。ラクトフェリンは、強力な抗菌活性を持つことが知られている。鉄 を奪い去ることで、細菌の増殖を抑制する。また、グラム陰性菌の細胞膜の主要な 構成成分であるリボポリサッカライドと結合することで、細胞膜構造を脆弱化し、抗 菌活性を示す。さらに、免疫系に対する効果があることが知られている。
- ラクトフェリシンラクトフェリンをペプシンで分解した部分ペプチドである。細菌の細胞壁に障害を与えることでラクトフェリンよりも10倍以上強力な抗菌活性を示す。
- ラクトアルプミン乳に含まれ、乳清から得られるアルプミンである。ラクトアルプ ミンは、多くの哺乳類の乳に含まれる。
- 4) リゾチーム真正細菌の細胞壁を構成する多糖類を加水分解する酵素である。ヒトの 場合涙や鼻汁、母乳などに含まれている。
- 5) ミオスタチン 筋肉成長を抑制する 因子である。
- 6) fat-1

□-3-脂肪酸サチュラーゼという酵素を作り、□-6-脂肪酸を□-3-脂肪酸に変える動物では不飽和脂肪酸を体内で合成できる量だけでは必要量を満たすことができず、摂取する必要がある。不飽和脂肪酸は主に植物や魚に含有されるが、人の食事では十分に摂取できていないケースがあると考えられている。動物の体内で少量作られる□-6-脂肪酸を□-3-脂肪酸に変えて、人が肉を食したときに□-3脂肪酸を摂取することを可能にするためにGM動物が作成されている例がある。

Fig.23-3 遺伝子組換え動物の開発動向調査(2012)

次世代遺伝子組換え技術を用いた GM 動物

- Yu S, Luo J, Song Z, Ding F, Dai Y, Li N. Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Res. (2011) 21 (11) 1638-1640
- Dong Z, Ge J, Li K, Xu Z, Liang D, Li J, Li J, Jia W, Li Y, Dong X, Cao S, Wang X, Pan J, Zhao Q. Heritable targeted inactivation of myostatin gene in yellow catfish (Pelteobagrus fulvidraco) using engineered zinc finger nucleases. PLoS One (2011) 6 (12) e28897
- + He, Hongbin; Wu, Jianming; Wang, Hongmei; Liu, Xiao; Liu, Wenhao; Fang, Yongzhi; Zhong, Jifeng. Method for knocking out bovine integrin 86 subunit gene with zinc finger nuclease. Faming Zhuanli Shenqing (2012), CN 102660577 A 20120912.
- Liu, Xu; Wang, Yongsheng; Guo, Wenjiang; Chang, Bohao; Liu, Jun; Guo, Zekun; Quan, Fusheng; Zhang, Yong . Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows . Nature Communications (2013), 4, 3565, 11 pp
- Liu, Xu; Zhang, Yong; Wang, Yongsheng; Guo, Wenjiang; Quan, Fusheng. A kind of targeting vector for site-directed integration of Lys gene in β-casein locus and its constructed cell. Faming Zhuanli Shenqing (2013), CN 103215295 A 20130724.
- Li, Rongfeng; Li, Xueling; Zhao, Yuhang; Yun, Ting; Liang, Hao. Method for rapidly knocking out myostatin gene and integrating exogenous gene at specific site with zinc finger nuclease. Faming Zhuanli Shenqing (2013), CN 103088046 A 20130508.
- Liu, Mingjun; Zhang, Xuemei; Li, Wenrong; Zhang, Ning; He, Sangang; Liu, Chenxi; Ma, Yila. Method for knocking out ovine myostatin gene with zinc finger nuclease. Zhuanli Shenqing (2013), CN 103290045 A 20130911.
- Yu, Shengli; Luo, Junjie; Ding, Fangrong; Li, Song; Tang, Bo; Li, Ning. Method for knocking out bovine myostatin gene with zinc finger nucleases. Faming Zhuanli Shenqing (2011), CN 102260711 A 20111130.

Fig.23-4 次世代遺伝子組換え技術を用いて作製され GM 動物に関する論文

<u>ProTEV Plus による SpCas9-MBP-His₆の消化</u>

キレートカラムのフラクションを2つに分けて、 ProTEV Plus の使用量を変えて消化

> レーン1:分子量マーカーレ ーン2:消化前レーン3: ProTEV Plus, 750 u レーン 4:ProTEV Plus, 250 u

Fig.24 human-condon optimized SpCas9:発現と精製