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Abstract. In this paper, we show two approaches for capturing nursing
interactions in a hospital: 1) finding nursing intervals from mobile sen-
sors with accelerometers and audio on nurses, and 2) recognizing nurses’
entrance to a patient’s room from in-room sensors of bed, loudness, and
illuminance sensors. For 1), we firstly detect the nurses’ entrance to the
patient’s room by walking detection from accelerometers and noise level
on mobile sensors, and detect the interval of interaction between nurses
and the patient. For 2), we recognize the nurse’s entrance to the patient’s
room with in-room sensors, using separate algorithms between day and
night. We developed the algorithms using the sensor data collected in a
cardiovascular center in a real hospital for one year. It could be a impor-
tant baseline technique to find valuable intervals from long and big data of
Sensors.

Keywords: Activity Recognition, Annotation, Speech Interval Estima-
tion, Nursing Activity.

1 Introduction

In this research, we aim at capturing nursing interactions with patients from mo-
bile accelerometers attached to each nurse. Capturing nursing is important, since
1) it helps understanding what/when/how interactions should be performed for
better health results of the patients, and 2) it can be utilized to improve the skills
of nurses. If we have evidences of interactions and the health result, we can analyze
the correlations between them, and find the key factors for better interaction.

However, very few data sets for such purpose have been published and shared
among the research community so far, either because of the immaturity of sens-
ing/network/storage technology, or because of the privacy risk.

In our one-year trial in a cardiovascular center in a hospital, we have collected
7,400 hours of mobile sensor data in total from nurses after one-year trial in a
hospital[1]. We asked nurses to bring smart devices (iPod touches), which records

A. Marcus (Ed.): DUXU/HCII 2013, Part III, LNCS 8014, pp. 280-289, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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sounds and accelerations, into their breast pockets with a roughly fixed direction.
They also attached small 2 accelerometer devices on their right wrists and the
back waists. Moreover, each of them attached a semi-passive RFID tag in the
breast pocket to recognize entrees and exists from the patientsf rooms.

We also asked to 70 hospitalized patients who have been applied PCI (Per-
cutaneous Coronary Intervention) or CABG (Coronary Artery Bypass Graft),
and have consented to the experiment, to provide vital sensor data such as mon-
itoring cardiogram, bed sensor to measure heart rate and breath, accelerometer,
environmental sensors, and also medical information which were recorded in the
electronic clinical pathways and indirectly in patients’ sensor data.

In this paper, we show two approaches for capturing nursing interactions: 1)
finding nursing intervals from mobile sensors with accelerometers and audio on
nurses, and 2) recognizing nurses’ entrance to a patient’s room from in-room
sensors of bed, loudness, and illuminance sensors. For 1), we firstly detect the
nurses’ entrance to the patient’s room by walking detection from accelerometers
and noise level on mobile sensors, and detect the interval of interaction between
nurses and the patient. For 2), we recognize the nurse’s entrance to the patient’s
room with in-room sensors, using separate algorithms between day and night.

Although this is the first step to analyze and mine the nursing interactions
leading to clinical pathways, it could be an alternative to install costly RFID
readers to all rooms, and could be an important baseline technique to find valu-
able intervals from long and big data of sensors.

2 Background

In our one-year trial in a cardiovascular center in a hospital, we have collected
large-scale mobile sensor data from nurses and patients, along with the medical
records of the patients[1](See Fig.1). We asked nurses to bring mobile devices
(iPod touches), which records audio and accelerations, into their breast pockets
with a roughly fixed direction. They also attached small 2 accelerometer devices
on their right wrists and the back waists. Moreover, each of them attached a
semi-passive RFID tag in the breast pocket to recognize entrees and exists from
the patients’ rooms. To realize them, RFID readers are installed on the entrance
of each of the patients’ rooms. As a result, we have collected total 7,400 hours
of real nursing activities and 4,600 hours of RFID data.

We also asked 70 hospitalized patients who have been applied PCI (Percuta-
neous Coronary Intervention) or CABG (Coronary Artery Bypass Graft), and
have consented to the experiment, to provide vital sensor data such as monitor-
ing cardiogram, bed sensor to measure heart-rate/breath/body-movement, ac-
celerometer, in-room sensors, and also medical information which were recorded
in the electronic clinical pathways and indirectly in patients’ sensor data.

We used a bed sensor system in which a thin, air-sealed cushion is placed under
the bed mattress of the patient[3]. The system measures heartbeat, respiration
and body movement of the patient non-invasively by detecting the changes of
air pressure of the cushion caused by their vital signs. Finally, we have collected
total 2,500 hours of bed sensors.
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iPod touch
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I Loudness

Illuminance
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Q
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RFID reader at each }

room entrance
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Fig. 1. Illustration of sensor installation

We also installed three in-room data loggers at the patients’ room, and
recorded four types of data: temperature/humidity, illuminance and loudness.
Temperature and humidity are recorded every 5 seconds and the others are
recorded every second. As a result, we have collected 5,600 hours of in-room
sensors’ data. ,

In the experiment, we have a requirement to know the nursing activity interval
to know what kind of care are done to each patient. We can focus on the intervals
when the nurses are in the patients’ rooms, so the RFID system is thought to
be useful. However, RFID system is not always available, since the readers and
antennas should be placed many places, such as every entrance of the patients’
rooms. Therefore, it is welcomed if we can know when nurses stayed in patient
rooms without using RFID, but with mobile sensors or other in-room sensors.

3 Related Work

In the literature, some work utilizes accelerometer and audio data to recognize
human context. Lukowicz et al.[5] recognizes activities in a wood shop using body-
worn multiple microphones and accelerometers. Lester et al.[6] shows the perfor-
mance of activity recognition for 8 activity classes using accelerometers, audio,
and barometric pressure sensor in a single device. Choudhury et al.[7] developed
to implement them on a mobile embedded system. In the device, audio is down-
sampled as not to be able for humans to harm privacy of the owner.
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One of the differences of our work from above is that these work assume
simple activity classes to recognize such as, "walk”, "stair up”, but our research
alms at recognizing more complex and more number of nursing interactions.
For complex and more number of interactions, the recognition accuracy will
be worse. Therefore, we need more effort to refine larger-scale dataset as well
as sophisticated machine learning that can be used in higher dimensions with
larger-scale training data.

4 Nursing Interval Detection from Nurses’ Mobile
Sensors

In this section, we describe the method to find the interval which corresponds
to nursing activities, introduced in the workshop paper[2]. This method uses
three-axis acceleration data and audio data that are collected by the devices
attached to the breast pockets. Upon the collected activity data, we use two
characteristics in order to efficiently locate the intervals where nurses performed
medical activities.

One is the characteristic that a nurse certainly speaks to a patient when s/he
performs medical practice to a patient. Nurses always talk to the patients what
to do for medical practice. Therefore, if we can find an interval where nurses are
talking, we can guess that the interval of medical activities is being performed.

The other is that a nurse walks for a specific while when s/he moves into a
patient 's room. If we can detect the walking of nurses to move into the patient’s
room from 3-axis accelerometer, we can segment the time to either of being inside
or outside the room. In addition, we can estimate if s/he is in the patient’s room
by examining the noise level from the audio data after a walking period.

In order to utilize the above characteristics, we adopt mobile sensors which
record three-axis acceleration and audio data. With the data collected by the de-
vices, we apply walking detection method for the accelerometer, speech interval
estimation for audio data, and location estimation for the environmental noise
level of the audio data. We can find the duration of walk from three-axis accel-
eration data by walking detection, location estimation from the environmental
noise level of the audio data after walking periods, and the durations where a
nurse talks from audio data by speech interval estimation.

Walking Detection. In order to detect the walk of nurses, we recognize the
walk of nurses using the technology of activity recognition. We calculate the
feature vectors to train an activity recognition model from the three-axis accel-
eration data. Feature vectors are calculated with the time window of 2 seconds
being shifted by 0.5 seconds. A feature vector consists of the variance and the
entropy of the intensity: the square root of the sum of squares of the three-axis
values of acceleration data. The recognition model is trained by Support Vector
Machine (SVM) with linear kernel. To smooth continuous walking, the duration
of less than 15 seconds between detected walks are also assumed as walk.
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Location Estimation. We can estimate if s/he is in the patient’s room by the
environmental noise level from the audio data. If the audio is recorded in 16-
quantization bit rate, the amplitude bandwidth is from -32768 to +32767. From
our experience, environmental noises of our target were found to be from -1500
to 1500. Therefore, at first, we remove the intervals of amplitudes outer than
-1500 from 1500, which contains human voices and metal sounds. After that, we
estimate the location by the median amplitude value of 30 seconds after the end
of walking period.

Speech Interval Estimation. To find the nurses’ speech interval, we estimate
the speech interval by seeking fundamental frequency of the audio data. The fun-
damental frequency is one of the speech features used in speech recognition, and
it represents the height of the voice. Calculation of the fundamental frequency is
performed by the cepstrum method[4]. Although the cepstrum technique is weak
for noises, there are advantages that the fundamental frequency can be correctly
acquirable in any languages.

In this study, using the Cepstrum method, fundamental frequency is calcu-
lated with the time window of 0.04 seconds being shifted by 0.02 seconds. By
obtaining the time window with high peak quefrency, we can obtain the spoken
interval.

4.1 Experiments

We have conducted the experiments using real nursing data to evaluate the
proposed method. The used data is activity data of one day of a nurse.

Walking Detection In order to evaluate the walking detection, each of the
training and test data with annotation for 300 seconds were prepared from a
day of a nurse. Two kinds of annotations, ”walk” and ”others”, are attached to
the data. The data contained 100 seconds of ”walk”, and 200 seconds of ”others”.
Recognition model was created by the modelusing the training data, and was
evaluated by the test data. Tab. 1 shows the recognition result before smoothing.
From the table, the whole recognition rate is 93.6%.

Table 1. Confusion matrix of the number of time windows for walking detection

— Ground trutthalk Others
Walk 52 18
Others 19 492

4.2 Location Estimation

We picked up 43 data points from 4 audio data, and investigated the environ-
mental noise level, which is put together in Fig. 2. In Fig. 2, the left box is the
distribution of the median environmental noises in the patient’s room, and the
right is in other places. Since the inter-quartile ranges (IQRs) do not overlap
each other, we can estimate that we can differentiate the location at more than
75%. If we take priority on the recall rate, we can achieve at least 87.5%.
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| T
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Fig. 2. Distribution of median environmental noise levels of 43 data points of 30 seconds
after a walking period. The left is in the patient’s room and the right is in other places.

Speech Interval Estimation. We evaluated the speech interval estimationus-
ing audio data of 300 seconds. The audio data was prepared from a day of a
nurse.

Table 2. Confusion matrix of the durations for speech interval detection.

— Ground truth| Nurse Patient Noise Silence
Speech 27.62[s] 7.65[s] 0.14[s] 0.76]s]
None-speech 0.83[s]  2.6[s] 13.72[s] 246.68]s]
Total 28.45[s] 10.25[s] 13.86[s] 247.44]s]

The confusion matrix which counts of the results are shown in Tab. 2. For
comparison, the ground truths are classified as the nurses’ speeches, patients’
speeches, noises, and the silent intervals, whereas the proposed method only
estimates speech or non-speech. The silent intervals of the ground truths were
determined by whether the amplitude is greater than a specific threshold value,
which resulted in that negligible small voices were included in the silence class.
From the table, the method recognizes the speech intervals with the accuracy of
98.6%. However, the recognized speech includes patients’ speeches. If we evaluate
the rate of recognizing nurses’ speeches only, it becomes 96.9%, which is still a
higher recognition rate.

Integration. We integrated the three method described above, and applied to
300 seconds which are obtained from a day of a nurse.

Fig. 3 shows the results of the speech interval estimation and walking detec-
tion. The above figure of the figure is the result of walking detection, in which
three walking periods are detected. After applying location estimation method
to the three intervals of 30 seconds after walking, only the first one of after 65.5
second was estimated to be in a patient’s room. Then, applying speech interval
estimation to that interval, the total time of speech interval were found to be 24
seconds.
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Fig. 3. Result of integrated process. The upper is the result of walking detection, and
the lower is the speech interval estimation. After applying 3 parts of 30 seconds after
walking period detected by the upper part, the first 30 seconds were detected as in the
patient’s room, which could be applied by the speech interval estimation of the lower
part.

5 Nursing Interval Detection from In-Room Sensors

In this section, we try to analyze the in-room sensor data, and detect the in-
tervals when a nurse enters the room only from these in-room sensors. In the
previous study|[1], we found that the candidate sensors which have correlations
with nursing intervals are 1) bed sensors, 2) loudness sensors, and 3) illuminome-
ter. Therefore, we focus on these sensors in this section.

In this section, we target on recognizing nurse’s entrance to a patient’s room
and intervals where the nurses are absent from the room. This is the first step
of the nursing interval detection from in-door sensors, and if it is accurate, we
can step further to add recognition of nurse exits, and apply for any time using
time window method.

5.1 Method

Dataset. To prepare the dataset for target classes for nurses’ entrance and
absence, we picked up 100 durations from each sensor data, in which

— (ENTER) 50 of them include the RFID event of a nurse’s entrance, and
— (ABSENT) the rest 50 are between the events of nurse’s exit and entrance,
which could be estimated that there are no nurses in the room.

Moreover, since we found that the sensor data behave differently between day
and night, each of the 50 durations are divided into:

— (day) 25 durations of between 8:00 and 18:00 of a day, and
— (night) 25 durations of between 18:00 of a day and 8:00 of the next day.
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