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Figure 1. Kaplan-Meier estimates of the time from disease onset to assignment of motor disability scores of 6. In sporadic cases, more
patients reached the score of six at an early stage; however, the difference was not significant. Approximately 30% of both f-HAM/TSP cases and
sporadic cases needed a wheelchair in daily life in 15 years after onset and approximately 50% of patients from both groups needed a wheelchair in
20 years after onset.

doi:10.1371/journal.pone.0086144.g001

than in male. There was no significant difference between women Discussion
and men in the age of onset (61.5 y.0.212.6 vs. 62.7 y.0.12.5), in

the incidence of rapid progression (26.3% vs. 32.3%) and in MDG We demonstrated that among 784 HAM/TSP patients, 40
score (5.4 vs. 5.0; mean). (5.1%) had family members with the disease. The lifetime risk of

developing HAM/TSP is 0.25% of HTLV-1 carriers in Japan

Table 1. Clinical features of f-HAM/TSP cases or sporadic cases of HAM/TSP.

f-HAM/TSP cases (40 cases) Sporadic cases {124 cases) p value p value’

Age

6+13.0 (23-79) 61.8+12.5 (15-83)

Duration of illnes:

(years) 14.3%11.4 (1-49)

Gait disturbance 50.0% 52.4% NS

Sensory disturbance 12.5% 14.5% NS

Rapid disease progression 4 cases (10.0%) 35 cases (28.2%) 0.019 0.069

Score more than 6 12 cases (30.0%) 38 cases (30.7%) NS

Data are presented as mean values * s.d., (range),
TAdjusted for age and sex.
doi:10.1371/journal.pone.0086144.t001
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Table 2. Laboratory findings of familial clusters or sporadic cases of HAM/TSP.

f-HAM/TSP cases (40cases)

20,787+31,004, N=37

Cerebrospinal fluid

Protein (mg/dl) 29994, N=22

HTLV-1 proviral loads
(Copies/10* PBMCs)

930+781, N=32

Sporadic cases (124 cases)

425+19.3, N=109

p value p value’

<0.001 0.007

968:+1,746, N=101 NS

* Particle Aggregation Method.

Data are presented as mean values = s.d., N=sample number,
TAdjusted for age and sex.
doi:10.1371/journal.pone.0086144.t002

[13]. Although clustering of familial adult T-cell lymphomas has
been reported [8,9], to our knowledge the prevalence of familial
clusters of HAM/TSP has not been described. A study in Peru
showed that 30% of HAM/TSP patients have family members
with paralytic neurological disorders, but the cause of paralysis was
not evaluated [14]. In the present study, we included {-HAM/TSP
diagnosed in medical institutions and excluded cases with a family
history of neurological disorders. Thus, the actual incidence rates
of FHAM/TSP may be higher than those reported here.
Interestingly, although HTLV-1 PVL has been associated with
the development and clinical progression of HAM/TSP [15-17],
there was no significant difference between f~HAM/TSP and
sporadic cases in the present study. Because previous studies
reported that HTLV-1 PVLs of asymptomatic carriers in relatives

of HAM/TSP patients were higher than those in non-HAM-
related asymptomatic carriers [6], relatives of HAM/TSP are
believed to be at a higher risk of developing HAM/TSP.
Interestingly, our data suggest that HAM/TSP patients aggregate
in families and factors other than HTLV-1 PVLs may contribute
to HAM/TSP.

Compared with sporadic HAM/TSP, the clinical characteristics
of fHAM/TSP have a younger age of onset and longer time
elapsed between onset and wheelchair use in daily life. Although
we were unable to identify the reason for earlier onset among f-
HAMY/TSP cases, one can speculate that mild symptoms, such as
urinary and sensory disturbances, may be identified earlier by
family members who are familiar with HAM/TSP symptoms.
However, the present data show no difference in initial symptoms

Cases
25
Red; case with rapid disease progression
Green; case with slow disease progression
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Figure 2. Age-specific proportions of rapid disease progression. The proportion of cases with rapid disease progression tended to increase

with the older age of onset.
doi:10.1371/journal.pone.0086144.g002
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Table 3. Clinical and laboratory findings of sporadic HAM/TSP with rapid/slow disease progression.

Type of disease progression

Rapid progression

Age of onset

Duration between onset and inability
to walk alone (years)

1.5£09, N=13

Titer in Serum 31,8941:36,845, N=34

Cerebrospinal fluid

Protein (mg/dl) 553+24.3, N=34

HTLV-1 proviral loads (Copies/10® PBMCs) 370+327, N=32

Slow progression p value

<0.001

144+10.4, N=25

30,608:35,965, N=75 NS

36.7£13.0, N=75

1,245+2,046, N=69 <0.001

* Particle Aggregation Method.
Data are presented as mean values * s.d., N=sample number.
doi:10.1371/journal.pone.0086144.t003

between FHAM/TSP and sporadic cases. In all cases, the age of
onset and initial symptoms of HAM/TSP were evaluated by the
neurologists during hospitalization. Because inflammatory pro-
cesses are less marked in FHAM/TSP cases, as indicated by
significantly lower protein levels in GSF, -HAM/TSP cases may
show slow progression of disease.

We need to discuss the possibility that the two groups compared
represent different mode of HTLV transmission, i.e. vertical vs.
sexual transmission. To clarify genetic backgrounds, sporadic
HAM/TSP with seropositive carrier family members may be a
more appropriate control, but are not available at present. The
incidence of female cases showing no significant differences
between f-HAM/TSP and sporadic cases, and between rapid
and slow disease progression, might suggest less possibility of
sporadic cases due to sexual transmission.

Although the subgroup of patients with rapid progression has
not been clearly defined, previous studies suggest that rapid
progression occurs in 10%-30% of all patients with HAM/TSP
[12,14,16], and is associated with an older age of onset [14-16]. In
the present study, the age of onset in patients with rapid
progression was significantly older than that in patients with slow
progression between f-HAM/TSP and sporadic cases, and the
proportion of patients with rapid progression increased with the
older age of onset (Figure 2). Among sporadic cases, cell numbers
and protein levels in GSF were significantly higher in patients with
rapid progression, suggesting that inflammation is more active in
the spinal cords of patients with rapid progression and that
cytotoxic T-lymphocyte (CTL) immune responses may be more
intensive. Therefore, lower PVLs in PBMCs of patients with rapid
disease progression may be attributed to the strong killing ability of
the CTL. However, PVLs were higher in PBMCs of patients with
HAM/TSP than in asymptomatic carriers [6]. In addition, the
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Abstract

Objective: To investigate the feasibility of rehabilitation training with a new wearable robot.

Design: Before-after clinical intervention.

Setting: University hospital and private rehabilitation facilities.

Participants: A convenience sample of patients (N =38) with limited mobility. The underlying diseases were stroke (n= 12), spinal cord injuries
(n=238), musculoskeletal diseases (n=4), and other diseases (n=14).

Interventions: The patients received 90-minute training with a wearable robot twice per week for 8 weeks (16 sessions).

Main Outcome Measures: Functional ambulation was assessed with the 10-m walk test (10MWT) and the Timed Up & Go (TUG) test, and
balance ability was assessed with the Berg Balance Scale (BBS). Both assessments were performed at baseline and after rehabilitation.
Results: Thirty-two patients completed 16 sessions of training with the wearable robot. The results of the 10MWT included significant
improvements in gait speed, number of steps, and cadence. Although improvements were observed, as measured with the TUG test and BBS, the
results were not statistically significant. No serious adverse events were observed during the training.

Conclusions: Eight weeks of rehabilitative training with the wearable robot (16 sessions of 90min) could be performed safely and effectively,

even many years after the subjects received their diagnosis.
Archives of Physical Medicine and Rehabilitation 2013;94:1080-7

© 2013 by the American Congress of Rehabilitation Medicine

Rehabilitation robotics emerged in the 1980s with the aim of using
robotic technology to assist people with movement dysfumction.1
Robotic devices have recently been developed for use in clinical
settings. Tefertiller et al® reviewed 30 articles (14 randomized
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controlled trials, 16 nonrandomized controlled trials) that exam-
ined the effects of locomotor training with robotic assistance in
patients after stroke, spinal cord injury (SCI), multiple sclerosis,
traumatic brain injury, and Parkinson’s disease. The review
supports the conclusion that locomotor training with robotic
assistance is beneficial for improving walking function in indi-
viduals after stroke and SCI? The development of main gait
training machines followed. These machines either involve an
exoskeleton robotic device (eg, Lokomat, LOPES exoskeleton
robot)3’4 or a robotic device with foot-driven plates (eg, Gait
Trainer GT 1, Haptic Walker).5 © The exoskeleton robotic device is
equipped with programmable drives or passive elements that flex
the knees and hips during the swing phase, whereas with the other
type of robotic device, the feet are placed on footplates, whose
trajectories simulate the stance and swing phases. Other than
robotic gait training and conventional therapy, another treatment

0003-9993/13/$36 - see front matter © 2013 by the American Congress of Rehabilitation Medicine
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approach involves treadmill training with partial body weight
support.” However, this approach requires considerable involve-
ment of a physical therapist, and generally, 3 therapists are
required to induce movement of the paretic leg during the swing
phase and to shift the patient’s weight onto the stance limb.

The potentially positive common benefits of robotic gait
training are that it involves repeatedly undergoing sufficient and
accurate training for a prolonged period. Lokomat is the first
robotic-driven gait orthosis with electromechanical drives to assist
the walking movements of gait-impaired patients on a treadmill by
supporting the body weight.®® Husemann et al'® compared
a Lokomat group that received 30 minutes of robotic training with
a control group that received 30 minutes of conventional physio-
therapy. After 4 weeks of therapy, although there was no signifi-
cant difference in walking ability between the groups, the walking
ability in both groups as expressed by functional ambulation
classification was significantly improved. The researchers reported
that the Lokomat group demonstrated an advantage for robotic
training over conventional physiotherapy in the improvement of
gait abnormality and body tissue composition.'® However, in
a recent randomized controlled study'' that compared robot-
assisted locomotor training with therapist-assisted locomotor
training in chronic stroke patients, the results indicated that
greater improvements in speed and single limb stance time on the
impaired leg were observed in subjects who received therapist-
assisted locomotor training. Thus, the usefulness of robot-
assisted rehabilitation is controversial.

The robot suit hybrid assistive limb (HAL)?'>% is a new
wearable robot that has a hybrid control system composed of
2 subsystems: cybernic voluntary control (CVC) and cybernic
autonomous control (CAC) (fig 1). The HAL suit has power units
and force-pressure sensors in the shoes. The power units consist of
angular sensors and actuators on bilateral hip and knee joints.
Muscle action potentials are detected through the electrodes on the
anterior and posterior surface of the wearer’s thigh. These various
biologic signals are processed by a computer. The HAL suit can
support the wearer’s motion by adjusting the level and timing of
the assistive torque provided to each joint according to the surface
muscle action potential as well as the pressure sensors. The HAL
suit can enhance the wearer’s motion through the wearer’s muscle
action potential; thus, the HAL suit can appear as an actual
motion. Therefore, if the wearer’s muscle action potential varies,
the wearer’s motion varies, too. The HAL training, using muscle
activity, has the potential to intensify the feedback by inducing an
appropriate motion more strongly than standard robot training.
Thus, after HAL training, patients with limited mobility will
improve their walking abilities (gait speed, number of steps,
cadence, or ability to transfer).

Few studies have been conducted to clarify the feasibility of
rehabilitation with HAL. Only 1 preliminary study'® has reported
on the short-term effects of HAL on the walking pattern of stroke

List of abbreviations:

BBS Berg Balance Scale
CAC cybernic autonomous control
CVC cybernic voluntary control
HAL hybrid assistive limb
MADS musculoskeletal ambulation disability symptom complex
SCI spinal cord injury
10MWT 10-m walk test
TUG Timed Up & Go

www.archives-pmr.org

patients. The purpose of the present study was to investigate the
feasibility of 16-session (8-wk) HAL rehabilitation training for
patients with limited mobility.

Methods

Study design

A quasiexperimental study was used, with measurements before
and after the clinical intervention. The target population included
patients with limitations in their walking (no matter the diagnosis,
the time since the diagnosis, and the patient’s age at diagnosis). The
protocol of this study was approved by the Institutional Review
Board of the University of Tsukuba Hospital and was registered
with the UMIN Clinical Trials Registry. The clinical intervention
was conducted at the University of Tsukuba Hospital and Cyber-
dyne, Inc, in Japan between January 2010 and March 2012. The
patients included in this study were volunteers recruited through
local newspaper advertisements or outpatients at the University of
Tsukuba Hospital. They were informed about the aim and design of
this study, and they subsequently provided written, informed
consent. Informed consent was also obtained from the patient’s
guardian if the patient was younger than 20 years.

The inclusion criteria were (1) musculoskeletal ambulation
disability symptom complex (MADS) or the underlying disorders
of MADS, which is a condition newly defined in 2006 by Japanese
medical societies'’; (2) requiring physical assistance or assistive
devices in at least 1 of the following daily activities: standing up,
sitting down, and walking; (3) ability to understand an explanation
of the study and to express consent or refusal; (4) body size that
can fit in the robotic suit HAL (height range, 145—180cm;
maximal body weight, 80kg); and (5) ability to undergo usual
physical and occupational therapies. The exclusion criteria were
the following: (1) inadequately controlled cardiovascular disor-
ders; (2) inadequately controlled respiratory disorders; (3) intel-
lectual impairments that limit the ability to understand
instructions; (4) moderate to severe articular disorders, including
contracture in the lower extremities; (5) moderate to severe
involuntary movements, ataxia, or impairments of postural reflex
in the trunk or the lower extremities; and (6) severe spasticity in
the lower extremities.

Participants

Thirty-eight patients (25 men, 13 women) were enrolled in this
study (24 outpatients, 14 volunteers through advertisements). The
mean age == SD of the 38 patients was 53.2£17.8 years (range,
18—81y). Table 1 summarizes their clinical characteristics. Their
underlying diseases were stroke (10 men, 2 women), SCI (6 men,
2 women), musculoskeletal diseases (2 men, 2 women), and other
diseases (Parkinson’s disease, gonadotropin-dependent myopathy,
limb-girdle muscular dystrophy, inclusion body myositis, trau-
matic brain injury, disuse syndrome secondary to malignant
lymphoma, cerebral palsy, sequelae of poliomyelitis, and hypoxic-
ischemic encephalopathy; 7 men, 7 women). Twenty patients were
able to ambulate independently without any help (n=9) or with
several assistive devices (T-cane, bilateral crutches, or lateral
crutch) (n=11). Eleven patients were able to ambulate with
several assistive devices and under supervision. Three patients
required human assistance to ambulate at least 10m (cases 33, 34,
38), and the remaining 4 patients were unable to ambulate even
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The robot suit HAL.

Fig 1

with assistive devices and human assistance (cases 8, 15, 17, 27).
All the patients with stroke and SCI were in chronic stages.

Training program

HAL training was administered twice per week for 8 weeks
(16 sessions). The 90-minute training sessions consisted of
single-leg motion, a standing and sitting exercise, and walking on
the ground with HAL. For safety reasons, a walking device (All-
in-One Walking Trainer®) with a harness was used. Treadmill
training with mild body-weight support (Unweighing System®)
was also used for some patients. The HAL suit has a hybrid
control system comprising the CVC and CAC. The CVC mode of
the HAL suit can support the patient’s voluntary motion according
to the voluntary muscle activity and the assistive torque provided
to each joint. The CAC mode provides physical support autono-
mously, based on output from force-pressure sensors in the shoes.
This study mainly used the CVC mode, which allows the operator
to adjust the degree of physical support to the patient’s comfort
and gradually reduce support as training progresses.

Outcome measures

The feasibility of rehabilitation with HAL was assessed by the
number of completers and the amount of time or the number of
therapists needed to implement training. Patients were asked to
report adverse events during the training period.

The primary outcomes were functional ambulation and balance
ability. Functional ambulation was assessed with a 10-m walk test
(10OMWT) and a Timed Up & Go (TUG) test. In the 10MWT,
patients were instructed to walk without wearing HAL on a flat
surface at their self-selected, comfortable pace. Patients began to
walk before they reached the starting line of the 10-m distance so
that they could accelerate and attain a stable speed before the test.
To calculate gait speed (m/s) as a primary outcome, the 10-m
walking time was measured using a handheld stopwatch. In
addition, the number of steps between the start and finish line was
counted, and patient cadence was calculated from the walking
time and number of steps. Patients were allowed to use their
assistive device or lower limb orthosis, or both, as necessary. Each
patient used the same assistive device or orthosis, or both, during

the pre- and postintervention measurements. Therapists closely
attended the patients during the 10MWT but did not provide
physical assistance. For each measurement, the 10MWT was
performed twice. The faster time of 2 trials was selected for
analysis. In the TUG test, the following actions were timed:
standing up from a standard-height chair, walking 3m, returning to
the chair, and sitting down without HAL. Two trials (each turning
clockwise and counterclockwise) were carried out for each
measurement. Balance ability was assessed with the Berg Balance
Scale (BBS), consisting of 14 tasks, as detailed by Berg et al.'®
Each task was scored on a scale ranging from 0 to 4 points
(0 indicates inability to complete), and the total score was used as
the index of balance ability. All primary outcomes were assessed
at baseline and after completion of the 16 training sessions.

Statistical analysis

All parametric data are expressed as means with SDs. Paired ¢
tests were used to evaluate differences between the baseline
measurements and outcomes after the 16 sessions. Unpaired ¢ tests
were used to evaluate the differences in characteristics of those
who completed 16 sessions and those who did not. An effect-size
calculation (Cohen d) was used to assess the effect of the training.
Pearson correlation coefficients were used to assess the relation-
ship among outcome measures. Data were analyzed using IBM
SPSS Statistics 18 software,d with the alphas level set at 5%.

Results

A typical 90-minute HAL training session proceeded as follows:
assessment of blood pressure, resting heart rate, and walking
pattern (10min); preparation of electrodes and putting on the HAL
suit (5min); computer setup (Smin); HAL training (60min,
including resting time during computer operation); taking off
the HAL suit and the electrodes (5min); and reassessment of
walking pattern (Smin). The net walking time was approximately
20 minutes. Typically, 2 therapists implemented the training: one
supported the patient and the other operated the computer. All
therapists and related staff had participated in a 3-hour training
workshop conducted by the manufacturer to learn how to operate
the HAL system.

Of the 38 patients (25 men, 13 women), 32 (21 men, 11 women)
completed all 16 training sessions. The mean age =+ SD of the
32 patients was 53.24+17.3 years (range, 18—8ly). There was
no statistically significant difference in age between those who
completed training and those who did not (54.0£19.8y). It took
10.0£3.1 weeks (range, 8—21wk) to complete 16 sessions. Of
the 6 patients who did not complete the 16 sessions, 2 (cases
15, 21) dropped out for medical reasons, and 4 (cases 1, 2, 29,
35) dropped out for personal reasons (difficulty visiting the
hospital). One medical reason for dropout was low back pain
that developed during the first training session (case 21); the
patient withdrew consent at the third session. The other medical
reason for dropout was a relapse (after the second session) of
neuropathic pain caused by SCI (case 15); the patient withdrew
consent at the fifth session. There were no serious training-
related adverse events. One stroke patient (case 7) had knee
pain (patellar tendinitis) at home after the 15th session but was
able to complete the 16th session after 1 month of rest. Another
patient with inclusion body myositis (case 31) developed knee
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mbulation and balance ability

pain at home after an early session but was able to complete
16 sessions.

Outcome measures

Functional ambulation was not assessed for 5 patients at baseline
because 3 were unable to ambulate with any assistance (cases 8,
17, 27), and the other 2 patients needed considerable human
assistance to ambulate (cases 34, 38). The other 27 patients had
significant improvements (P<.05) in gait speed, number of steps,
and cadence after the 16-session HAL training (1I0MWT, table 2).
Improvements in gait speed, number of steps, and cadence are
defined as an increase, a decrease, and an increase in the
respective parameters. The mean £ SD improvements and effect
sizes (Cohen d) in gait speed, number of steps, and cadence
were .09+.11m/s (d=.82), 3.0+4.9 steps (d=.61), and 6.8+7.1
steps/min (d=.96), respectively. Improvements in gait speed,
steps, and cadence were observed in 25, 18, and 25 patients,
respectively (figs 2—4). Worsened gait speed and cadence were
observed in 2 patients (cases 28, 30). In regards to the number of
steps, we observed no change in 8 patients (cases 3, 5, 16, 25, 28,
30, 33, 37) and increased steps in 1 (case 20). Correlation coef-
ficients for gait speed with number of steps and with cadence were
r=.30 (not significant) and r=.73 (P<.01), respectively. The
effect sizes for gait speed in patients with stroke (n=9), SCI
(n=06), musculoskeletal disease (n=3), and patients with other
diseases (n=9) were 1.41, .78, 2.43, and .63, respectively. The
results of the TUG test (n=26; case 10 was unable to perform the
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Fig 2 Change in 10MWT gait speed for 27 patients after HAL
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test) and the BBS (n=32) indicated improvement after the 16
training sessions, but these improvements were not statistically
significant. The mean £ SD decrease (Cohen d) in the TUG test
was 6.4+16.4 seconds (d=.39). Twenty-one of 26 patients were
faster after training, and 5 patients were slower (cases 5, 13, 30,
31, 36) (fig 5). The mean = SD increase (Cohen d) in BBS was
1.94£5.5 (d=.35). Nineteen of 32 patients had higher scores
compared with baseline; no change was observed in 6 (cases 12,
17, 23, 27, 36, 37), and 7 had lower scores (cases 11, 16, 26, 30,
31, 32, 34) (fig 6).

Discussion

We investigated the feasibility of rehabilitation using a robot suit
HAL. We demonstrated that HAL rehabilitation could be imple-
mented safely and effectively. Although a few patients developed
lumbar or knee pain during the training, no serious training-related
adverse events occurred. Significant improvements in gait speed,
number of steps, and cadence were observed, as assessed by the
10MWT. Improved TUG test and BBS results were also observed,
but because of the small sample size of this pilot study, these
improvements were not statistically significant. Overall, our
results suggest that HAL rehabilitation has the potential to
improve ambulation in patients with limited mobility.

Two patients (cases 15, 21) dropped out for medical reasons.
One developed lumbar pain (case 21), and 1 had a relapse of
neuropathic pain caused by SCI (case 15). Although it is unclear
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Fig3  Change in number of steps during 10MWT for 27 patients after

HAL training. Abbreviation: OA, osteoarthritis.
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Abbreviation: OA, osteoarthritis.

whether there was a causal relationship between HAL training and
the pain that developed, the lumbar pain in case 21 had been
persistent before the HAL training and even after the training
ended, and the neuropathic pain in case 15 followed a previous
pattern of symptom flares associated with seasonal change.
Therefore, it is likely that HAL training did not directly cause the
pain that developed in these 2 cases. Two other patients complained
of knee pain during the training period, but this pain was not severe,
and the patients were able to complete the training. Although, once
again, direct causality is unclear, safe implementation of HAL
rehabilitation requires adequate caution on the part of therapists and
self-awareness on the part of patients who have lumbar and knee
pain. Regarding feasibility, approximately 10 minutes was required
for 2 to 3 therapists to put electrodes and the HAL suit on or take
them off the patient. This procedure is a slight inconvenience to
address but not a major obstacle to HAL rehabilitation.
Significant improvements in functional ambulation were
observed, and the effect sizes (Cohen d) for gait speed, number
of steps, and cadence were .82, .61, and .96, respectively. The
correlation coefficient for gait speed with cadence was higher than
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Fig 5 Change in TUG test results for 26 patients after HAL training.
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Abbreviation: 0A, osteoarthritis.

that of gait speed with steps (r=.73 vs r=.30). Therefore, the
improvement in gait speed with HAL training was mainly brought
about by improvement in cadence. That is, HAL training improved
stride frequency more than stride length. This finding is in agreement
with that of a previous robotic training study.'® The effect sizes for
the TUG test and BBS were smaller than the effect sizes for the
10MWT. This result seems to occur because the TUG test and BBS
involve complicated motions such as moving from sitting to
standing, walking and returning, reaching forward, and alternating
feet on each step. The effect sizes for gait speed in 9 patients with
stroke and in 6 patients with SCI were large (1.41 and .78, respec-
tively). Therefore, training effectiveness in patients with stroke and
those with SCI can be expected. The effect size in 3 patients with
musculoskeletal diseases was also large (2.43), but the number of
patients was small. Therefore, further studies are needed. In this
study, we recruited patients with a wide range of stroke and SCI
severities. Future studies should examine the influence of the
severity of stroke and SCI on the effectiveness of HAL rehabilitation.

Many recent studies have reported the efficacy of robot-
assisted rehabilitation. It is very difficult to directly compare
these studies and our study, because of differences in diseases,
severity and duration of the disorder, robotic features, methods of
intervention, and outcome measures.”’ Wirz et al*' reported that
after locomotor training with Lokomat, the 1I0MWT gait speed of
20 patients with chronic incomplete SCI increased by .114.10m/s
(d=1.10). The number of patients with SCI in our study was
limited to 6, but our results also indicate the efficacy of HAL
rehabilitation for these patients (d=.78). Hornby et al'’ reported
that after robotic-assisted locomotor training, the gait speed in
chronic stroke patients increased by .07+.07m/s (d=1.0). Our
results also indicate the efficacy of HAL rehabilitation for
9 patients with chronic stroke (d=1.41). We conjectured that the
mechanism of this recovery of functional ambulation was due to
changes in plasticity in the spinal cord and supraspinal centers.
Appropriate sensory inputs, such as maximum weight loading,
facilitating proper trunk posture, and hip extension, are essential
for maximizing functional recovery.”> Our experience with HAL
indicates that the HAL-induced motion might evoke the sensory
input, which has a favorable feedback effect on the central nervous
system for a recovery of locomotor function. In addition, even if
a patient’s condition were too severe for medical therapists to
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provide adequate rehabilitation training, HAL might still make
adequate training possible. HAL is a robotic device with potential
rehabilitation applications that are dependent on the physical
support it can provide.

Study limitations

This study was not a randomized controlled trial and could not
compare the efficacy of HAL training with conventional rehabilita-
tion. Second, long-term efficacy was not assessed after HAL
training. Third, this study could not exclude observer bias and subject
bias because the same staff implemented assessment and training,
and approximately half of the patients were recruited through local
newspaper advertisements. Finally, the statistical power was low
because of the small number of patients with each disease.

Conclusions

This quasiexperimental study revealed the feasibility of HAL
training for rehabilitating patients with limited mobility. This
study has shown that it is possible to manage 8 weeks of reha-
bilitation with HAL training (16 sessions of 90min) safely and
effectively, even with persons who received their diagnosis many
years ago. After HAL training, significant improvements in gait
speed, number of steps, and cadence were observed. Although
improvements were observed in the TUG test and BBS, they were
not statistically significant. There were no serious adverse events.
Further studies are needed to compare the effectiveness of HAL
training and conventional rehabilitation.
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Glossary

Cytotoxic T cell A cytotoxic T cell belongs to a subgroup of
T lymphocytes with CD8 receptor that are antigen- specific
and capable of inducing the death of virus-infected
somatic or tumor cells.

Gliosis Gliosis is the process of scarring in the central
nervous system, caused by a proliferation of astrocytes.
Oligoclonal band Oligoclonal bands are bands of
immunoglobulins that are seen when a blood serum

(or plasma) or cerebrospinal fluid (CSF) is analyzed by
protein electrophoresis. The presence of oligoclonal bands

Human T-lymphotropic virus type-1 (HTLV-1) belongs to the
Deltaretrovirus genus of the Orthoretrovirinae subfamily and
infects 10-20 million people worldwide. HTLV-1 can be trans-
mitted through sexual contact, intravenous drug use, and
breastfeeding from mother to child. The infection is endemic
in southwest Japan, the Caribbean, sub-Saharan Africa, South
America, with smaller foci in Southeast Asia, South Africa, and
northeastern Iran. HTLV-1 was initially isolated in 1980 from
two T-cell lymphoblastoid cell lines and the blood of a patient
originally thought to have a cutaneous T-cell lymphoma. It was
the first human retrovirus ever associated with a human cancer.
Three years before the isolation of HTLV-1, a Japanese group
reported adult T-cell leukemia (ATL), a rare form of leukemia
endemic to southwest Japan, as a distinct clinical entity. In
1981, the same group demonstrated that ATL was caused by a
new human retrovirus originally termed ‘ATLV'. Later, ATLV
and HTLV have been shown to be identical, and a single
name HTLV-1 has been adopted. In the mid-1980s, epidemio-
logical data linked HTLV-1 infection with a chronic progressive
neurological disease, which was termed ‘tropical spastic para-
paresis (TSP)" in the Caribbean and 'HTLV-1 associated
myelopathy (HAM)' in Japan. HTLV-1-positive TSP and HAM
were subsequently found to be clinically and pathologically
identical and the disease was given a single designation as
HAM/TSP. HTLV-1 can cause other chronic inflammatory
diseases such as uveitis, arthropathy, pulmonary lymphocytic
alveolitis, polymyositis, Sjégren syndrome, and infective
dermatitis. Only approximately 2-3% of infected persons
develop ATL and another 0.25-4% develop chronic inflamma-
tory diseases, while the majority of infected individuals remain
lifelong asymptomatic carriers (ACs). Thus, the viral, host, and
environmental risk factors, as well as the host immune
response against HTLV-1 infection, appear to regulate in the
development of HTLV-1-associated diseases. For over two
decades, the investigation of HTLV-1-mediated pathogenesis
has focused on Tax, an HTLV-1-encoded viral oncoprotein.
Tax activates many cellular genes by binding to groups of
transcription factors and coactivators and is necessary and suf-
ficient for cellular transformation. However, recent reports have

. This article is a revision of the previous edition article by MJS Dyer, volume 1, p 979, © 2001, Elsevier Inc.

in CSF but not in blood serum (or plasma) means the
production of immunoglobulins in central nervous
system, that is, inflammation in the central nervous
system.

Provirus A provirus is the form of the virus which is
capable of being integrated into the chromosome of the
host cell.

Spastic paraparesis Mild or moderate loss of motor
function accompanied by spasticity in the extremities
mainly caused by central nervous system (brain and spinal
cord) diseases.

identified another regulatory protein, HTLV-1 basic leucine
zipper factor (HBZ), that plays a critical role in the develop-
ment of ATL and HAM/TSP.

HTLV-1-Associated Diseases
Adult T-cell leukemia

ATL is a fatal malignancy of mature CD4+ T cells. It arises in
only a small proportion of HTLV-1-infected people (1-5% of
infected individuals) after long latency periods following pri-
mary infection. ATL shows diverse clinical features, but can be
divided into four clinical subtypes: smoldering, chronic,
lymphoma, and acute. Each subtype is directly correlated with
the prognosis of patients: the smoldering and chronic types are
indolent, while the acute and lymphoma types are aggressive
and characterized by resistance to chemotherapy and poor
prognosis. Development of ATL is characterized by infiltration
of various tissues with circulating ATL cells, called ‘flower cells’,
which have conspicuous lobulated nuclei. These cells cause
further symptoms including lymphadenopathy, lytic bone
lesions, skin involvement, hepatosplenomegaly, and hypercal-
cemia. Laboratory findings of ATL patients typically reveal a
marked leukocytosis, hypercalcemia, high serum levels of
lactate dehydrogenase (LDH), and a soluble form of
interleukin-2 receptor (IL-2R). In cohort studies of HTLV-1
carriers, the risk factors for ATL appeared to include vertical
infection (mother to child transmission), male gender, older
age, and increasing numbers of abnormal lymphocytes. Since
ATL occurs mainly in vertically infected individuals, but not in
those who become infected later in life, the impairment of
HTLV-1-specific T-cell responses caused by vertical HTLV-1
infection has been suggested as a possible cause of disease
development. The HTLV-1-specific cytotoxic T-cell (CTL)
responses from ATL patients are significantly lower than that
of HAM/TSP patients. However, insufficient HTLV-1-specific
T-cell responses might also occur during and after the onset of
ATL. Although ATL has a poor prognosis, recent advances in its
treatment have led to significant gains in response rates and
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