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Anti-tumor effects by bovine lactoferrin on lymphoma cells expressing HTLV-1 tax
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LYMPHOID NEOPLASIA

An animal model of adult T-cell leukemia: humanized mice with
HTLV-1-specific immunity

Kenta Tezuka, Runze Xun, Mami Tei, Takaharu Ueno, Masakazu Tanaka, Norihiro Takenouchi, and Jun-ichi Fujisawa

Department of Microbiology, Kansai Medical University, Hirakata, Osaka, Japan

Human T-cell leukemia virus type 1 (HTLV-1) is causally associated with adult T-cell
leukemia (ATL), an aggressive T-cell malignancy with a poor prognosis. To elucidate
ATL pathogenesis in vivo, a variety of animal models have been established;
however, the mechanisms driving this disorder remain poorly understood due to
deficiencies in each of these animal models. Here, we report a novel HTLV-1-infected
humanized mouse model generated by intra-bone marrow injection of human
CD133™ stem cells into NOD/Shi-scid/IL-2Ryc null (NOG) mice (IBMI-huNOG mice).
Upon infection, the number of CD4™ human T cells in the periphery increased rapidly,
and atypical lymphocytes with lobulated nuclei resembling ATL-specific flower cells
were observed 4 to 5 months after infection. Proliferation was seen in both CD25™ and
CD25" CD4 T cells with identical proviral integration sites; however, a limited number
of CD25%-infected T-cell clones eventually dominated, indicating an association
between clonal selection of infected T cells and expression of CD25. Additionally,
HTLV-1-specific adaptive immune responses were induced in infected mice and

might be involved in the control of HTLV-1-infected cells. Thus, the HTLV-1-infected IBMI-huNOG mouse model successfully
recapitulated the development of ATL and may serve as an important tool for investigating in vivo mechanisms of ATL

leukemogenesis and evaluating anti-ATL drug and vaccine candidates. (Blood. 2014;123(3):346-355)

Introduction

Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus
associated with adult T-cell leukemia (ATL) and HTL V-1-associated
myelopathy or tropical spastic paraparesis (HAM/TSP) in humans.'™
Although the majority of HTLV-l-infected individuals remain
asymptomatic throughout their lives, approximately 5% of HTLV-1
carriers develop ATL or HAM/TSP following a long latency period.”*
In addition to the classic structural proteins required for retroviral
replication, the HTLV-1 proviral genome encodes several accessory
and regulatory proteins, including the viral transcriptional activator
Tax and the HTLV-1 bZIP factor (HBZ), which are thought to be
linked to HTLV-1 pathogenesis.” S

ATL is an aggressive malignancy of mature CD4 T cells,
characterized by frequent visceral involvement, lymphadenopa-
thy, hypercalcemia or hypercytokinemia, and monoclonal pro-
liferation of HTLV-1-infected tumor cells.” Typical ATL cells
exhibit an unusual morphology with lobulated nuclei, known as
“flower cells.”® These cells are also characterized by their robust
expression of interleukin (IL)-2 receptor o (CD25).°

To reproduce the pathogenesis of ATL, a number of mouse
models have been developed, including transgenic or xenografted/
humanized mice. ' One such model is the Tax-transgenic mouse,
which expresses Tax under the control of the Lck promoter. This

model restricts Tax expression to developing thymocytes, resulting in
characteristic ATL-like phenotypes.”> Another model, the HBZ-
transgenic mouse, expresses HBZ under the control of a CD4-specific
promoter/enhancer/silencer. These mice develop lymphomas charac-
terized by induction of Foxp3 in CD4 T cells, similar to leukemic cells
in ATL patients.'® These observations clearly demonstrate that the
leukemogenic activity of not only Tax but also HBZ is related to the
development of ATL.

In addition to transgenic mouse models, a variety of HTLV-
1—infected small-animal models have been established to evaluate
viral pathogenesis and elucidate the function of viral products in
vivo.'®?® These infection models have provided valuable findings
regarding virus-host interactions; however, they are unable to fully
recapitulate pathological conditions resembling ATL, likely due to
the low efficiency of HTLV-1 infection.

Humanized mice are highly susceptible to infection with
human lymphotropic viruses such as EBV, HIV-1, and HTLV-1,
and have been used to recapitulate specific disorders and human
immune responses.’”*!"** Recent studies on HTLV-1 infection in
humanized mouse models successfully reproduced HTLV-1-
associated T-cell lymphomasm’”; however, these models did not
accurately recreate human immune responses against HTLV-1.
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Notably, humoral immunity, along with cytotoxic T cell (CTL)-
mediated cytotoxicity, is thought to play a pivotal role in con-
trolling the proliferation or selection of HTLV-1~infected T-cell
clones in vivo.?>?* It is therefore important to develop mouse
models of ATL that induce more human-like HTLV-1-specific
immune responses.

In this study, we describe a novel humanized mouse model of
HTLV-1 infection in the presence of specific adaptive immune
responses. Our novel HTLV-1-infected humanized mice displayed
distinct ATL-like symptoms, including hepatosplenomegaly, hyper-
cytokinemia, oligoclonal proliferation of HTLV-1-infected T cells,
and the appearance of flower cells. In addition, HTLV-1-specific
immunity was induced and may be involved in the control of
infected cells in vivo.

Materials and methods

Purification of human CD133™ cells from cord blood

Cord blood samples from full-term human deliveries were obtained from the
Japanese Red Cross Kinki Cord Blood Bank (Osaka, Japan) for research use
due to the inadequate numbers of stem cells for human transplantation; all
patients provided signed, informed consent in accordance with the Dec-
laration of Helsinki. Mononuclear cells (MNCs) were separated using Ficoll-
Conray (Lymphosepar 1, IBL) density gradient centrifugation. After
collecting MNCs, a CD133 MicroBead Kit (Miltenyi Biotec) was used to
isolate human CD133% cells (Miltenyi Biotec) according to the manufac-
turer’s instructions. HLA-A typing was performed using a WAKFlow HLA
typing kit (WAKUNAGA) according to the manufacturer’s instructions; the
results are shown in supplemental Table 1 (available on the Blood Web site).

NOG mice

Female 6-week-old NOD/Shi-scid/IL-2Ryc null (NOG) mice™ were
purchased from the Central Institute of Experimental Animals (Kawasaki,
Japan). Mice were handled under sterile conditions and were maintained in
germ-free isolators. All animal experiments were approved by the Animal
Care Committees of Kansai Medical University.

Generation of IBMI-huNOG

Seven-week-old NOG mice were sublethally irradiated with 250 c¢Gy from
a '¥7Cs source (Gammacell 40 exactor, Nordion International). Within 24
hours of irradiation, each mouse was injected with 5 X 10* human CD1337
cells by intra~bone marrow injection (IBMI)?® as reported previously.?’

HTLV-1 infection to IBMI-huNOG

The HTLV-l-infected T-cell line MT2%® was irradiated with 10 Gy
from a *’Cs source irradiator. Irradiated MT2 cells (2.5 X 10% or
phosphate-buffered saline were inoculated intraperitoneally into 24- to
28-week-old IBMI-huNOG mice. Mice were anesthetized and killed
when the body weight decreased to <70% of their maximum weight.
Peripheral blood smears were prepared using May-Grunwald Giemsa
staining and examined by light microscopy. All infections were per-
formed in a Biosafety Level P2A laboratory in accordance with the
guidelines of Kansai Medical University.

Flow cytometric analysis and cell sorting

Peripheral blood cells were routinely collected every 2 weeks after in-
fection, and after sacrificing mice, single-cell suspensions of various
lymphoid tissues were prepared as described previously.®® To stain surface
markers, anti-human CD45-PerCP or APC-Cy7, CD3-fluorescein iso-
thiocyanate (FITC) or phycoerythrin (PE)-Cy7, CD4-PE, CD§-PerCP-
CyS5.5, CD19-PE, CD25-FITC, CCR4-APC antibodies were used, along
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with mouse immunoglobllin G1 and FITC as an isotype control (all BD
Biosciences). AccuCount Ultra Rainbow Fluorescent Particles (Spher-
otech) were employed to determine absolute cell numbers, according to the
manufacturer’s protocol. Flow cytometric analysis was performed on a BD
FACSCan for 3-color staining and a BD FACSCant IT (BD Biosciences) for
7-color staining. The CellQuest and Diva software programs were used for
data acquisition (BD Biosciences), and the collected data were analyzed by
FCS express 3 (De Novo Software). Human CD4-, CDS8-, and CD25-
expressing T cells were sorted from splenic MNCs by FACSAria or
FACSAria III (BD Biosciences).

Tetramer staining

PE-conjugated HLA-A*24:02/Tax301-309 (SFHSLHLLF) and HLA-
A*24:02/HIV (RYLRDQQLL) env gp160 tetramers were purchased from
MBL. Splenocytes from mock-infected or HTLV-1-infected mice were
stained with each tetramer and antihuman CD3 and CD8 antibodies
according to the manufacturer’s protocol. Mixed lymphocyte-peptide
cultures were performed to stimulate Tax-specific CTLs, as described
previously.30 Briefly, splenocytes from HTLV-l-infected mice were
cultured for 13 days with 10 mg/mL Tax301-309 peptide and 50 U/mL
recombinant human IL-2 (Takeda Chemical Industries). Cultured spleno-
cytes were then analyzed by flow cytometry.

DNA isolation and quantification of proviral load

Genomic DNA was extracted from single-cell suspensions of tissue or
peripheral blood using a conventional phenol extraction method. Proviral
loads (PVLs) were measured by quantitative polymerase chain reaction
(PCR) using a MyiQ or CFX96 real-time PCR system (Bio-Rad). The
primers and probes targeting for HTLV-1 pX and human 3-globin (HBB; as
a internal control) are listed in supplemental Table 2. A plasmid containing
PCR fragments for the HTLV-1 pX region and HBB was constructed using
T-Vector pMD20 (TaKaRa) and used as the quantified standard template
for real-time PCR.?>! The PVL was calculated as: [(copy number of pX)/
(copy number of HBB / 2)] X 100.

Quantification of clonal occupancy by clone-specific PCR

Inverse long PCR (IL-PCR) was performed to amplify the genomic DNA
flanked the 3’ long terminal repeat of HTLV-1 provirus according to
a modified method described previously.32 In brief, the genomic DNA
was digested by P11, self-ligated by T4 ligase, and then digested by M/ul.
Long PCR amplification of the linearized DNA was performed using
the PrimeSTAR GXL DNA polymerase (TaKaRa) according to the man-
ufacturer’s protocol. Primer sets for IL-PCR analysis are listed in sup-
plemental Table 3. IL-PCR products were isolated from agarose gels, purified,
and subjected to nested PCR. Amplified nested PCR fragments were subcloned
into T-Vector pMD20 (TaKaRa) and sequenced to obtain provirus inte-
gration sites downstream of the 3’ long terminal repeat. Integration site-specific
primers were designed based on the DNA sequence of the flanking region of
the provirus derived from splenic DNA of 8 HTLV-1-infected mice, and are
listed in supplemental Table 5. A detailed description of the clone-specific
quantitative PCR procedure has been provided elsewhere.*® The clonal
occupancy of each clone was calculated as: [(copy number of integration
sites)/(copy number of pX)] X 100.

Real-time RT-PCR to quantify tax and HBZ transcripts

Total RNA was isolated using the TRIzol reagent (Invitrogen) and
complementary DNA samples were synthesized from 1 pg total RNA.
Reverse-transcription PCR (RT-PCR) was performed by the use of
SsoFast EvaGreen Supermix (Bio-Rad). Primers used for RT-PCR are
listed in supplemental Table 4. Relative expression levels were calculated
by the MyiQ system (Bio-Rad).

Titration of HTLV-1-specific antibodies

The titers of antibodies against HTLV-1 antigens in the plasma of infected
mice were determined by the particle agglutination method using Serodia



From bloodjournal.hematologylibrary.org at ST MARIANNA SCHOOL on May 19, 2014. For personal use only.

348

TEZUKA et al

B
100 7
© 4
§80 o
z 3
= £60 - o
o <
£ a
[0} &)
S 40 - 5
8 °
£ s
R 20 4
o <0.3
D O X O
w RS
§,Q§§ @)
K
C D E
__ 800 1ecp4s5 47
= ocD3
= 500 A
2 o317 2
5400' 5 @
= © i
T 300 821 2
2 200 - 3 2
3 O 14 =
£ 100 -
0 - ( =epm———pe——
2 3 4 5 3 4 5
Mpt Mpt

HTLV-1 (Fuji Rebio).?* To deplete human immunoglobulin M (IgM) or
immunoglobulin G (IgG), streptavidin M-PV A magnetic beads (Chemagen)
preincubated with biotin-conjugated goat anti-human IgM or IgG antibody
(Sigma-Aldrich) were added to plasma from infected mice; a goat anti-mouse
1gG antibody (Organon Teknika) was used as the negative control.

Bio-Plex cytokine assay

Plasma levels of IL-1b, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12
(p70), IL-13, IL-17, granulocyte colony-stimulating factor (G-CSF),
granulocyte macrophage colony-stimulating factor (GM-CSF), inter-
feron-y (IFN-vy), MCP-1, MIP-1B, and tumor necrosis factor a (TNF-a)
in HTLV-1-infected and control mice were analyzed using the Bio-Plex
Human Cytokine 17-Plex Panel (Bio-Rad) on a Bio-Plex 200 system
according to the manufacturer’s instructions.

Statistical analysis

The significance of differences was determined by Mann-Whitney U test,
paired ¢ test, or Spearman’s rank-correlation coefficient (+); P < .05 was
considered to indicate statistical significance.

Results
Reconstitution of human immune cells in NOG mice using IBMI

IBMI-huNOG mice were generated by IBMI of human CD133%
hematopoietic stem cells into sublethally irradiated 6- to 7-week-
old NOG mice. After 1 month of transplantation, human CD45™"
leukocytes were found to have almost completely reconstituted
the bone marrow of recipient mice (Figure 1A). At this time point,
the majority of the human leukocytes in bone marrow consisted
of CD19" cells. A substantial number of CD34 ™ cells were also
detected, whereas human CD3™ cells had not developed.

Less than half of peripheral blood cells were composed of
human leukocytes even at 2 months posttransplantation (mpt).

BLOOD, 16 JANUARY 2014 - VOLUME 123, NUMBER 3

Figure 1. Generation of IBMI-huNOG mice and
T-cell development in periphery. (A) Development of
human leukocytes in bone marrow of IBMI-huNOG
mice. Bone marrow cells from IBMI-huNOG mice (n = 20)
at 1 mpt were analyzed by fluorescence-activated cell
sorting (FACS) for expression of human CD45, CD19,
and CD45, and mouse CD45 markers. Representatives
(left) and the percentage of indicated markers (right) are
shown. All cell populations were gated on mononuclear
bone marrow cells. (B) Time course of human leukocyte
development in the peripheral blood of IBMI-huNOG
mice. Peripheral blood mononuclear cell (PBMC) from
IBMI-huNOG mice (n = 40 for each time point) were
stained for human CD45 at each time point. Box plots
represent medians = 1.5 IQR. (C) Increased number of
human lymphocytes in IBMI-huNOG mice. Absolute
numbers of human CD45" and CD3" cells in peripheral
blood were determined by FACS analysis at each time
point (n = 40 for each time point). (D) CD4-CD8 ratio
in peripheral blood T cells. The CD4-CD8 ratio was
calculated as follows: [(CD4 T-cell numbers per L)/
(CD8 T-cell numbers per wL)] (n = 40). (E) Sustained
composition of human leukocytes in peripheral blood.
PBMCs from IBMI-huNOG mice (n = 8) were stained for
human CD45, CD3, and CD19. Results are presented
as mean percentages of human CD45% cells.
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However, the number of human leukocytes increased in a time-
dependent manner (Figure 1B-C). Between 3 and 4 mpt, the
number of human CD3™ T cells in the peripheral blood increased
dramatically, as did the CD4-CD$8 ratio (Figure 1D). CD3%
T cells and the CD4-CDS8 ratio reached stable levels by 4 to 5
mpt, suggesting that the development of human T cells was
completed within this period.

Previous reports have shown that reconstituted human
CD45™ cells in other types of humanized mouse systems were
overcome by CD3™ T cells within several months of trans-
plantation due to the reduction of B-cell development,”** which
may impair the integrity of host immunity. In contrast, the IBMI-
huNOG mice model maintained a stable number of CD3 ™" T cells
as well as the B- to T-cell ratio in peripheral blood through at
least 8 mpt (Figure 1E). Thus, the human immune system
appeared to be effectively reconstituted in IBMI-huNOG mice,
likely due to the enriched repopulation of long-term hematopoi-
etic stem cells by direct injection of CD133 % cells into the bone
marrow cavity.?’

Proliferation of HTLV-1—infected T cells in IBMI-huNOG mice

Human T lymphocytes fully developed in IBMI-huNOG mice
within 4 to 5 mpt. These mice were then infected with HTLV-1 by
intraperitoneal inoculation with 2.5 X 10° irradiated MT2 cells.
The number of human CD45" leukocytes began to increase as
early as 4 to 6 weeks postinoculation (wpi) and continued to
increase rapidly thereafter (Figure 2A). HTLV-1 infection was
also detected by 2 wpi, with the HTL V-1 PVL in peripheral blood
increasing in a time-dependent manner (Figure 2B). The pro-
portion of CD3*/CD45" T lymphocytes was significantly
enriched in HTLV-1-infected mice relative to mock-infected
controls (Figure 2C), consistent with previous results.'® Absence
of residual MT2 cells used as the source of HTLV-1 was
confirmed by MT2 cell-specific PCR as previously described
(supplemental Figure D>

325



326

From bloodjournal.hematologylibrary.org at ST MARIANNA SCHOOL on May 19, 2014. For personal use only.

BLOOD, 16 JANUARY 2014 « VOLUME 123, NUMBER 3

A NOVEL HUMANIZED MOUSE MODEL OF ATL 349

A B . c
2 100 7 8 - o BHTLV-1
&> = 434 33.8 120 -
L 8 ;
=4 = 8 » .
=l & 80 %100 -
> / % 10 +u
£ / S 2 80 A
[4) T 60 A w0 [m)]
o3 P < O
s 2 10 8 £ 60 -
= g 40 - *
1 o Q40 4
< .} [&]
O 2¢ > b
© §OMock § 20 < 207
g Ze}HTLw 2 0
2 1--e;-r——r—r—r—r—-r— 0 -
0246 81012 2 4 6 8 1012
Wpi Whpi
200+ of

)

B

s 1504

e ° . /
< %3
8 2 100+ ° e o

g s

> 50+ 0y ‘o0 :’

> ..o ) r=0.8407

SN . . P<.0'0001.

0 20 40 60 80 100

' CD25 % of CD25* celis in CD4" splenocytes

Figure 2. Kinetic analysis of HTLV-1 provirus in infected IBMI-huNOG mice. (A) Quantification of leukocyte numbers in the peripheral blood of HTLV-1-infected
mice. Peripheral blood was routinely collected from mock- and HTLV-1-infected mice every 2 weeks. Human CD45™" leukocytes were enumerated by FACS. Resuits
from mock-infected mice (n = 10) are presented as mean * standard deviation (SD), and representative results of 3 HTLV-1-infected mice are shown.
(B) Quantification of HTLV-1 PVL in the peripheral blood of HTLV-1-infected mice. The PVL was determined by real-time PCR. Number at the top of each bar
represents the number of analyzed HTLV-1~infected mice at each time point. (C) Expansion of CD3™ T-cell populations in the peripheral blood of HTLV-1~infected
mice. PBMCs from mock-infected (n = 3) and HTLV-1-infected mice (n = 18) were stained for human CD3 when sacrificed; the median value was 8 wpi. Results are
presented as the average percentages = SD of human CD45* cells. (D) Expansion of CD25" CD4 T cells in the spleen of HTLV-1-infected mice. Splenocytes were
stained for human CD3, CD4, and CD25 and analyzed by FACS. Representative results from mock-infected (mouse ID: 8X20) and HTLV-1-infected (mouse ID: 8X01)
mice are shown. (E) Correlation between the percentages of CD25™ T cells and PVLs in the spleen. HTLV-1-infected mice (n = 37) were sacrificed to determine
PVL and CD25" T-cell frequency in CD4™ splenocytes. One dot represents the result of an individual HTLV-1-infected mouse. Spearman’s rank-correlation coefficient
(r) was adopted to identify statistically significant correlations between values. Daggers indicate that flower cells were observed in the peripheral blood of HTLV-1-infected mice.

HTLV-1-infected humanized mice showed marked expansion
of CD25" CD4 T cells in the spleen relative to mock-infected
controls (Figure 2D; Table 1), as is observed in peripheral blood of
ATL and HAM/TSP patients.”* Furthermore, PVLs in the spleen
were significantly correlated with the rate of CD25% CD4 T cells
(Figure 2E). These data suggest that the expanded CD25" CD4 T-
cell population represents the majority of HTLV-1-infected cells
in vivo.

ATL-like leukemic symptoms in HTLV-1-infected
IBMI-huNOG mice

The majority of HTLV-1-infected mice exhibited splenomegaly,
while apparent infiltration of infected T cells in the liver was
observed in 3 infected mice with flower cells (Figure 3A; Table 1)
and the weight of liver in these mice was remarkably increased
(HTLV-1: 1550 = 620 mg [n = 3]; mock: 715 = 85 mg [n = 3]).
When PVLs of several lymphoid organs were analyzed, the
proportions of infected cells in the bone marrow and lymph nodes
were significantly lower than those in the spleen and peripheral
blood, consistent with the leukemic phenotype of infected mice
(Figure 3B). This result is in striking contrast to other humanized
mouse models, in which HTLV-1 infection'” or the ectopic ex-
pression of Tax'® preferentially induce lymphoma.
May-Grunwald Giemsa staining of peripheral blood smears
from infected mice revealed the presence of large, abnormal leu-
kemic cells with lobulated nuclei, which were morphologically

identical to the flower cells observed in ATL patients (Figure 3D-E).2
The activated phenotype of infected T cells was also evident, with
clear downregulation of CD3 expression on the surface of peripheral
T cells in HTLV-1-infected mice, similar to that seen in ATL cells
(Figure 3C).%"

ATL cells have been shown to secrete proinflammatory cyto-
kines, such as IL-6, TNF-a, and GM-CSF, which stimulate
activation and proliferation of infected T cells and promote
development of ATL leukemogenesis.*®® Analysis of cytokine
and chemokine levels in the plasma of HTLV-1-infected mice
revealed significantly elevated levels of several proinflammatory
cytokines (Figure 4). The concentration of IFNvy significantly
correlated with PVL in the peripheral blood (supplemental
Figure 2), suggesting Th1 immune responses induced in infected
mice. Together, these results suggest that HTLV-1-infected IBMI-
huNOG mice accurately recreate many of the pathological features of
ATL, including hepatosplenomegaly, leukemic T-cell overgrowth
with lobulated nuclei, hypercytokinemia, and downregulation of CD3
on T cells.

Oligoclonal proliferation of human T-cell clones in
HTLV-1-infected IBMI-huNOG mice

To evaluate the clonal proliferation of HTLV-1-infected T cells in
infected mice, we quantified cellular clonality using clone-specific
real-time PCR analysis. Splenocytes were isolated from 8 infected
mice sacrificed at various time points, and genomic DNA fragments
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Table 1. Pathological features of mock- or HTLV-1-infected IBMI-huNOG mice

Mouse ID* W

8X10 —_ —

20.2 3.4 51

it PVL} CD3*CD4% (%)§ CD4"CD25" (%)§ Spleen weight (mg)

Lymph node weight (mg)ll Observations

3 Mock infected

8407 8 4.5 12.5

8803 30 0.4 38.6 5.8 55

11

8805 8 70.0

37 Leukemia

8X06 9 31.6 25.5 155

8X12 4 47.9 16.2 188

8X16 7 90.4 35.2 200

16 Leukemia

9718 16 89.2 72.7 285

5 Leukemia, flower cells (4.2%),9 tumor lesion

X202 12 90.0 59.9 353

13 Leukemia

X207 1 100.0 55.7 358

6 Leukemia

X217 7 49.6 76.9 45.5 306

18 Leukemia

Leukemia, infected mice with atypical lymphocytes >90% of PBMCs; flower cells, atypical lymphocytes with >4 lobulated nuclei in a cell; tumor lesion, tumor formation of

infiltrating infected T cells in the liver.
*The 37 infected mice listed are identical to those in Figure 2E.
1The wpi when indicated mice were sacrificed.
1PVL is expressed as number of pX copies per 100 cells.
§The population of indicated marker-positive cells in CD45™ splenocytes.
IIThe weight value of one of the largest mesenteric lymph node in each mouse.

qThe percentage of flower cells in total lymphocytes in blood smear (presented in parentheses).

#High proportion of CD25* CD8 T cells in PBMCs.
**High proportion of DP T cells in PBMCs.

flanking the major integration sites in the HTLV-1-infected cells were
amplified by IL-PCR. Amplified DNA fragments were subcloned into
plasmids and sequenced to confirm proper integration (Supple-
mental Table 5). As shown in Figure 5A, the occupancy of
detected clones determined by real-time PCR was < 5% in cells
harvested 5 to 8 wpi, indicating polyclonal HTLV-1 infection in
these mice. In contrast, 2 mice sacrificed after prolonged in-
fection periods (18 and 23 wpi, respectively) produced high
percentages of infected clones. Interestingly, these 2 mice also
showed overgrowth of CD25™ CD4 T cells with flower-shaped
nuclei, characteristic of ATL cells (Figure 3D-E), whereas such
cells were not observed in the 6 remaining mice. These findings
indicate that a limited number of HTLV-1-infected T-cell clones

selectively proliferated in the spleens of infected mice, resulting
in an ATL-like leukemic phenotype.>**!

Presence of identical infected clones in CD25~ and CD25* CD4
T-cell populations

Splenocytes from infected mice were sorted into CD25~ or CD25*
CD4 T cells and CD8 T cells; the PVL of each population was also
determined. Most of the CD25% CD4 T cells isolated from the
spleens of infected mice were provirus-positive, as was a signif-
icant proportion of CD25~ CD4 T cells, whereas infection of CD8
T cells was rare (Figure 5B). Interestingly, fax expression in HTLV-1-
infected CD25" CD4 T cells was suppressed compared with that in
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Figure 3. Splenomegaly and leukemic T-cell overgrowth in infected IBMi-huNOG mice. (A) Hepatosplenomegaly in HTLV-1-infected mice. Representative spleens and
livers from mock- and HTLV-1-infected mice are shown. Scale bars in panel A represent 10 mm. (B) PVL in lymphoid organs of HTLV-1-infected mice. PVL in the peripheral
blood (PB), spleen (SP), bone marrow (BM), and lymph nodes (LM) of HTLV-1~infected mice (n = 17) are shown. Box plots represent medians =+ 1.5 IQR. Asterisks indicate
statistical significance vs the value obtained from peripheral blood (*P < .05, ***P < .001 by paired f test). (C) Downregulation of CD3 on the T-cell surface. PBMCs from
mock- (n = 3) and HTLV-1—-infected mice (n = 18) were stained for human CD3 and analyzed by FACS. Results are presented as mean MFI = SD of CD3 expression. (D-E)
Smears of peripheral blood from HTLV-1-infected mice showing a number of leukemic cells with atypically shaped nuclei. Results from two infected mice (7 and 18 wpi,
respectively) and a mock-infected mouse (at 8 mpt) are shown. Higher-magnification view of flower cells in panel D is shown in panel E. Scale bars in panels D-E represent
50 and 10 um, respectively. Asterisks in panels B and C represent significant differences vs mock-infected mice (**P < .01 by Mann-Whitney U test).

CD25™ CD4 T cells; however, higher HBZ expression was observed
in CD25" CD4 T cells (Figure 5C).

Further clonality analysis for HTLV-1-infected CD25~ and
CD25" CD4 T cells isolated from the same spleen with the purity of
>95% (supplemental Figure 3) revealed that the most abundant clone
was the same in both T-cell populations; however, the occupancy was
higher in the CD25" population (Figure 5D), indicating the pref-
erential growth of infected clones with CD25 expression.

Induction of HTLV-1-specific adaptive immune responses in
HTLV-1~infected IBMI-huNOG mice

HLA-A*24:02-restricted Tax-specific CTLs were frequently de-
tected in ATL patients, and are known to play an important role in
the control of HTLV-1-infected cells in vivo.**** To investigate
whether Tax-specific CTLs were induced in HTLV-1-infected mice,
the IBMI-huNOG mice were generated using hematopoietic stem
cells purified from the cord blood of an HLA-A*24:02 haplotype
individual. HLA-A*24:02 tetramers coupled with Tax301-309 were
used to detect CTLs. The cord blood HLA-A alleles used in this
study are shown in supplemental Table 1. As shown in Figure 6A,
Tax301-309-specific CTLs were detected in HTLV-1-infected
mice at a frequency similar to that of ATL patients (0.7% = 0.8%,
n = 18),% whereas control tetramer CTLs specific for HIV env
produced only marginal staining of CD8 T cells.

To evaluate whether functionally reactive Tax301-309-specific
CTLs were present in infected mice, we cultured splenocytes from
HTLV-1-infected mice in the presence of Tax peptide. Tax301-
309 specific CTLs clearly proliferated following peptide stimula-
tion; no reaction was seen in controls. Furthermore, the frequency

of Tax301-309—specific CTLs in in vivo CD8 T cells was inversely
correlated with the PVLs of HTLV-1-infected mice (Figure 6B).
These results suggest that HTLV-1-infected mice induce func-
tional T-cell-mediated cellular immunity against HTLV-1, which
may be involved in the control of HTLV-1-infected cells in vivo.

Antibodies against HTL V-1 antigens were also detected in the
plasma of infected mice as early as 2 wpi, whereas the specific
antibody was not detected before infection (Figure 6C). The titer
of HTLV-1-specific antibodies increased in all cases until 4 wpi,
followed by a gradual decline in 67% of infected mice (4 of 6),
coincident with a decrease in body weight. However, 2 of the
infected mice exhibited a reactivation of antibody production at 8
wpi, suggestive of immunoglobulin class switching from IgM to
IgG. In fact, HTLV-1-specific antibody titers were significantly
decreased following selective depletion of human IgG, in-
dicating the presence of functional IgG in the plasma of HTLV-1—
infected mice (Figure 6D). These data clearly support the notion
that the functional interaction between human T and B cells
required for class switching exists in this model. Taken together,
these results demonstrate that human-like adaptive immunity
against HTLV-1 was established in the HTLV-1-infected IBMI-
huNOG mice.

Discussion

In this study, we established a novel humanized mouse model of
HTLV-1 infection. To generate humanized mice, we transplanted



