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Coffin—Siris syndrome (CSS) is a congenital disorder characterized by
intellectual disability, growth deficiency, microcephaly, coarse facial
features, and hypoplastic or absent fifth fingernails and/or toenails. We
previously reported that five genes are mutated in CSS, all of which
encode subunits of the switch/sucrose non-fermenting (SWI/SNF)
ATP-dependent chromatin-remodeling complex: SMARCBI , SMARCA4,
SMARCEI , ARIDIA, and ARIDIB. In this study, we examined 49 newly
recruited CSS-suspected patients, and re-examined three patients who did
not show any mutations (using high-resolution melting analysis) in the
previous study, by whole-exome sequencing or targeted resequencing. We
found that SMARCBI, SMARCA4, or ARIDIB were mutated in 20
patients. By examining available parental samples, we ascertained that 17
occurred de novo. All mutations in SMARCBI and SMARCA4 were
non-truncating (missense or in-frame deletion) whereas those in ARIDIB
were all truncating (nonsense or frameshift deletion/insertion) in this study
as in our previous study. Our data further support that CSS is a SWI/SNF
complex disorder.
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Coffin—Siris Syndrome (CSS; MIM 135900), first
described by Coffin and Siris in 1970, is a congen-
ital disorder characterized by intellectual disability
(ID), growth deficiency, microcephaly, coarse facial
features, and hypoplastic or absent fifth finger-
nails and/or toenails (1). Recently, we identified
mutations in six genes encoding subunits of the
switch/sucrose non-fermenting (SWI/SNF) ATP-
dependent chromatin-remodeling complex: SMARCBI ,
SMARCA4, SMARCA2, SMARCEI, ARIDIA, and
ARIDIB (2). Simultaneously, SMARCAZ mutations
were frequently found in patients with a similar syn-
drome, Nicolaides—Baraitser syndrome (NCBRS; MIM
601358) (3, 4). In fact, our patient with a SMARCA2
mutation was clinically re-evaluated and recategorized
as NCBRS (personal communication with Professor
Raoul CM Hennekam of University of Amsterdam),
removing SMARCAZ2 as a causative gene for CSS.

Chromatin structure is important for the accessi-
bility of DNA to transcription factors and for gene
expression. The SWI/SNF complex modulates chro-
matin structure and plays important roles in transcrip-
tion, cell differentiation, DNA repair, and tumor sup-
pression (5, 6). The complexes contain a single ATPase
subunit (SMARCA2 or SMARCAA4), core subunits con-
sisting of SMARCB1, SMARCCI, and SMARCC2, and
form two major subclasses in mammals: BRG1/hBRM-
associated factors (BAF) and polybromo-associated
BAF (PBAF) complexes. ARID1A and ARID1B sub-
units are mutually exclusive and are only present in
BAF complexes, whereas PBRM1, ARID2, and BRD7
subunits are PBAF-specific (7, 8). In our previous study,
we identified CSS-related mutations in the BAF-specific
subunits ARID1A and ARID1B (2).

In this study, we examined 49 newly recruited
patients and re-examined three patients who did not
show any mutation (by high-resolution melting analy-
sis) in the previous study.

Materials and methods
Subjects and DNA preparation

We collected patients with suspected CSS showing
most of core clinical features including ID, growth
deficiency, coarse facial features, and hypoplas-
tic/absent fifth fingernails and/or toenails (Fig. 1,
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Table 1). NCBRS, a similar condition to CSS (9), is
excluded in this study. Genomic DNA of peripheral
blood leukocytes was extracted by conventional meth-
ods. Detailed clinical information was obtained after
written informed consent was secured from the family
members (Table1). The institutional review board
of Yokohama City University School of Medicine
approved this study.

Whcle-exome sequencing and targeted resequencing

We performed whole-exome sequencing (WES) for
44 patients as previously described (10) and targeted
resequencing in eight patients using a HaloPlex Tar-
get Enrichment System (Agilent Technologies, Santa
Clara, CA) according to the manufacturer’s protocol. A
probe library was designed with oligonucleotide probes
targeting 21 genes encoding SWI/SNF complex sub-
units (ACTB, ACTL6A, ACTL6B, ARIDIA, ARIDIB,
ARID2, BRD7, DPFI, DPF2, DPF3, PBRMI, PHFI0,
SMARCA2, SMARCA4, SMARCBI1, SMARCC1, SMAR
CC2, SMARCDI, SMARCD2, SMARCD3, and SMA
RCED).

Priority scheme

Out of all variants within exons or +2bp from the
exon—intron boundaries, those registered in dbSNP135,
the 1000 Genomes Project, and the National Heart
Lung and Blood Institute Exome Sequencing Project
Exome Variant Server (NHLBI-ESP 5400), our in-
house databases (408 exomes) or located within seg-
mental duplications were removed.

Sanger sequencing

Variants were confirmed as true positives by Sanger
sequencing on an ABI3500x] or ABI3130xl autose-
quencer (Life Technologies, Carlsbad, CA). Sequencing
data were analyzed with Sequencher software (Gene
Codes Corporation, Ann Arbor, MI). Parental sam-
ples were also confirmed (when available) to check the
inheritance of variants.

Resulis

By WES, the mean coverage of RefSeq coding
sequence was 49.6—175.6 reads, with 72.0-93.2%



Coffin-Siris syndrome is a SWI/SNF complex disorder

Fig. 1. Photographs and brain magnetic resonance imaging findings in patients with Coffin—Siris syndrome. (a) Faces (top) and nails of the fingers
(middle) or/and toes (bottom) of patients, with the mutated gene indicated. Red asterisks indicate the fifth finger/toe. (b) T1-weighted midline
sagittal magnetic resonance images. The individuals showed agenesis of the corpus callosum (arrows).

being covered by 20 or more reads. By tar-
geted resequencing, the mean coverage of coding
sequence in the target genes was 496.1-541.0 reads,
with 96.5-97.2% being covered by 20 or more
reads.

Mutations were discovered in SMARCBI (3 of 52
patients, 5.8%), SMARCA4 (2 of 52 patients, 3.8%), and
ARIDIB (15 of 52 patients, 28.8%}; all were confirmed
by Sanger sequencing. We ascertained that a total of 17
mutations (among 20 patients) occurred de novo. No
other pathological variants were found. In our previous
study, mutations were found in SMARCBI (4 of 22
patients, 18.2%), SMARCA4 (6 of 22 patients, 27.3%),

ARIDIB (5 of 22 patients, 22.7%), ARIDIA (3 of 22
patients, 13.6%), and SMARCEI (1 of 22 patients,
4.5%). In this and our previous study, mutations in
SMARCB1 and SMARCA4 were all non-truncating,
implying that they exert gain-of-function or dominant
negative effects whereas those in ARIDIB mutations
were all truncating, leading to haploinsufficiency (2).
In total, 39 out of 71 CSS patients (54.9%) carry a
mutation in one of five genes encoding a SWI/SNF
complex subunit (Table 2; Figs S1 and S2). All the
mutations are mutually exclusive.



Table 1. Clinical features in CSS

Mutated gene
Mutation
Tsurusaki et al. (2) This study Total positive
Mutation Fischer's exact
Clinical features 1B B1 Ad 1A E1 1B B1 Ad 1B B1 Ad All negative  two-sided test P values®
Neurodevelopment
Developmental delay 5/5 4/4 6/6 3/3 1Al 16/15  1/1 2/2 20/20 5/5 8/8 37/37 8/8 1.000
Hypotonia 4/5  4/4  4/6 2/3 M 14/15  0/1 12 18/20 4/5 5/8 30/37 7/8 1.000
Microcephaly /6  2/3 4/5 1/3 11 2/15 171 02 3/20 34 4/7 12/35 3/8 1.000
Small cerebellum o5 2/3 083 1/2 115 on 1/2 1/20 2/4  1/5 5/31 0/6 0.567
Seizures 2/5 2/4 2/6 02 5/15 11 072 7/20 3/5 2/8 12/35 4/8 0.443
Dandy-Walker o5 02 15 183 1/14 on 1/2 119 o3 2/7 4/32 0/7 1.000
Abnormal corpus callosum 172 2/2 11 3/3 6/13 on 1/2 7/15 2/3  2/3 14/24 2/6 0.378
Vision problem 174 2/3 5/6 172 2/15 o1 02 3/19 2/4  5/8 11/33 3/7 0.679
Hearing loss 16 3/4 36 172 11 115 11 1/2 2/20 4/5  4/8 12/36 0/7 0.163
Ectodermal
Absent/hypoplastic fifth finger/toenails 5/5 4/4 6/6 3/3 11 1115 1A 2/2  16/20 5/5 8/8 33/37 4/7 0.068
Hirsutism 5/5 3/4 6/6 3/3 N 1415 11 2/2 19/20 4/5 8/8 35/37 777 1.000
Sparse scalp hair 3/5 4/4 3/6 33 1A 7/15 N 1/2  10/20 5/5 4/8 23/37 17 0.035
Thick eysbrow 5/5 4/4 6/6 2/3 1 165/15 111 2/2  20/20 5/5 8/8 36/37 8/8 1.000
Long eyelashes 4/5 4/4  6/6 3/3 11 1315  1/1 2/2 17/20 &/5 8/8 34/37 7/8 0.557
Abnormal/delayed dentition 5/5 83 35 22 1M 4/10 11 01 9/15 4/4  3/6 19/28 0/6 0.004
Non-functioning/absent tear duct ot 23 14 02 01 2/14 o1 0/2 2/15 2/4  1/6 5/28 0/7 0.559
Facial
Coarse appearance 5/ 4/4 6/6 3/3 1 15/15 /1 2/2 20/20 5/5 8/8 37/37 8/8 1.000
Flat nasal bridge 5/5 3/4 46 2/3 1N 1215 11 2/2 17/20 4/5 6/8 30/37 6/8 0.652
Broad nose 5/5 4/4 2/6 2/3 1M 13/15 11 2/2 18/20 &/5 4/8 30/37 6/8 0.652
Wide mouth 3/5 4/4 3/6 3/3 11 1316 1/1  2/2 16/20 5/5 5/8 30/37 6/8 0.652
Thick lips 5/5 4/4 5/6 3/3 M 15/15  1/1  2/2  20/20 5/5 7/8 36/37 8/8 1.000
Abnormal ears 4/5 4/4  5/6  3/3 i7al 9/16 i1 2/2 13/20 5/5 7/8 29/37 17 0.002
High palate 5/5 4/4 5/5 2/3 1Al 9/15 M1 2/2  14/20 5/5 7/7 29/36 6/8 0.659
Cleft palate o5 2/4 36 2/3 11 1186 o 1/2 1/20 2/5  4/8 10/37 0/8 0.169
Ptosis 05 3/4 56 083 iVal 3/16 on 1/2 3/20 3/5 6/8 13/37 3/8 1.000
Macroglossia 0/5 34 2/6 0/3 1/1 2/15 o1 02 2/20 3/5 2/8 8/37 /7 0.318
Short philtrum o/5 0/4 36 13 11 6/15 11 1/2 6/20 /5 4/8 138/37 1/8 0.402
Long philtrum /6 2/4 06 1/3 on 5/12 o1 o 6/17 2/5  0/7 9/33 1/8 0.653
Skeletal
Absent/hypoplastic fifth phalanx (hand) 5/6  1/1  4/6  2/2 1/1 5/14 2/2 10119 111 6/7 20/30 2/8 0.050
Absent/hypoplastic fifth phalanx (foot) 4/5 11 3/3 22 1 712 2/2  1iM7 AN 5/5 20/26 3/7 0.161
Short stature 2/5 4/4  4/5 2/3 i 1014 11 12 1218  5/5  5/7 26/35 6/8 1.000
Spinal anomalies 3/4  3/4 /4 12 1/1 3/14 171 0/2 6/18 4/6 1/6 13/32 3/7 1.000

Delayed bone age ot 1M 1/2 2/11 0/1 2/12 /1 on 4/16 4/6 0.137

‘[& 30 Desnansy, ‘X



Fischer’s exact
two-sided test P values?
1.000
0.623
1.000
1.000

Mutation
negative
6/7
6/8
1/6
0/5

Mutation
positive
All
30/37
30/36
7/34
1/37

Ad
7/8
7/8
2/7
0/8

Total
B1
5/5
5/5
1/56
0/5

1B
14/20
156/20
2/20
0/20

Ad
2/2
2/2
0/2
0/2

This study
B1
11
M
o1
0/1

Mutated gene
1B
10/15
11/15
1/15
0/15

E1
AN

1A
3/3
3/3

2/2

Tsurusaki et al. (2)
A4
5/6
5/6
2/5
0/6

Bi
4/4
4/4
1/4
0/4

1B
4/5
4/5
1/5
0/5

Intestinal anomalies

Feeding problems
Tumor

Sucking problems

Table 1. Continued.
Clinical features
Gastrointestinal
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Discussion
On the basis of this and our previous mutation survey,
NOCOOOOOOO the mutation detection rates in CSS are 54.9% (39 out
828858888 of 71) and ARIDIB mutations are the most common
Orr—rOror - genetic cause of CSS (20 of 71 patients, 28.2%).
Santen et al. also found truncating mutations of ARIDIB
in three CSS patients by WES (11). All ARIDIB
mutations reported in CSS are truncating (Figs S1
and S2). Interestingly, Hoyer et al. also reported that
ARIDIB truncating mutations are a frequent cause of
58388288 unspecific moderate-severe ID (12) (Fig. S1). All of
the mutations found in ID were truncating. Some ID
patients showed characteristic coarse facial features
- similar to CSS. Furthermore, hypoplastic/absent fifth
Sh8Soroon '% finger/toe nails have been described in some ID patients
LN O® | 2 . . . .
SORISRBo- | 7 (12). Therefore, taking into consideration the symptoms
e of CSS, some of the ID patients may also have CSS
‘é or these patients and CSS patients are phenotypically
OO | 2 overlapped.
BIAI=OASS | D We tried to find characteristic clinical features of CSS
% specific to particular mutated genes. It is only noted
LOIVOLLYWY |3 that all the CSS patients with SMARCBI, SMARCA4,
yooaddesmTT 5 ARIDIA or SMARCEI mutations showed hypoplas-
o° tic/absent fifth finger/toe nails, but some patients with
fgegegerg |8 ARIDIB mutations did not. Except for that, it is difficult
CROINSSAS | to clinically differentiate patients by mutant genes partly
A % due to variable phenotypes in CSS. These findings may
& @ suggest that different subunits of the SWI/SNF complex
NN N RN N N N TN B ) . . .
SA=S5==58 |3  coordinately regulate chromatin and gene expression as
“ o afunctional unit (13).
e |UE Clinical features were compared between patients
=237 ===3 | X 2 withidentified mutations of genes encoding a SWI/SNF
% ¢ complex subunit and patients without identified
R I SWI/SNF complex subunit mutations using Fisher’s
crroooron | <2 exact test (Table 1). Four clinical features showed
dBRB=o3qs | T E R . . . .
¥o significant difference including sparse scalp hair
3 ® (P =0.035), abnormal/delayed dentition (P =0.004),
crTTTTToC % fzj abnormal ears (P =0.002), and absent/hypoplastic fifth
=EES3533533 |28 phalanx of the hand (P =0.050), although the number
2{5 T of mutation-negative patients is small.
PONONRON® | & -% ) The SWI/SNF complex plays an important role
BrAO-—CO0C | A5 i tumor suppression (7). Mutations in SMARCBI
< E  were first reported in human cancer (14, 15). Most
cooooooyw |2 ©  mutations in SMARCBI were truncating mutations
IANA=A=SS i/_)- ;59 and were mainly found in malignant rhabdoid tumors
@2  (MRTs) somatically and in the germ line. Furthermore,
IYoyuYyoes |98  germ line mutations in SMARCBI were also found
oaaamaoor 2 o in schwannomatosis. The SMARCBI mutations arise
<8 somatically or in the germ line, the second allele was
££§§ ¥ gggg 1) ‘é’- also altered by copy neutral loss of heterozygosity
G “E’ (LOH) as a second hit in the tumor cells. In addition,
E S5 one family with MRTs was reported as having a
- £l¢e g germ line nonsense mutation in SMARCA4 (14, 16).
5 " s 2| @% This nonsense mutation is not found in mRNA of
° 2 gng tgQ| 2% immortalized B cells, indicating nonsense-mediated
£ .23 i § £ g1 g mRNA decay as the molecular mechanism for the lack
£ 3g t358& & s% E of SMARCA4 expression together with copy neutral
0 3LETESS5S8E |03 LOH encompassing SMARCA4 as a second hit in the
o S 58825¢8 @ € tumor cells. To date, these patients having tumors
o) O &  with germline mutations in SMARCBI or SMARCA4
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Table 2. Mutations found in patients with Coffin—Siris syndrome

RefSeq Amino

Patient accession Nucleotide acid

D Gene number change change Mutation Type Reference

4 SMARCB1 NM_003073.3 ¢.1091_1093del p.Lys364del Inframeshift ~ denovo Tsurusaki et al. (2)
21 SMARCBT1 NM_003073.3 ¢.1091_1093del p.Lys364del Inframeshift nc Tsurusaki et al. (2)
22 SMARCB1 NM_003073.3 ¢.1091_1093del p.Lys364del Inframeshift nc Tsurusaki et al. (2)
29 SMARCB1 NM_003073.3 ©.1091_1093del p.Lys364del Inframeshift ~ de novo This report

37 SMARCB1 NM_003073.3 c.1091_1093del p.Lys364del Inframeshift  de novo This report

48 SMARCB1 NM_003073.3 ¢.1091_1093del p.Lys364del Inframeshift  de novo This report

11 SMARCB1 NM_003073.3 c.1130G>A p.Arg377His Missense denovo Tsurusakiet al. (2)
32 SMARCA4  NM_001128848.1 €.1372_1395del p.Lys458_Glu465del  Inframeshift  de novo This report

9 SMARCA4 NM_001128849.1 c.1636_1638del p.LysBE46del Inframeshift denovo Tsurusaki et al. (2)
7 SMARCA4 NM_001128849.1 6.2576C>T p.Thr858Met Missense denovo Tsurusaki et al. (2)
5 SMARCA4 NM_001128849.1 ©.26563C>T p.Arg885Cys Missense denovo Tsurusakiet al. (2)
14 SMARCA4 NM_001128849.1 C.2654G>A p.Arg885His Missense de novo This report

16 SMARCA4 NM_001128849.1 c.2761C>T p.Leu921Phe Missense denovo Tsurusakiet al. (2)
25 SMARCA4 NM_001128848.1 ¢.3032T>C p.Met1011Thr Missense denovo Tsurusaki et al. (2)
17 SMARCA4 NM_001128849.1 €.3469C>G p.Arg1157Gly Missense denovo Tsurusakiet al. (2)
38 ARID1B NM_020732.3 €.1389_1398del p.Alad64Serfs*35 Frameshift ~ de novo This report

28 ARID1B NM_020732.3 €.1392_1402del p.GIn467Argfs*64 Frameshift ~ de novo This report

1 ARID1B NM_020732.3 ©.1678_1688del p.lles60Glyfs*89 Frameshift ~ denovo Tsurusaki et al. (2)
40 ARID1B NM_020732.3 c.1713del p.Gly572Glufs*21 Frameshift ~ de novo This report

15 ARID1B NM_020732.3 ¢.1903C>T p.GIn635* Nonsense denovo Tsurusakiet al. (2)
61 ARID1B NM_020732.3 c.2062del p.Leu688Serfs*9 Frameshit ~ de novo This report

75 ARID1B NM_020732.3 ©.2891_2892insAC p.Phe964Leufs*s Frameshift ~ de novo This report
23 ARID1B NM_020732.3 ©.3304C>T p.Arg1102* Nonsense denovo Tsurusaki et al. (2)
53 ARID1B NM_020732.3 €.3481G>T p.Glut1et* Nonsense de novo This report

74 ARID1B NM_020732.3 ¢.4008C<T p. Arg1337* Nonsense nc This report

56 ARID1B NM_020732.3 €.4820_4825delinsAGGCT p.Thr16807Lysfs*7 Frameshift ~ de novo This report

69 ARID1B NM_020732.3 c.4821del p.Pro1609Leufs*s Frameshift de novo This report

27 ARID1B NM_020732.3 cA1G>A p.Trp1637* Nonsense de novo This report

34 ARID1B NM_020732.3 €.4916_4917del p.Val1639Aspfs*s Frameshift ~ de novo This report

35 ARID1B NM_020732.3 ©.5623_5625delinsTGACGTCT p.Ala1875* Nonsense nc This report

10 ARID1B NM_020732.3 ¢.5632del p.Asp1878Metfs*96 Frameshift nc Tsurusaki et al. (2)
51 ARID1B NM_020732.3 c.6120C>G p.Tyr2040* Nonsense nc This report

31 ARID1B NM_020732.3 c.6382C>T p.Arg2128* Nonsense de novo This report

55 ARID1B NM_020732.3 c.6516C>G p.Tyr2172* Nonsense de novo This report

12 ARID1B NM_020732.3 Microdeletion nc Tsurusaki et al. (2)
3 ARID1A NM_006015.4 ©.31_56del p.Ser11Alafs*91 Frameshift nc Tsurusaki et al. (2)
6 ARID1A NM_006015.4 c.2758C>T p.GIn920* Nonsense nc Tsurusaki et al. (2)
8 ARID1A NM_006015.4 ¢.4003C>T p.Arg1335* Nonsense denovo Tsurusaki et al. (2)
24 SMARCE1 NM_003079.4 c.218A>G p.Tyr73Cys Missense denovo Tsurusaki et al. (2)

nc, not confirmed, as parental samples were unavailable.

have not been reported in association with the CSS
phenotype. It is still unclear why germ line mutations
in the same genes can give rise to CSS or different
types of tumors. Heterozygous knockout mice were
born and appeared normal, but these mice started
developing tumors (14). In human, SMARCBI and
SMARCA4 mutations in CSS patients were all missense
mutations or in-frame deletion while the majority
of patients with tumors showed truncating mutations.
These evidences might indicate that mutations in CSS
were a gain-of-function or a dominant-negative type
while those in patients with tumors resulted in the loss
of function. Tumor formation was only found in one
of our CSS patients carrying an ARIDIA mutation,
who presented with hepatoblastoma and carried an
ARIDIA mutation (2) (Table 1). Mutations in ARIDIA
are undoubtedly involved in the formation of various
tumors, but unfortunately autopsy was not performed in
the CSS patient and the tumor tissue was unavailable.

6

Furthermore, germline mutations of ARIDIA have
been unreported in relation to patients with tumors
so far. Careful follow-ups should be undertaken to
monitor potential tumor development in these CSS
patients.

In conclusion, we identified mutations in SMARCBI,
SMARCA4, and ARIDIB in 20 out of 52 CSS-
suspected patients using WES or targeted resequencing.
Further investigation of more patients is necessary to
validate phenotype—genotype correlations and tumor
susceptibility. In yeast, function of SWI/SNF complex
is well characterized. SWI/SNF complexes interact with
some transcription factors and regulate the expression
of hundreds of genes (6), suggesting that other upstream
or downstream genes may be mutated in CSS. Further
research is needed to understand the pathomechanism
of CSS.
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Supporting Information
The following Supporting information is available for this article:

Fig.S1Protein structure of SMARCBI1, SMARCA4, and ARID1B
with functional domains. Mutations identified in this study are
indicated above the structure, and those identified in the previous
study and other studies corresponding to Coffin—Siris syndrome
or ID (11, 12) are indicated below the structure, SMARCBI1 con-
tains two sucrose non-fermenting 5 (SNF5) domains. SMARCA4
contains a conserved Gln, Leu, Gln (QLQ) motif, a helicase/SANT-
associated (HSA) domain, a Brahma and Kismet (BRK) domain,
DEAD-like helicases superfamily (DEXDc) and helicase superfam-
ily c-terminal (HELICc) domains, and a bromodomain (BROMO).
ARIDIB contains an ARID/BRIGHT DNA-binding (ARID)
domain.

Fig.S2Number of Coffin—Siris syndrome patients with a mutation
in each SWI/SNF complex subunit gene.

Additional Supporting information may be found in the online
version of this article.
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Nemaline myopathy (NEM) is a common congenital myopathy. At the very severe end of the NEM clinical spectrum are genetically
unresolved cases of autosomal-recessive fetal akinesia sequence. We studied a multinational cohort of 143 severe-NEM-affected fam-
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loss of movement. We identified KLHL40 mutations as a frequent cause of severe autosomal-recessive NEM and showed that it
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Figure 1. Family Pedigrees and Light
and Electron Microscopy of Muscle
Biopsies

(A) Modified Gomori trichrome (upper)
and electron microscopy (lower) of muscle
biopsies from affected individuals of fam-
ilies 15 (right) and 20 (left). Abnormal vari-
ation in fiber size, together with many
small myofibers and sometimes increased
connective tissue, and the presence of
numerous red- or purple-stained nemaline
bodies (arrows) can be seen (upper panels).
Numerous nemaline bodies with varying
sizes and shapes and a lack of normal myo-
fibrils are visible by electron microscopy
(arrows). Scale bars represent 20 pm for
modified Gomori trichrome and 1 pm for
electron microscopy.

(B) Pedigrees for the families in which
exome sequencing and analysis were per-
formed on the probands. Asterisks indicate
the individuals whose DNA was analyzed
by exome sequencing. Segregation of the
mutations identified in each pedigree is
shown.
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Introduction

Nemaline myopathy (NEM) is a common form of nondy-
strophic congenital myopathy and is defined clinically
by skeletal-muscle dysfunction and pathologically by the
presence of nemaline bodies within myofibers."? Typical
clinical symptoms include hypotonia, muscle weakness
of proximal dominance, respiratory insufficiency, and
feeding problems. Congenital onset is usual, but a wide
variation in age of onset and disease severity is recognized.
Mutations in seven genes are known to cause NEM
(NEM1-NEM7).? Six of these encode sarcomere-thin-
filament proteins or associated proteins: ACTAI (MIM
102610),° CFL2 (MIM 601443),* NEB (MIM 161650),°
TNNTI (MIM 191041),° TPM2 (MIM 190990),” and
TPM3 (MIM 191030);% the seventh, KBTBDI3 (kelch-
repeat- and BTB-[POZ]-domain-containing 13 [MIM
613727])° is involved in the ubiquitin proteasome

of NEM remain genetically unsolved.

One such subtype, which has long
been recognized,'"'? has apparent
autosomal-recessive inheritance and
is characterized by severe weakness,
in utero presentation of fetal akinesia
or hypokinesia and associated abnor-
malities, and muscle biopsy often
showing numerous small nemaline
bodies, sometimes only visible by
electron microscopy and frequently
with virtually no normal myofibrils
remaining (“miliary NEM” Figure 1A
and Figure S1, available online). We
aimed to identify genetic causes of
these severe NEM cases by using a combination of linkage
analysis, or homozygosity mapping, SNP array, and whole-
exome sequencing (WES) in selected families. We have
identified loss-of-function mutations in KLHL40 as a
frequent cause of severe NEM and have shown through
functional studies that KLHL40 is crucial for myogenesis
and skeletal-muscle maintenance.

Subjects and Methods

Subject Details and Ethics
We recruited 143 genetically unresolved severe-NEM-affected fam-
ilies from large congenital-myopathy cohorts in major centers
around the world (Boston, Helsinki, Perth, and Tokyo). All individ-
uals within the cohorts were diagnosed with NEM on the basis of
muscle-biopsy findings.

Written informed consent was obtained for participation in this
study, which was approved by the Human Research Ethics
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Committee of the University of Western Australia (UWA), the
ethics committee of the Children’s Hospital of the University of
Helsinki, Yokohama City University School of Medicine, and the
Boston Children’s Hospital institutional review board. The UWA
Animal Ethics Committee approved animal studies.

Microscopy
Light microscopy and electron microscopy of biopsies was per-
formed as previously described.'®

Whole-Genome SNP Genotyping, Linkage Analysis,
and WES

Genotyping was performed for families 6 and 18 with the use of
the HumanOmniExpress BeadChip Kit (Illumina) and Infinium
1I Assay Workflow (Illumina) at the Institute for Molecular Medi-
cine Finland (FIMM). Data were analyzed with PLINK v.1.07. Mul-
tiple large homozygous regions were identified, but none included
known myopathy-associated genes. WES was performed on one
healthy and one affected sibling from family 6 and the proband
from family 18 with the SeqCap EZ Human Exome Library v.2.0
exome system (Nimblegen, Roche Diagnostics). Coverage depths
were 31- to 62-fold. Variant quantification was performed with
the FIMM Variant Calling Pipeline v.1.0 and the Integrative Geno-
mics Viewer (IGV, Broad Institute of MIT and Harvard). All known
and heterozygous SNPs were excluded. Healthy siblings’ geno-
types were used for the exclusion of shared homozygous variants.

Five individuals from family 16 were genotyped with the
Human Mapping 10K Xbal 142 2.0 array (Affymetrix) and Gene-
Chip Genotyping Analysis Software (Gtypev4.1). Parametric link-
age analysis was performed with Allegro v.2 with a fully penetrant
autosomal-recessive model. WES was performed on the proband
with the use of the SureSelect Human All Exon 50 Mb Kit (Agilent
Technologies) and sequenced in one lane on a GAIIx platform
(Illumina) with 108 bp paired-end reads. Reads were aligned to
the UCSC Genome Browser (GRCh37/hgl9) with Novoalign
(Novocraft Technologies). Mean coverage depth was S59-fold.
Single-nucleotide variants and small indels were identified with
GATK UnifiedGenotyper and filtered according to the Broad
Institute’s Best Practices guidelines v.3. Variants registered in
dbSNP132 were filtered. The filter-passed variants were annotated
with ANNOVAR. Only genes with homozygous variants or more
than two variants located in the candidate linkage regions were
included.

Family 17 was genotyped with the HumanCytoSNP-12
BeadChip (Illumina). MERLIN was used for performing linkage
analysis on a subset of 14,514 SNPs.'* WES was performed for
the proband from family 10 and for both siblings from family
17 as described.'> Coverage depth was 61- to 97-fold. Variants
were called with LifeScope 2.5 (Life Technologies) and filtered
with ANNOVAR'® against ENCODE GENCODE v.11 (October
2011 freeze, GRCh37).1” Two custom variant-filtering steps were
used: (1) one against the 1000 Genomes database (February 2012
release) (variants with a minor allele frequency > 0.5% were
excluded) and (2) one against the dbSNP135 common database.

Family 31 (BOS74) was one in a cohort of 59 NEM-affected fam-
ilies who underwent WES by the Intellectual and Developmental
Disabilities Research Center Core Next-Gen Sequencing Facility
of Boston Children’s Hospital and Harvard Medical School in
collaboration with Axeq Technologies, Complete Genomics, Inte-
grated Genetics (LabCorp), and the Boston Children's Hospital
Gene Partnership. Exome sequencing was performed with the Illu-

mina HiSeq 2000 platform. Reads were mapped with the Burrows-
Wheeler Aligner (v.0.5.8). SNPs and indels were called with
SAMtools (v.0.1.7). Data analysis and variant calling were per-
formed with the Broad GATK Best Practices for identification of
SNPs and small indels. Annotated variants were filtered against
dbSNP135, the 1000 Genomes Project database (October 2011
edition), and the National Heart, Lung, and Blood Institute
(NHLBI) Exome Sequencing Project Exome Variant Server (EVS).

Sequencing

Bidirectional Sanger sequencing of KLHL40 (RefSeq accession
number NM_152393.2) was performed on biobanked DNA from
additional probands with severe NEM and their family members
in Boston, Helsinki, Perth, Yokohama, and Tokyo. Identified vari-
ants were then screened in all available family members. Primer
sequences and conditions are available upon request. For detec-
tion of the c.1582G>A (p.Glu528Lys) mutation in normal
Japanese controls, high-resolution melting (HRM) analysis with
and without the spike-in method'® was performed on LightCycler
480 System II (Roche Diagnostics). If samples showed any aberrant
melting patterns, Sanger sequencing was performed for confirma-
tion of the mutation.

LOD Scores
Where possible, MERLIN was used for calculating LOD scores for
individual families.'*

Expression Analysis on Human cDNAs

TagMan quantitative real-time PCR analyses were performed with
cDNAs of human adult (Human MTCPanel 1, #636742, Clontech
Laboratories) and fetal (Human Fetal MTC Panel, #636747,
Clontech Laboratories) tissues.'” Predesigned TagMan probe
sets for human KLHL40 (KBTBDS, Hs00328078_ml, Applied
Biosystems) and human B-actin (ACTB, 432631SE, Applied
Biosystems) were used. PCR was performed on a Rotor-Gene Q
(QIAGEN) (conditions are available upon request) and analyzed
with the Rotor-Gene Q Series Software by the 2~22%* method. Rela-
tive concentrations of cDNA were normalized to concentrations
obtained from the hearts.

Calculations of the Free-Energy Change upon Amino
Acid Substitutions

Molecular structures were drawn with PyYMOL. FoldX v.3.0 beta®™
was used through a graphics interface as a plugin for the YASARA
molecular viewer.?' Crystal structures of the kelch domain of
human KLHL40 (Protein Data Bank [PDB] code 4ASC) and the
BTB (bric-a-brac, tram-track, broad-complex)-BACK (BTB and
C-terminal kelch) domain of human KHLH11 (PDB code 3I3N)
were energy-minimized with the RepairPDB command imple-
mented in FoldX and subsequently with the BuildModel com-
mand for mutagenesis. Protein stabilities were calculated by the
Stability command, and the free-energy changes were estimated
by subtraction of the free-energy value of the wild-type protein
from those of the altered proteins. The procedure was repeated
three times for each substitution, and the resultant data were pre-
sented as an average value with SDs.

Immunoblotting and Immunohistochemistry

SDS-PAGE and immunoblotting were performed as described.?>%*
For protein studies, C2C12 myoblasts and myotubes were grown
and prepared for immunoblotting and immunofluorescence as
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described.?® For KLHL40 immunoblots, the Human Protein Atlas
(HPA) rabbit polyclonal KLHL40 (KBTBDS5) antibody from Sigma
was used (HPA024463 [1:2,500 dilution]). Immunostaining of hu-
man and mouse muscle samples was performed as described'***
with a KLHL40 antibody (KBTBDS; HPA024463 [1:100 dilution]).

Zebrafish Studies

In Situ Hybridization

Digoxigenin probes for klhl40a and klhl40b were generated by
cDNA amplification of 1,340 and 694 bp sequences, respectively
(Table S1). In situ hybridizations were performed as described
previously.?*

Morpholino Microinjection

Antisense translation-blocking morpholinos (Table S1) for klhi40a
(kIhl40a-MO) and kIhl40b (kIhi40b-MO and kIhi40b-MOZ2) were
coinjected into 1- to 2-cell-stage embryos at a final concentration
of 0.25 or 0.5 mM. Morpholino efficacies were tested by immuno-
blotting for K1h140.

Zebrafish Immunohistochemistry

Immunohistochemistry of zebrafish embryos was performed as
described®*?* with myosin heavy chain (MHC) antibody (F59
[1:20 dilution] or A4.1025 [1:10 dilution]; Developmental Studies
Hybridoma Bank) and a-actinin (1:100 dilution; Sigma) and fila-
min C (1:100 dilution; Sigma) antibodies, and Alexa-Fluor-488-
conjugated phalloidin (1:100 dilution; Molecular Probes) was
used for labeling F-actin. Immunoreactivity was detected with
an Alexa-Fluor-594-conjugated anti-mouse secondary antibody
diluted in blocking buffer (1:200).

Statistical Analyses

Statistical analyses of clinical features were carried out with SPSS
Statistics 19 (IBM) software. Individuals for whom information
for a clinical feature was not available were excluded from the
analysis of that feature. Either Chi-square tests or Fisher's exact
tests were applied for comparing each phenotypic variable
between different genotypes. p < 0.05 was considered statistically
significant.

Results

WES identified homozygous or compound-heterozygous
mutations in KLHL40 (kelch-like family member 40; also
known as KBTBDS5 [kelch-repeat- and BTB-(POZ)-domain-
containing 5] and SYRP [sarcosynapsin]) in six NEM-
affected families (families 6, 10, 16-18, and 31; Figure 1B
and Table 1). Subsequent screening of KLHL40 by Sanger
sequencing in additional probands with severe NEM
resulted in the identification of a total of 19 variants
(4 frameshifts, 12 missense mutations, 2 nonsense muta-
tions, and 1 splice site) in 28 (19.6%) apparently unrelated
families (Table 1) from the cohort of 143 families affected
by severe NEM. In addition, 129 probands with milder
NEM were screened, but no KLHL40 mutations were iden-
tified in this cohort, confirming that KLHL40 mutations
are most likely exclusive to cases of severe NEM.

In all cases where it was possible to test unaffected par-
ents, siblings, and extended family, the mutations cosegre-
gated with disease in an autosomal-recessive fashion
(Figure 1B), giving a combined LOD score of 5.66 (Table

1). All mutations were either absent from the NHLBI EVS
and the 1000 Genomes database®® or present at low fre-
quencies in the heterozygous state (Table 1). In five addi-
tional NEM-affected families, only single KLHL40 variants
were identified (Table S2); the significance of these variants
in these individuals remains unclear.

In Japanese persons, KLHL40 mutations are the most
common cause of this severe form of NEM (13/47 [~28%)])
asaresult of a founder effect with the c.1582G>A mutation.
Given that this mutation was present in Turkish, Kurdish,
and Japanese families, we completed a haplotype analysis
of Japanese and Turkish families (families 16 and 17)
but did not identify a common haplotype between them
(Figure S2). HRM with confirmatory Sanger sequencing of
510 normal Japanese individuals revealed a heterozygous
¢.1582G>A mutation in one individual. Therefore, the
mutant-allele frequency in the Japanese population was
estimated to be 0.0098. According to the equation
described by Kimura and Ota®” and under the assumption
of 25 years per generation, the age of this mutation is
calculated to be 4,900 years old.

The identified KLHL40 mutations were scattered
throughout all exons (Table 1 and Figure 2A) encoding
mostly conserved residues (Figure $3). To investigate dis-
ease mechanisms, all substitutions except p.Arg311Leu
were mapped to the crystal structures of the kelch domain
of human KLHL40 and the BTB-BACK domain of human
kelch-like protein 11 (KLHL11; Figures 2B and 2C and
Figure S4). p.Arg311Leu (c.932G>T) was predicted to be
in the structurally flexible region, a linker of nonconserved
amino acids connecting the BACK and kelch domains
(Figure S7D), and was therefore excluded from structural
consideration. All the modeled substituted residues are
involved in intramolecular interactions, and thus the sub-
stitutions would most likely destabilize the hydrophobic
cores of the BTB-BACK domain (p.Leu86Pro [c.257T>C],
p.Vall94Glu [c.581T>A], and p.Trp201Leu [c.602G>A)),
the kelch domain (p.Pro397Leu [c.1190C>T], p.His455Arg
[c.1364A>G], and p.Gly469Cys [c.1405G>T]), the
B sheet (p.Thr506Pro [c.1516A>C] and p.Ala538Pro
[c.1612G>C]), or the hydrogen bonds between the
main chain and side chain (p.Asp34His [c.100G>C]
and p.Glu528Lys [c.1582G>A]) or between side
chains (p.Glu588Lys [c.1762G>A]) (Figures S5-S7). The
p.Pro397Leu and p.Glu588Lys substitutions appear to be
conservative for the hydrophobic core and hydrogen
bonding, respectively. The former substitution is predicted
to affect the polyproline II helix conformation (residues
396-399; Figure S6A). The calculated free-energy
change for most substitutions was estimated to be over
2.0 kcal/mol (Figure 2D), which is typically associated
with destabilization of domain folds.>® These analyses
suggested that most KLHL40 missense mutations impair
protein stability.

To investigate KLHL40 expression and KLHL40 abun-
dance, we performed quantitative RT-PCR and immuno-
blotting of human and mouse tissues. KLHL40 transcripts

The American Journal of Human Genetics 93, 6-18, july 11, 2013 9



Table 1.

KLHL40 Mutations by Family, Individual LOD Scores, Ethnicity, and Population-wide Incldence

Mutation Incldence from
LOD Incldence from 1000 Genomes
Family Exon(s) Nucleotide Change Amino Acid Change Score  Ethnicity EVS (1°% 27Y) (1°% 27
Family 31 1 ¢.[100G>C];[257T>C] p.[Asp34His];[Leu86Pro] 0.6 Vietnamese ND; ND ND; ND
Family 2 1 c.[134delC];[134delC] p.[Pro45Argfs*19]; NA Italian NA ND
[Pro45Argfs*19]
Family 3 1 ¢.[270C>GJ;[270C>G] p.[Tyr90*];[Tyr90%] NA Turkish ND ND
Family 5 1 c.[381T>A];[S81T>A] p.[Val194Glu];[Val194Glu] 0.6 Israeli ND ND
Family 6° 1 .[602G>T};[602G>T] p.[Trp201Leu;[Trp201Leu]  1.454  Turkish ND ND
Family 7 1 ¢.[602G>A];[602G>A] p-[Ttp201*];[Trp201*] NA Norwegian ~ ND ND
Family 9 1 ¢.[790delC;[790delC] p.[Arg264Alafs*59]; 0.25 Turkish NA ND
[Arg264Alafs*59]

Family 10° 1land4  c[932G>T|;[1516A>C] pArg311Leul;[ThiS06Pro]  NA ¢ C hinese ND; ND ND; ND
famjly 34 2and6 c.[1190C>TL[1762G>A] ’ p-[Pro397Leu];[GluS88Lys] NA Turkish ND; ND I(\}ID; 12\ i__ 82 and
Family 12 2and4  c.[1270_1272delinsAGATC p-[Asp424Argfs*23]; NA Japanese NA; ND ND; ND

AAGGT];{1582G>A] [Glu528Lys]
Family 13 2and4  c.[1281_1294delCTGCCTGG  p.[Cys428Hisfs*12]; NA Korean NA; ND ND; ND

ACTCGG];[1582G>A] [Glu528Lys]
Family 14 3 c.[1364A>G];[1364A>G] p-[His455Arg];[His455Arg]  NA Turkish ND ND
Family 15 3 ¢.[1405G>T];[1405G>T] p-[Gly469Cys];[Gly469Cys] NA Japanese ND ND
Family 16° 3and4  c¢.[1405G>T];[1582G>A] p.[Gly469Cys];[Glu528Lys] 0.727  Japanese ND; ND ; ND
Family 17° 4 c.[1582G>A];[1582G>A] p-[Glu528Lys);[Glu528Lys]  1.654  Turkish ND ND
Family 18* 4 .[1582G>A;[1582G>A) p.[Glu528Lys};[Glu528Lys]  0.125  Kurdish ND ND
Family 19 4 .[1582G>AL;[1582G>A] p.[GluS28Lys;[Glu528Lys]  0.25  Kurdish ND ND
Family 20 4 c.[1582G>AJ;[1582G>A] p.[Glu528Lys];[Glu528Lys]  NA Japanese ND ND
Family 21 4 c.[1582G>A};[1582G>A] p-[Glu528LysL;[Glu528Lys] NA Japanese ND ND
Family 22 4 ¢.[1582G>A];[1582G>A] p.[Glu528Lys];[Glu528Lys] NA Japanese ND ND
Family 23 4 ¢.[1582G>A};[1582G>A] p-[Glu528Lys];[Glu528Lys]  NA Japanese ND ND
Family 24 4 c.[1582G>A];[1582G>A] p.[Glu528Lys|;[Glu528Lys] NA Japanese ND ND
Family 25 4 c.[1582G>A[;[1582G>A] p.[Glu528Lys|;[Glu528Lys] NA Japanese ND ND
Family 26 4 c.[1582G>AL;[1582G>A] p.[Glu528Lys];[Glus28Lys] NA Japanese ND ND
Family 27 4 c.[1582G>A);[1582G>A] p.[Glu528Lys];[Glu528Lys] NA Japanese ND ND
Family 28 4 c.[1582G>A};[1582G>A] p.[Glu528Lys];[GluS28Lys] NA Japanese ND ND
Family 29  4/5 c.[1608-1G>A];[1608-1G>A] NA NA Turkish ND ND
Family 30 5 ¢.[1612G>C];[1612G>C] p-[Ala538Pro];[Ala538Pro] NA Turkish ND ND

The individual pedigree LOD scores are given where possible. This table also shows the incidence of the mutations reported within the NHLBI EVS and the 1000
Genomes browser. Abbreviations are as follows: NA, not available; and ND, not detected.

®Families for whom WES was performed.

and their encoded proteins were exclusive to developing
and adult skeletal muscle (Figures 3A-3C) and more abun-
dant in fetal muscle than in postnatal muscle (Figure 3C).
Confocal microscopy suggested that KLHL40 might
localize to the sarcomeric A-band (Figure 3D and
Figure S8), a region not previously linked to NEM. Immu-
noblotting showed that KLHL40 is absent or of low abun-
dance in KLHL40-associated NEM muscle (Figure 3E), even
for persons harboring two missense mutations (F10 and

F17). Immunohistochemistry confirmed that KLHL40
was absent or very scarce in KLHL40-associated NEM
myofibers (Figure 3F).

We further investigated Kihl40 function in zebrafish.
The zebrafish genome contains two orthologs of KLHL40:
klhl40a and kIhl40b, which have 57% (klhl40a) and
55.7% (klhl40b) amino acid similarity to human KLHL40.
RT-PCR demonstrated expression of both kIhl40 genes at
24 and 48 hr postfertilization (hpf) (Figure S9A). In adult
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Figure 2. Mutations Identified in Our Cohort and the Structural Modeling of the Missense KLHL40 Substitutions

(A) Schematic presentation of the genomic structure of KLHL40 (upper) and its encoded protein, KLHL40, with the BTB-BACK domain
and kelch repeats (lower). The localization of mutations and substitutions identified is depicted with dots, and the number of dots for
each mutation or substitution indicates the number of times it was found. Most substitutions occurred at conserved amino acids. The
dots above KLHL40 indicate fruncating mutations, and those below KLHL40 indicate missense mutations.

(B and C) Structural modeling of the missense KLHL40 substitutions. The crystal structures of the (B) kelch domain of KLHL40 and the
(C) BTB-BACK domain of KLHL11 and the location of the substitutions are shown. p.Pro397Leu, p.His455Arg, p.Glu469Cys,
p-Thr506Pro, p.Glu528Lys, p.Ala538Pro, and p.GluS88Lys map to the kelch repeats (B), p.Asp34His and p.Leu86Pro map to the BTB
domain, and p.Val194Lys and p.Trp201Leu map to the BACK domain (C). The side chains of the mutated residues are shown as sticks
with space-filling spheres in red. « helices, B sheets, and loops are drawn as ribbons, arrows, and threads, respectively. Each kelch repeat
(B) is color coded in the kelch domain, and the BTB and BACK domains (C) are colored pink and green, respectively. Molecular structures
were drawn with PyMOL.

(D) The calculated free-energy changes resulting from the missense substitutions in the kelch domain of human KLUHL40 and the BTB-
BACK domain of human KLHL11 were predicted by FoldX. Data are presented as the mean + SD. Residue numbers used in (C) and (D)
refer to human KLHL11, and those corresponding to human KLHL40 are in parentheses.
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Figure 3. KLHL40 Expression in Human and Mouse Tissues

(A) Tagman quantitative real-time PCR analysis of cDNA from adult or fetal human tissues. Error bars represent the SD. The following
abbreviation is used: Sk, skeletal.

(B) KLHL40 levels in C2C12 cells and mouse tissues (HPA, top panel) and immunoblotting for sarcomeric a-actin (clone 5CS, middle
panel) and GAPDH (lower panel). Lanes are as follows: myo, C212 myoblasts; D2, myotubes on day 2 of differentiation; D4, myotubes
on day 4 of differentiation; D6, myotubes on day 6 of differentiation; Gastroc (left), C57BL/6 postnatal day 2 (d2) gastrocnemius; Gastroc
(right), C57BL/6 8-week-old gastrocnemius; and EDL (extensor digitorum longus) to liver, C57BL/6 8-week-old tissues. For all mouse
tissue lysates, samples were pooled from three different mice.

(C) On the left is KLHL40 expression in human skeletal muscle (HPA, top panel), immunoblotting for a-actinin (clone EA-53, middle
panel), and Coomassie staining of MHC band (bottom panel). Lanes are as follows: F:19w, 19-week-old fetus; F:23w, 23-week-old fetus;
F:31w, 31-week-old fetus; 11d, 11-day-old neonate; 6mo, 6-month-old baby; and C1-C4, healthy adult controls of 1942 years of age. On
the right, KLHL40 intensity normalized to MHC for fetal muscle is 3.34 = 0.92 (n = 3) versus 1.37 * 0.21 (n = 6) for postnatal skeletal
muscle. *p = 0.023, unpaired two-tailed t test. Error bars represent the SEM.

(D) Single Z-plane confocal microscopy showing localization of KLHL40 (green) and «-actinin (red) in a longitudinal section of skeletal
muscle from a 31-week-old fetus; costaining with Hoechst (blue) is also shown (Merge). Scale bars represent 5 pm.

(E) Immunoblotting shows that KLHL40 is absent in KLHL40-associated NEM muscle (II-1 from family 10 [F10] and V-2 from family 17
[F17]) compared with healthy control muscle (C1, C3, and C4). Coomassie staining of the MHC band (bottom panel) and immunoblot-
ting for sarcomeric a-actin (clone 5C35, middle panel) indicate similar or greater loading for the KLHL40-associated NEM samples
compared with control samples.

(F) Immunofluorescence for KLHL40 in a human 23-week-old fetal skeletal muscle sample (F:23w), an adult healthy control (C4), and
KLHL40-associated NEM muscle biopsies (II-1 from family 10 [F10], V-2 from family 17 [F17], family 21 [F21], and family 26 [F26]). Scale
bars represent S0 pm.

zebrafish, kIhl40a was most abundant in the skeletal mus-
cle and heart and kIhi40b was most abundant in the skel-
etal muscle (Figure S9A). At the 16 and 24 hpf stages,
expression of both genes was restricted to the muscle pre-
cursor cells in the somites (Figure 4A). We knocked down
zebrafish klhl40a and kihl40b with antisense morpholino

oligonucleotides (kIhl40a-MO, kIhl40b-MO, and klhl40b-
MO2) (Figures S9B and S10A). Embryos injected
with klhl40a-MO, kIhl40b-MO, and klhi40a-MO/40b-MO
(double morpholinos) showed a curved trunk and small
head at 48 hpf (Figures 4B and 4C). A normal phenotype
resulted from 5 bp mismatched morpholinos (Smis-MOs).
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Figure 4. Expression and Function of k/h/40 in Zebrafish

(A) In situ hybridization demonstrates that expression of both klhl40a and kIhl40b is restricted to the skeletal muscle at 16 and 24 hpf.
(B) Gross morphology of uninjected embryos (WT) and embryos injected with klhl40a-MO, kihl40b-MO, and kIh140a-MO/40b-MO.
Lateral views of MO-injected embryos (4 ng) at 48 hpf are shown. Scale bars represent 500 pm.

(C) Percentage of embryos categorized in phenotypic classes after injection with the Smis-MO control, kIhl40a-MO, kIhl40b-MO, or
k1n140a-MO/40b-MO. We categorized the phenotypes at 48 hpf into normal (normal appearance), mild (curved trunk), and severe
(tail defect and severe development delay) (n = 111-130).

(D) Knockdown of kIhl40a, kIhi40b, or both resulted in severe disruption of the skeletal muscle: fibers appeared wavy, and there were
extensive gaps between fibers in contrast to the densely packed and aligned fibers of the controls. Maximum-intensity projection images
from a confocal image series followed immunolabeling with a myosin antibody (F59, upper panels) at 36 hpf and F-actin (lower panels)
at 72 hpf.

(E) Embryos injected with Smis-MO, klhi40a-MO, klhl40b-MO, or klhi40a-MO/40b-MO were categorized phenotypically on the basis of
the presence of myofiber detachment affecting one to two somites (mild) or multiple (three or more) somites (severe) (n = 25-44).

(F) Double-labeled immunofluorescence was performed on isolated myofibers from 72 hpf embryos with the use of phalloidin (green)
and a-actinin (red). Frequent areas of aberrant a-actinin accumulation were detected in klhi40a-MO/40b-MO myofibers (arrowheads).
(G) Electron microscopy of 72 hpf myofibers. A Smis-MO-injected embryo shows correctly aligned sarcomeres and T-tubules (upper
panel). A klhl40a-MO/40b-MO-injected embryo (lower panel) shows disarranged myofibrils with widened Z-disks (arrow), but thin
filament lengths are unchanged. The scale bar represents 0.7 pm.

We analyzed slow myofibers in more detail by immuno- patterning with an irregular, wavy appearance of the stri-
staining slow myosin heavy chains (Figure 4D, upper ated myofibers and extensive gaps between the myofibers
panels). kIhl40 morphants showed disruption of muscle (Figures 4D and 4E and Figure S10B) and a greatly
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Table 2. Summary of Clinical Features of NEM Individuals with
KLHL40 Mutations

Individuals with KLHL40 Mutations
(n = 32 Cases from 28 Families)

Total Percentage
Family history 17/28 60.7%
Consanguinity 10/28 35.7%
Prenatal Perlod
Prenatal symptoms 24/29 82.8%
Fetal akinesia or hypokinesia  16/21 76.2%
Polyhydramnios 14/29 48.3%
Neonatal Period
Respiratory function
respiratory failure 28/29 96.6%
;equiring ventilation 11/29 37.9%
Facial involvement 26/26 100%
weakness 23/23 100%
;;Ml;élahnoparesis 4/23 17.4%
mild dysmorphology 15/15 100%
Dysphagia 23/24 95.8%
with tube feeding or 13/24 54.2%
gastrostomy
Muscle weakness 29/29 100.0%
with no spontaneous 13/29 44.8%
antigravity movements
Contracture(s) 24/27 88.9%
Pathological fracture(s) 10/19 52.6%
Average age at death S months (n = 14)

Average gestation age at birth 37 weeks (n = 27)

Average birth weight 2,558 g (n=26)

Total numbers were calculated as the number of individuals with the clinical
features over the total number of individuals whose medical records were avail-
able for each category.

diminished birefringence (Figure S$10C). Isolated myofibers
from klhi40a-MO/40b-MO fish, coimmunostained with
phalloidin and an «-actinin antibody (Z-disk), showed
disorganized and irregular patterns with small aggregates
of a-actinin, suggesting nemaline bodies (Figure 4F). Aggre-
gation of Z-disk material was also confirmed by immu-
nostaining for filamin C in klhi40a-MO/40b-MO fish
(Figure S11). Electron-microscopic analysis revealed disar-
ranged myofibrils with widened Z-disks (Figure 4G). Fish
injected with klhl40a-MO, klhl40b-MO, kIhl40b-MO2, or
kih140a-MO/40b-MO2 (double morpholinos) exhibited
sporadic muscle tremors, and coordinated swimming
behavior was not observed (Movies S1 and S2). These results
suggest that Klhl40a and Klhl40b are required for muscle
development and function and that loss of either isoform
in the early embryo is sufficient to impair normal mobility.

Detailed clinical records were collected and analyzed for
32 affected individuals from the 28 unrelated kindreds
afflicted with KLHL40 mutations. These individuals were
from various ethnicities, such as European, Middle and
Near Eastern, or Asian. Clinical features of individuals
with KLHL40 mutations were severe and distinctive
(Table 2 and Table S3). Eighty-three percent of affected indi-
viduals showed prenatal symptoms, and 76% displayed
fetal akinesia or hypokinesia. Most persons had severe res-
piratory compromise (97%), and approximately a third
required ventilatory support (38%). Almost all affected
individuals (96%) also had swallowing problems, and half
required tube feeding or gastrostomy. Muscle weakness
was severe. Forty-five percent of individuals had no sponta-
neous antigravity movement. Seventeen percent of affected
individuals were also noted to have ophthalmoparesis, a
relatively rare symptom in NEM. Multiple joint contrac-
tures and pathological bone fracture were other common
features. Dysmorphic facial features and deformities of
the chest, spine, fingers, and feet were also frequent. The
average age of death was 5 months. Many families,
including a previously described family (family 30 herein,
cases 2-6 in Lammens et al.),*! were consanguineous.

We further evaluated whether there are any genotype-
phenotype correlations in KLHIL40-associated NEM. We
compared the clinical features of individuals according to
the type of mutation they had (either two truncating
mutations, one truncating mutation and one missense
mutation, or two missense mutations) and the pattern
of mutations (homozygous or compound heterozygous).
No significant differences in frequencies of these clinical
features were observed (data not shown). We also
compared the clinical features of persons with the recur-
rent ¢.1582G>A genotype (either with this mutation
[genotype G/A or A/A as group A] or without [genotype
G/G as group G]). Prenatal symptoms, including fetal aki-
nesia or hypokinesia, were frequently observed (73.3% in
group A versus 92.9% in group G). Respiratory failure was
common in both groups (100% in group A versus 92.9%
in group G), but there were significantly fewer individuals
requiring ventilation in group A than in group G (20.0% in
group A versus 57.1% in group G; p = 0.047). Dysphagia
was also common in both groups (100% in group A versus
90.0% in group G), but there were fewer persons requiring
tube feeding or gastrostomy in group A than in group G,
although the difference was not significant (42.9% in
group A versus 70.0% in group G; p = 0.127). Facial weak-
ness was observed in all affected individuals in both
groups, but fewer individuals in group A had ophthalmo-
paresis (7.7% in group A versus 30.0% in group G;
p = 0.281). All persons also had muscle weakness, but
significantly fewer individuals in group A had the most
severe form of muscle weakness with no antigravity move-
ments (20.0% in group A versus 71.4% in group G;
p = 0.018). Significantly fewer affected individuals in
group A were deceased at the time of study than in group
G (23.5% in group A versus 71.4% in group G; p = 0.012;
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no antigravitory movement; and deceased, individuals who were deceased at the time of study. Asterisks indicate that statistical signif-

icance was observed.

odds ratio = 8.125; 95% confidence interval = 1.62-40.75)
(Figure 5). We further compared the clinical features of
individuals of different ethnicities (either European or
Asian descent) according to the ¢.1582G>A genotype,
and similar tendencies were demonstrated (data not
shown). There was, however, great variation in severity
for individuals with or without the c.1582G>A genotype.

Discussion

We have described the identification of recessive KLHL40
mutations in individuals with severe NEM from 28 unre-
lated families of various ethnicities. The c.1582G>A muta-
tion was the most frequently detected mutation and was
found in Japanese, Kurdish, and Turkish persons. However,
comparison of haplotypes between a Japanese family and a
Turkish family suggested that the mutation arose indepen-
dently in these ethnic groups. We have shown several lines
of evidence of the pathogenicity of the KLHL40 mutations.
The missense mutations occurred mostly in conserved
functional domains within KLHL40, and they were pre-
dicted to destabilize the intramolecular interactions and
thus impair protein stability. This was corroborated by
the absence of KLHL40 even in the skeletal muscle of indi-
viduals harboring two missense mutations. We have estab-
lished a locus-specific database for KLHL40 mutations at
the Leiden Muscular Dystrophy Pages.

Expression of KLHL40 in fetal and adult skeletal muscle
indicates that KLHL40 plays a role in both myogenesis and
mature muscle. KLHL40 appears to be more abundant in
fetal skeletal muscle than in postnatal skeletal muscle
and most likely accounts for the prevalence of in utero pre-
sentations in this NEM cohort. Perhaps KLHL40 is more
important for myogenesis than for muscle maintenance;
this could account for the fact that the disease ranges so

much in severity, from some individuals’ dying within
hours of being born to others’ surviving into adolescence.
Our zebrafish studies have demonstrated that Klhl40a and
Kihl40b are not required for the specification of muscle
cells but rather for muscle patterning and function and
that loss of either isoform in the early embryo is sufficient
to impair normal mobility, supporting the involvement of
KLHL40 in NEM-associated fetal akinesia. It has previously
been suggested that KLHLAO is also important for muscle
maintenance through the process of degeneration and
regeneration.”**° KIhl40 is upregulated in myogenic pre-
cursors after cardiotoxin injury of mouse skeletal muscle,
supporting a role for Kinl40 in the response to muscle
damage.” Studies of cattle muscle have shown increased
KIhl40 expression in another catabolic process, undernu-
trition, further suggesting a role for KLHL40 in the stress
response.*’

KLHL40 belongs to the superfamily of kelch-repeat-
containing proteins that form characteristic g-propeller
structures,® which bind substrate proteins and are
involved in a wide variety of functions. In humans, 71
kelch-repeat-containing proteins have been identified.**
The majority contain an N-terminal BTB domain (also
known as the POZ [poxvirus and zinc finger] domain)
and a BACK motif. Proteins containing both a BTB domain
and a kelch repeat have previously been implicated in
neuromuscular disease. A dominant KLHL9 mutation
causes an early-onset distal myopathy (distal myopathy 1
[MIM 160500]),** and dominant KBTBDI3 mutations
cause nemaline myopathy with cores (MIM 609273).°
‘We now show that KLHL40, encoding KLHL40, which con-
tains both a BTB domain and a kelch repeat, is associated
with autosomal-recessive neuromuscular disease. BTB
domains function as substrate-specific adaptors for cullin
3 (Cul3),**** a component of the E3-ubiquitin-ligase com-
plex. Both KLHL9 and KBTBD13 bind Cul3.'%** MuRF1,
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an E3-ubiquitin ligase, is known to be recruited to M-line
titin and is thought to modulate myofibrillar turnover
and the trophic state of muscle.*® KLHL40 appears to be
present at the A-band and might be similarly involved
through the ubiquitin-proteasome pathway.

We have characterized the severe and distinctive features
of this disease as fetal akinesia or hypokinesia during the
prenatal period, respiratory failure and swallowing diffi-
culty at birth, contractures and fractures along with
dysmorphic features, and in most cases, early death. We
have also shown that persons with the recurrent
c.1582G>A mutation tend to have relatively milder
symptoms compared to those of individuals without
¢.1582G>A. Howevey, the severity of the disease in persons
with or without the ¢.1582G>A genotype varied greatly
(for example, from death at 20 days to still being alive at
11 years for persons homozygous for the c.1582G>A geno-
type), suggesting modifying factors.

Fetal akinesias are clinically and genetically heteroge-
neous, and the majority of cases still remain genetically
unsolved.*® Primary muscle diseases account for up to
50% of such syndromes.>” On the basis of our study,
KLHL40 mutations cause a significant proportion of severe
NEM cases of fetal akinesia sequence and the disease shows
worldwide prevalence. KLHL40 should be considered when
aclinician encounters an individual presenting with prena-
tal symptoms, such as fetal akinesia or hypokinesia, or
clinical features and/or pathology of severe NEM at birth
(especially miliary NEM, which was present in at least
20% of our KLHL40-mutation cases), along with an auto-
somal-recessive pattern of family history. Fractures are a
relatively frequent presentation within this cohort, unlike
other NEM cohotts, and should also be used for directing
genetic screening of KLHL40. We show that KLHL40 immu-
nohistochemistry, immunoblotting, or genetic screening
will identify the disease and thus allow genetic counseling
for the affected individual’s family.

In conclusion, this study associates loss-of-function
KLHL40 mutations with severe, often in utero, NEM.
Many probands who do not harbor KLHL40 mutations pre-
sent with NEM in utero, suggesting further genetic hetero-
geneity. Clarification of KLHL40 function and interactions
might lead to a greater understanding of the pathogenesis
of disease, the identification of other candidates for
this severe form of NEM, and the investigation of possible
therapies.

Supplemental Data

Supplemental Data include 11 figures, three tables, and two
movies and can be found with this article online at http://www.
cell.com/AJHG.
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