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INTRODUCTY

Monosomy 21 is a very rare chromosomal abnormality compared
with trisomy 21, which is the most common chromosomal abnor-
mality in humans [Albert, 2001]. It is possible that fetuses with full
monosomy 21 die before or soon after birth [Courtens et al., 1994;
Huret et al., 1995; Oegema et al., 2010]. In contrast, at least 45
patients with partial deletion of chromosome 21 have been reported
[Braddock and Carey, 1994; Courtens et al., 1994; Theodoropoulos
et al., 1995; Chen et al., 2003; Yao et al., 2006; Hoyer et al., 2007;
Beri-Dexheimer et al., 2008; Shinawi et al., 2008; Lyle
et al., 2009; Fujita et al., 2010; Katzaki et al., 2010; Lindstrand
etal., 2010; Oegema et al., 2010; Byrd et al., 2011; Click et al., 2011;
Melis etal.,2011; Roberson etal., 2011; Thevenonet al., 2011; Izumi
et al., 2012]. Among 21q22 microdeletion syndromes, Braddock—
Carey syndrome with thrombocytopenia multiple anomalies and
intellectual disability was first described in 1994 [Braddock and
Carey, 1994]. This syndrome is caused by haploinsufficiency of
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RUNX1 [Katzaki et al., 2010; Braddock et al., 2011; Thevenon
et al,, 2011]. The clinical phenotypes of 21q22 deletion vary from
normal to severe, depending on the size and position of the deletion
[Courtens et al,, 1994; Chettouh et al., 1995; Theodoropoulos
et al., 1995; Yao et al., 2006; Beri-Dexheimer et al., 2008; Shinawi
et al., 2008; Lyle et al., 2009; Fujita et al., 2010; Katzaki et al., 2010;
Lindstrand et al., 2010; Melis et al., 2011; Roberson et al., 2011].
Moreover, three regions for partial monosomy 21 have been
proposed based on genotype—phenotype correlation studies
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[Lyle etal,, 2009; Roberson etal., 2011]. These are region 1: deletion
from the centromere to 32.3 Mb (hgl9), region 2: from 32.3 to
37.1Mb (hgl9), and region 3: 37.1Mb to the telomere (hgl9).
Region 2 deletion is likely associated with a severe phenotype
[Roberson et al., 2011]. Here, we report a Japanese boy with a
de novo 1.4-Mb deletion at 21q22.1 within region 2; this may
provide insight into the relationship between the deleted region and
the clinical manifestations.

Peripheral blood samples from the patient and his parents were sent
to us after their written informed consent was obtained. DNA was
extracted using a QuickGene-610L (Fujifilm, Tokyo, Japan)
according to the manufacturer’s instructions. The parentage was
confirmed using nine polymorphic markers (information available
on request). This study was approved by the institutional review
board of Yokohama City University School of Medicine.

Pathogenic gene copy number variations were analyzed using a
CytosScan™ HD array (Affymetrix, Santa Clara, CA) and Chro-
mosome Analysis Suite v1.2 software (Affymetrix) according to the
manufacturer’s instructions. The detection conditions for Chro-
mosome Analysis Suite were as follows: a confidence value of 90%,
20 contiguous probes, and larger than 100 kb for duplications; and a
confidence value of 89%, 20 contiguous markers, and larger than
10kb for deletions.

lymphocytes from the patient and his parents according to standard
protocols. Four RPCI-11 human bacterial artificial chromosome

(BAC) clones were used: RP11-70F1 (chr21:34,038,494-
34,212,146 bp according to the University of California Santa
Cruz (UCSC) genome browser hgl9), RP11-48418 (chr2l:
34,874,308-35,042,949 bp) for the deleted region, RP11-626D11
(chr21: 19,060,470-19,225,491bp), and RP11-345F15 (chr2l1:
46,769,379-46,984,213 bp) for reference. BAC DNA was labeled
with Green-UDP (Abbott Molecular, Des Plaines, IL) or Cy3-11-
dUTP using a Vysis Nick Translation kit (Vysis, Downers Grove,
IL). The labeled probes were applied to the chromosomes, incu-
bated at 37°C for 1672 hr and then washed and mounted in anti-
fade solution (Vector Laboratories, Burlingame, CA) containing
4',6-diamidino-2-phenylindole. Images were taken on an AxioCam
MR charge-coupled device camera fitted to an Axioplan2 fluores-
cence microscope (Carl Zeiss, Oberkochen, Germany).

The patient was a 19-month-old boy, born at 38 weeks of gestation
to healthy, non-consanguineous Japanese parents as the first child
after a normal pregnancy. His birth weight was 2,602 g (—0.7 SD),
length 48cm (—0.2 SD), and occipital-frontal circumference

(OFC) 31.0cm (—1.2 SD). At 11 months old, his height was
72.7cm (—0.76 SD), weight 7,140g (—2.26 SD), and OFC
433cm (—1.97 SD). At 19 months, his height was 76.5cm
(—1.6 SD), weight 8,270g (—2.1 SD), and OFC 46.1cm (—1.1
SD). He was able to control his head at 10 months, roll over at
13 months and sit alone at 25 months. Based on the Enjoji
developmental assessment {Enjoji and Yanai, 1961], his develop-
mental age at 19 months was 6 months and his developmental
quotient was 32.

At 11 months, dysmorphic facial features were noted including
midface hypoplasia, bilateral coloboma of the iris, low-set ears,
broad and low nasal bridge, anteverted nares, downturned corners
of the mouth and thin upper lip vermilion (Fig. 1A-D) as well as
widely spaced nipples, hypoplasia of the fifth toenails, edematous
dorsum of hands and foot, cryptorchidism, and hypotonia. At
17 months, he developed generalized clonic seizures, which were
controlled by anti-epileptic drugs. Polymicrogyria in the right
frontal operculum-perisylvian region was revealed by magnetic
resonance imaging at 18 months old (Fig. 1E,F). He had an arterial
septal defect and dysplastic tricuspid valve, but surgery was not
required. Standard audiometric examinations, spinal X-ray, bone
age, and G-banding karyotype were all normal.

The observed multisystem organ impairment suggested that the
patient’s phenotype might be caused by a chromosomal structural
abnormality [Feuk et al., 2006]. We therefore performed a copy
number analysis and detected a 1.4-Mb deletion at 21q22.11 (chr21
33,824,925-35,242,759 bp) but no other abnormal copy number
variations. This deleted region includes 19 protein-coding RefSeq
genes (EVAIC, TCPIOL, C2lorf59, SYNJ1, PAXBPI, C2lorf62,
OLIG1, OLIG2, IFNAR2, IENARI, IL10RB, IFNGR2, TMEMS50B,
DNAJC28, GART, SON, DONSON, CRYZL1, and ITSN1, accord-
ing to the UCSC database as of July 2013). The deletion was
confirmed by FISH to be de novo (Fig. 2).

We present a Japanese patient with a de novo 1.4-Mb deletion at
21q22.11. To the best of our knowledge, at least 16 other reported
patients share the deleted region and clinical manifestations with
our patient (Table I) [Braddock and Carey, 1994; Orti et al., 1997;
Albert, 2001; Yao et al., 2006; Hoyer et al., 2007; Beri-Dexheimer
etal., 2008; Shinawi et al., 2008; Lyle et al., 2009; Katzaki et al., 2010;
Lindstrand et al., 2010; Byrd et al., 2011; Click et al., 2011; Melis
et al., 2011; Thevenon et al., 2011; Izumi et al., 2012]. Among the
three described regions of partial monosomy 21, regions 2 and/or 1
may produce a more severe phenotype than that produced by
region 3 [Lyle et al., 2009; van der Crabben et al., 2010; Roberson
et al., 2011]. Therefore, all three regions (especially region 2) were
carefully considered when we compared the phenotype—genotype
correlation in those patients regardless of limited clinical informa-
tion (Fig. 2A). Growth and developmental delays and microcephaly
were observed in most of the patients (Table I). Among the 17 above
cases, no identical deletions were detected, but the intersectin 1 gene
(ITSN1, NM_003024.2) was commonly deleted or disrupted.
There were also 12 patients with a non-overlapping 21q22 deletion,
which may be useful for exclusion mapping (Fig. 2B). However,
most of the non-overlapping deletion patients (10/11) also had
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mild-to-severe developmental delay; thus, there could be other
genes related to developmental delay in these regions.

ITSN1 is a cytoplasmic membrane-associated protein that indi-
rectly coordinates endocytic membrane traffic with the actin
assembly machinery. It has been implicated in the pathogenesis
of Down syndrome, Alzheimer disease, and potentially other
neurodegenerative diseases [Hunter et al, 2011; Tsyba et al,
2011; Morderer et al., 2012]. The short isoform of ITSNI is
expressed ubiquitously, while the long isoform shows neuron-
specific expression [Pucharcos et al., 2001]. As ITSN1 acts as
scaffold protein in endocytosis, its haploinsufficiency may damage
brain tissues [van der Crabben et al., 2010]. A recent study of Itsnl
homozygous mutant mice showed learning impairment, especially
spatial learning deficits [Sengar et al,, 2013]. Therefore, ITSNI
deletion may be associated with intellectual developmental delay
[van der Crabben et al., 2010].

Among 17 patients (Patients 1-17) in Table I, all (100%) had
developmental delay. The minimal overlapping region was 35.14 to
35.24 Mb, containing part of only one protein-coding RefSeq gene,
ITSN1 (Fig. 2B). A non-overlapping patient (case 27 in Fig. 2B,
Table I), with no ITSNI disruption, did not have developmental
delay. This is consistent with ITSNI haploinsufficiency being
involved in the developmental impairment.

Twelve of the 17 patients (70.6%; the 17 patients comprising the
present patient plus the 16 patients with an overlapping deletion)
showed microcephaly. The minimal region of overlap among them
again maps to the region from 35.14 to 35.24 Mb, including part of
ITSN1. Interestingly, homozygous Itsnl mutant mice have a smaller
brain as a percentage of body mass compared with wild-type mice
[Sengar et al., 2013]. Therefore, microcephaly may also result from
ITSN1I haploinsufficiency. In addition, 10 of the 17 patients (59%)
shared various brain structural anomalies, including pachygyria,
polymicrogyria, hypoplasia of the corpus callosum, subcortical
white matter and cerebellum, and an enlarged ventricular system
(TableI). The current patient also presented with microcephaly and
partial polymicrogyria in the right frontal operculum-perisylvian
region. The minimal region of overlap for brain structural anoma-
lies was 35.08-35.24 Mb, which contains only ITSNI (Fig. 2B).
Itsnl-null mice also showed agenesis of the corpus callosum [Sengar
etal., 2013]. In 6 of the 10 patients with abnormal brain structures,
seizures were observed. Brain structural abnormalities are known to
be associated with seizures [Leventer et al., 2010; Tavyev Asher and
Scaglia, 2012]; five of the six patients with seizures had polymi-
crogyria and/or hypoplasia of the corpus callosum (Table I).

In our case, the skeletal features were unremarkable, but 13
patients with an overlapping deletion had skeletal abnormalities.
Regardless of inclusion and exclusion mapping (Fig. 2B), we were
unable to list candidate genes related to skeletal phenotypes. We
next focused the ocular phenotype, coloboma. Only two patients,
including ours, exhibited coloboma, and the minimal region of
overlap was large (33.38-35.07 Mb), harboring 19 protein-coding
RefSeq genes. Therefore, we could not narrow down the gene(s)
associated with coloboma. Similarly, the shortest overlapping
region for heart malformation, including arterial septal defect,
was also large (33.93-35.24 Mb) and contained 18 protein-coding
RefSeq genes. It is well known that an extra copy of genes on
chromosome 21 is associated with heart malformation. In particu-

lar, genes involved in cell adhesion may be associated with heart
defects [Barlow et al., 2001; Mao et al., 2005], although this is not
well understood.

In summary, we report on a patient with a de novo 1.4-Mb
deletion at 21q22 presenting with developmental delay. Compared
with other partial 21q22 deletion cases, our patient shows rather
severe developmental delay with a variety of clinical phenotypes.
We propose that haploinsufficiency of the ITSN1 gene is strongly
associated with developmental delay, microcephaly, and brain
structural anomalies. Precise mapping of the genomic rearrange-
ment together with careful literature review can yield useful infor-
mation about genes associated with human phenotypes.
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A novel homozygous YARSZ2 mutation causes severe
myopathy, lactic acidosis, and sideroblastic anemia 2
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Mitochondrial diseases are associated with defects of adenosine triphosphate production and energy supply to organs as a result
of dysfunctions of the mitochondrial respiratory chain. Biallelic mutations in the YARS2 gene encoding mitochondrial tyrosyl-
tRNA synthetase cause myopathy, lactic acidosis, and sideroblastic anemia 2 (MLASA2), a type of mitochondrial disease.

Here, we report a consanguineous Turkish family with two siblings showing severe metabolic decompensation including
recurrent hypoglycemia, lactic acidosis, and transfusion-dependent anemia. Using whole-exome sequencing of the proband

and his parents, we identified a novel YARS2 mutation (c.1303A> G, p.Ser435Gly) that was homozygous in the patient and
heterozygous in his parents. This mutation is located at the ribosomal protein S4-like domain of the gene, while other reported
YARS2 mutations are all within the catalytic domain. Interestingly, the proband showed more severe symptoms and an earlier
onset than previously reported patients, suggesting the functional importance of the S4-like domain in tyrosyl-tRNA synthetase.
Journal of Human Genetics advance online publication, 16 January 2014; doi:10.1038/jhg.2013.143
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Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that attach
specific amino acids to the corresponding tRNAs (aminoacylation).
Among a total of 36 human ARSs , YARS (tyrosyl-tRNA synthetase)
and YARS2 (tyrosyl-tRNA synthetase 2; mitochondrial ARSs are
nominally numbered 2°) catalyze the binding of tyrosine to their
cognate cytoplasmic and mitochondrial tRNAs, respectively.! YARS2
is encoded by the nuclear gene YARS2 (NM_001040436.2) at
12p11.21. ARSs do not complement each other. Mutations in 11 of
17 mitochondrial ARS genes cause a wide variety of diseases
according to PubMed (http://www.ncbi.nlm.nih.gov/pubmed) and
the Human Genome Mutation Database professional (https:/
portal biobase-international.com/hgmd/pro/start.php).2 For example,
biallelic mutations in DARS2, RARS2, FARS2, and AARS2 cause
leukoencephalopathy with brain stem and spinal cord involvement
and lactate elevation (MIM#611105), pontocerebellar hypoplasia, type
6 (MIM#611523), combined oxidative phosphorylation deficiency 14
(MIM#614946) showing fatal epileptic encephalopathy, and combined
oxidative phosphorylation deficiency 8 (MIM#614096) presenting
with lethal infantile cardiomyopathy, respectively.> YARS2 defects
also cause loss of mitochondrial tyrosyl-tRNA (mt-tRNADT) leading
to the failure of protein production in mitochondria.’”” YARS2
mutations cause myopathy, lactic acidosis, and sideroblastic anemia

lactic acidosis and sideroblastic anemia 2;

tyrosyl-tRNA synthetase; whole-exome

2 (MLASA2, MIM#613561),5°10 which is an autosomal recessive
disorder characterized by relatively mild symptoms of oxidative
phosphorylation defects including progressive muscle weakness and
sideroblastic anemia.?10 To our knowledge, only four families with
YARS2 mutations have thus far been reported.8-1

The proband (II-4) is the fourth child of healthy Turkish parents
who are first cousins (Figure 1a). He was born by normal delivery at
39 weeks of gestation with a birth weight of 2900g. The pregnancy
and birth history were uneventful. On the 4th day of life, he
showed poor feeding, tachypnea (80 breaths/min), metabolic acidosis
(pH 7.14, PCO, 26.7mmHg, HCO3;~ 5.1mmoll~!, base excess
18.6mmol1~1), and hyperlactacidemia (lactate 3.74 mmoll~') while
carnitine, acylcarnitine, and quantitative amino acid analysis of
plasma and urine were normal. Following a few weeks without any
symptoms after the discharge, he suffered the rapid progression of
normocytic anemia and recurrent metabolic decompensation includ-
ing lactic acidosis, ketosis, and hyperammonemia (Supplementary
Table 1). At 7 weeks of age, red blood cells were transfused due to the
rapidly progressive anemia (Supplementary Table 2). At 2 months of
age, he showed axial hypotonia. His ophthalmologic examination at
this age was normal, although a brain magnetic resonance imaging
scan showed thinning of the corpus callosum with normal progress of
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Figure 1 Genetic analysis of the YARS mutation in this pedigree. (a) Pedigree tree of the affected family and mutation segregation. (b) Electropherograms
of the YARSZ2 mutation (c.1303A>G). The mutated base is marked by a square. Evolutionary conservation is shown at the bottom. MT, mutant allele;
WT, wild type allele (c) Schema of YARS2 protein with mutational localization. The patient’s mutation is colored in red below the diagram of the protein,
while previously reported mutations (p.Gly46Asp and p.Phe52leu) are in black. MTS, mitochondrial target sequence; N-core and C-core, N and C part
of the catalytic domain, respectively; CP1, connective peptide; «-ACB, o-helical anticodon-binding domain; S4-like, ribosomal protein S4-like protein;

a.a., amino acid.

myelination. An echo cardiogram revealed hypertrophy of the
interventricular septum and left ventricle. The presence of proteinuria
and hypercalciuria may indicate proximal renal tubulopathy
(Supplementary Table 3). The glomerular filtration rate and serum
levels of calcium, phosphate and vitamin D were within normal
range. Although 4OH-phenyllactate and 4OH-phenylpyruvate were
elevated, the transaminase level was within normal range. He was
admitted to the hospital total of five times because of episodic
metabolic decompensation, while there were no obvious triggering
factors like infection.

During the episodic metabolic decompensation, serum lactate,
pyruvate, the lactate/pyruvate ratio, ketone bodies, Kiebs cycle
intermediates, ammonia and creatine kinase levels were all increased.
Plasma amino acid analysis revealed remarkably high alanine levels
(Supplementary Table 1). He was treated with supportive therapies
including the intravenous infusion of glucose (10 mgkg™! min~1)
and sodium bicarbonate according to the calculation of HCO3" deficit
(0.5 x body weight (kg) X 24h-serum HCO3~ (mEq/l)), and
responded promptly within one hour after starting the therapy. As
a defect of the mitochondrial respiratory chain (MRC) was suspected,
he was treated with sodium dichloroacetate (50 mgkg™* day—1),
coenzyme Qyq, carnitine, biotin, and riboflavin. Unfortunately, he
died at the age of 3 months from a cardiopulmonary arrest that
occurred during a metabolic decompensation. The other affected sib
(II-2) died at the age of 2 days following a similar clinical course to
the proband. Unfortunately, detailed clinical information about this
patient was unavailable.

To identify the genetic cause of their condition, we performed
whole-exome sequencing on the proband (II-4) and his parents (I-1
and I-2) as described in Supplementary Methods. This study was
approved by the institutional review board of Yokohama City
University School of Medicine. As two of the four children from
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healthy parents were affected, we hypothesized that the disorder was
an autosomal recessive disease and focused on homozygous variants
of the WES data. After excluding synonymous variants and variants
registered in dbSNP137, ESP6500, and our in-house database (exome
data of 408 individuals), five homozygous variants remained
(Supplementary Tables 4, 5). As four variants predicted as ‘benign’
by PolyPhen-2!! and/or ‘polymorphism’ by MutationTaster!? were
excluded, only one homozygous missense mutation, c.1303A>G,
p-Ser435Gly, in exon 5 of the YARSZ gene was highlighted
(Supplementary Table 5), which is known to cause MLASA2.
Sanger sequencing revealed that only proband had homozygous
YARS2 mutation while the parents and unaffected sibs had
a heterozygous one (Figures la and b). HomozygosityMapper'®
(http://www.homozygositymapper.org/)  confirmed that this
mutation was located within a 3.5Mb homozygous stretch.

Interestingly, two affected patients in this study showed more
severe clinical phenotypes than previously reported patients with
MLASA2,510  including recurrent metabolic decompensation,
proximal repal tubulopathy, and brain abnormalities which are
rarely seen in MLASA2 patients®>!4 (Table 1, Supplementary
Table 6). Early onset severe progressive anemia necessitating a blood
transfusion was common to both our patient and the previously
reported MLASA?2 patients; this is most likely a result of the severe
metabolic impairment of erythropoiesis. Unfortunately, we were
unable to perform a bone marrow aspirate and a peripheral blood
smear test to determine whether our patients had sideroblastic anemia
because of their rapid deterioration.

Human YARS2 has a catalytic domain and an anticodon-binding
region (Figure 1c). This anticodon-binding region consists of an a-
helical anticodon-binding domain and a ribosomal protein S4-like
domain (S4-like domain).!> The S4-like domain is essential to
recognize tRNA, and is evolutionarily well conserved from
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Riley et al.
Proband 12 22 3 Sasarman et al.  Shahni et al.
Ethnicity Turkish Lebanese Lebanese Lebanese Lebanese Lebanese
Sex male male female female male male
Gene mutation® ¢.1303A>G c.156C>G c.156C>G c.156C>G c.137G>A c.156C>G
Amino acid change p.Ser435Gly p.Phe52Leu p.Pheb2leu p.Pheb2leu p.Gly46Asp p.Phe52leu
Onset neonate 10 weeks infancy infancy n.m 1 year
CNS and Neurology hypoplastic corpus lethargy, normal cognition normal cognition normal cognition normal lethargy
callosum
Heart HCM HCM n.m. n.m, n.m. HCM
Kidney renal tubulopathy n.m. nm. n.m. n.m. n.m.
Endocrine systems hypoglycemia n.m. n.m. n.m. n.m. n.m.
Skeletal muscie weakness weakness weakness mild weakness mild weakness muscle weakness
Myopathy
© onset neonate toddler infancy infancy n.m. n.m.
severity hypotonia,no wheelchair at unable to walk 20 mat mild mild nocturnal BiPAP
head contro! 17 years old 16 years old at 12.5 years old
Anemia
onset 6 weeks 10 weeks infancy 7 years 31 years 1 year
type n.a. sideroblastic sideroblastic sideroblastic sideroblastic sideroblastic
Blood transfusion yes yes yes yes - n.m. yes
Others diseased at 3 months failure to thrive failure to thrive n.m. n.m. neutropenia

Abbreviations: BiPAP, biphasic positive airway pressure; CNS, central nervous system; HCM, hypertrophic cardiomyopathy; n.a., not assayed; n.m., not mentioned; RTA, renal tubular acidosis.

3From the same family.
bAll were homozygous mutations.

eubacteria to humans.!%!” The mutation in our patient was located
in the S4-like domain whereas all other previously reported
YARS2 mutations were in the catalytic domain (Figure 1c).510
The difference of mutation location may explain the clinical
differences among the patients. Furthermore, the mutated amino
acid serine 435 is highly conserved from frog to human (Figure 1b).
The change from a hydrophilic serine to a hydrophobic glycine
residue might alter the protein static structure and impair the
physiological function of YARS2.!® Thus, an abnormal S4-like
domain would impair the tyrosylation of mitochondrial tRNA
resulted in MRC dysfunction.

In this study, WES technique appears to be the powerful method,
especially for suspected mitochondrial diseases showing various
clinical phenotypes. This is because the involvement of many mutant
genes in MRC disorders hampers regular Sanger sequencing of
candidate genes,'®?® and biopsies and enzymological analysis of
affected organs may be difficult because of the severity and rapid
progression of the disease.
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Aberrations in the glycosylphosphatidylinositol (GPI)-anchor biosynthesis pathway
constitute a subclass of congenital disorders of glycosylation, and mutations in seven
genes involved in this pathway have been identified. Among them, mutations in PIGY
and PIGO, which are involved in the late stages of GPl-anchor synthesis, and PGAP2,
which is involved in fatty-acid GPl-anchor remodeling, are all causative for hyperphos-
phatasia with mental retardation syndrome (HPMRS). Using whole exome sequenc-
ing, we identified novel compound heterozygous PIGO mutations (c.389C>A
[p.Thri30Asn] and c.1288C>T [p.GIn430+%]) in two siblings, one of them having epilep-
tic encephalopathy. GPl-anchored proteins (CD16 and CD24) on blood granulocytes
were slightly decreased compared with a control and his mother. Our patients lacked
the characteristic features of HPMRS, such as facial dysmorphology (showing only a
tented mouth) and hypoplasia of distal phalanges, and had only a mild elevation
of serum alkaline phosphatase (ALP). Our findings therefore expand the clinical
spectrum of GPl-anchor deficiencies involving PIGO mutations to include epileptic

epilepsy and brain
malformation.

encephalopathy with mild elevation of ALP.
KEY WORDS: Congenital disorders of glycosylation, Epileptic encephalopathy, Glyco-
sylphosphatidylinositel anchors, PIGO.

More than 100 mammalian cell-surface proteins are
anchored to the plasma membrane by the addition of gly-
cosylphosphatidylinositol (GPI) to their C-termini. More
than 20 genes are involved in the GPI-anchor biosynthesis
pathway'? of which 7 are mutated in GPI-anchor defi-
ciencies, a subclass of congenital glycosylation disorders,
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in association with neurologic impairments.>” Among
them, mutations in PIGV, PIGO (both are involved in the
last step of GPI-anchor synthesis), and PGAP2 (involved
in fatty-acid GPI-anchor remodeling) have been identi-
fied in patients with hyperphosphatasia with mental retar-
dation syndrome (HPMRS), also known as Mabry
syndrome.>®

PIGO encodes GPI ethanolamine phosphate transferase
3, which is also known as phosphatidylinositol-glycan bio-
synthesis class O. To date, only three HPMRS families
with compound heterozygous mutations in PIGO have
been reported. In this study, we performed whole exome
sequencing of a Japanese family containing two affected
siblings, one of them having epileptic encephalopathy, and
identified novel PIGO mutations that expand the clinical
spectrum of PIGO abnormalities to include epileptic
encephalopathy.
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DNA samples and subjects

All four family members (two affected siblings with epi-
leptic encephalopathy and their parents) were analyzed.
Clinical information, peripheral blood samples (individual
II-1 and his parents), and the umbilical cord of individual II-
2 were obtained after written informed consent was given.
DNA was extracted using standard methods. Experimental
protocols were approved by the institutional review board
of Yokohama City University School of Medicine.

‘Whole exome sequencing (WES)

Genomic DNA was captured using the SureSelect Human
All Exon v4 Kit (51 Mb; Agilent Technologies, Santa
Clara, CA, U.S.A)) and sequenced on an Illumina
HiSeq2000 (Illumina, San Diego, CA, U.S.A.) with 101 bp
paired-end reads. Exome data processing, variant calling,
and variant annotation were performed as previously
described.” PIGO mutations detected by WES were con-
firmed by Sanger sequencing, and searched for in the variant
database of our 408 in-house control exomes. For individual
1I-2, only those PIGO mutations identified in individual II-1
were checked by Sanger sequencing.

Flow cytometry
Surface expression of GPI-anchored proteins was exam-
ined as previously described.®

ResuLTs

Clinical features

A summary of the clinical features of individuals II-1 and
II-2 is shown in Table S1. Both siblings had intractable
seizures and severe developmental delay, which were
compatible with epileptic encephalopathy.

Casereport 1

Individual -1 is a 19-year-old male born to nonconsan-
guineous parents after a 38-week gestation with no
asphyxia. His birth weight was 3,250 g (+0.5 standard devi-
ation [SD]), height 52.0 cm (—1.4 SD), and head circumfer-
ence 34.0 cm (—0.5 SD). Developmental milestones were
delayed with no head control achieved at 6 months. At
1 year of age, he developed complex partial seizures with
staring, crying, and irregular respiration leading to cyanosis.
Brain magnetic resonance imaging (MRI) revealed no
abnormalities (Fig. 1A,B). At 1 year and 11 months of age,
he had intractable seizures refractory to valproate, zonisa-
mide, and clonazepam. His body weight at this time was
10.54 kg (—0.8 SD), height 84.8 cm (—0.1 SD), and head
circumference 45.3 cm (—1.9 SD). He was able to smile but
unable to control his head or speak any meaningful words.
He had a high arched palate and a tented mouth (Fig. 1E).
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His muscle tone was hypotonic, and deep tendon reflexes
were normal with negative Babinski sign. Chorea was
observed mainly in the upper extremities. He did not show
brachytelephalangy or nail aplasia (Fig. 1F).

Interictal electroencephalography (EEG), motor conduc-
tion velocities, visual evoked potential, short-latency
somatosensory evoked potentials, and electroretinogram
were normal. Auditory brain responses revealed only wave
I. Serum alkaline phosphatase (ALP) levels were 436 U/L
(normal range, 145-420),'° and calcium and phosphate
levels were normal. Metabolic analysis including lactate,
pyruvate, very long fatty acids, and organic acid showed no
abnormalities. His epileptic attacks sometimes led to gener-
alized tonic—clonic seizures. Ictal EEG showed rhythmic
fast waves, which appeared at the left side of the central
sulcus, followed by diffuse irregular spikes and waves. Phe-
nytoin and bromide treatment slightly decreased the seizure
frequency. He was often admitted to the hospital (>40
times) with respiratory insufficiency following upper respi-
ratory tract infection and/or prolonged convulsions, and
initiated home oxygen therapy at 2 years of age.

Swallowing and hand movement gradually deteriorated,
and spastic quadriplegia and hypertonus with rigidity of
both upper and lower limbs appeared at 4 years of age. At
6 years of age, his condition gradually deteriorated, and a
brain MRI at 6 years of age revealed diffuse cerebral and
cerebellar atrophy (Fig. 1C,D). ALP was slightly elevated
at around 10 years of age (900 U/L [normal range
130-560]), followed by a gradual decrease at around the age
of 19 (300 U/L [normal range 65-260]). At this time he
required mechanical ventilation. He had a very severe intel-
lectual disability and partial seizures with dyspnea every
day, despite administration of phenytoin, valproic acid, phe-
nobarbital, bromide, clobazam, and nitrazepam. Pyridoxine
has not been administered.

Case report 2

Individual II-2, the younger sister of individual II-1, was
born without asphyxia. She did not show any facial dysmor-
phology or other congenital malformations. At 7 months of
age, she developed generalized tonic—clonic seizures for
which she was administered phenobarbital. At 1 year of
age, she showed developmental delay with no head control.
At this time, she was admitted to hospital due to epileptic
convulsive status, and she died from multiorgan failure
3 days later. No autopsy was performed.

Identification of PIGO mutations and flow cytometry
analysis

We filtered out variants registered in dbSNP135 data and
our in-house 91 control exomes, and narrowed down 193
rare protein-altering and splice-site variants (Table S2).
Among them, we identified compound heterozygous muta-
tions in two genes: PIGO (GenBank accession number



Figure 1.
T,-weighted brain MR! of individual lI-1. Axial (A) and sagittal (B) images revealed no signal or structural abnormalities at | year of age.
Axial (C) and sagittal (D) images at 6 years of age showing diffuse cerebral and cerebellar atrophy. Facial (E) and hand (F) photographs of
individual -1 at |19 years of age showing tented mouth (E) and no anomalous fingers (F).
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NM_032634.3) and SCUBEI! (NM_173050.3) (Table S3).
No homozygous mutation was detected. Four mutations are
rare, but one of two mutations in SCUBEI is predicted as a
polymorphism by web-prediction tools (Table S3). There-
fore, PIGO mutations are the primary candidates. Two
PIGO mutations were also found in his sister (individual II-
2). A novel missense mutation c.389C>A (p.Thr130Asn) in
exon 1 was inherited from their father and a novel nonsense
mutation ¢.1288C>T (p.GIn430*) in exon 6 was inherited
from their mother. Surface expressions of CD16 and CD24
on granulocytes from the individual II-1 were slightly, but
clearly, decreased compared with a normal control and his
mother, demonstrating GPI-anchor deficiencies in the
patient (Fig. S1).

DiscussionN

In this study, we report two siblings with severe epileptic
seizures, developmental delay, and mild elevation of ALP
caused by two novel compound heterozygous mutations in
PIGO. In individuals II-1 and II-2 of the present study, the
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p.Thr130Asn mutation in PIGO is located in an alkaline
phosphatase-like core domain, whereas the p.GIn430*
mutation is expected to produce a truncated protein that
lacks most transmembrane domains (Fig. 2B). To date, only
three families with HPRMS are reported in association with
compound heterozygous PIGO mutations: p.l.eu957Phe
and p.Thr788Hisfs*5 in the first family, p.Leu957Phe and
¢.3069+5G>A skipping exon 9 leading to ¢.2855_3069del
(p-Val952Aspfs*24) in the second,” and ¢.355C>T
(p-Argl19Trp) and c.2497_2498del (p.Ala834Cysfs*131)
in the third® These five mutations led to markedly
decreased expression of CD16, CD24, and CD59 on granu-
locytes from the patient or failed to recover expression of
GPI-anchored proteins in PIGO-deficient CHO cells, sug-
gesting that expression of GPI-anchored proteins was
severely impaired in the patients.>® On the other hand, indi-
vidual O-1 with p.Thr130Asn and p.GIn430* mutations
showed mildly decreased expression of CD16 and CD24 on
the surface of blood granulocytes. This difference in the
expression of GPI-anchored proteins might be associated
with lacking characteristic features of HPMRS in individual
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(A) Familial pedigree of individuals | (ll-1) and 2 (lI-2). (B) Distribution of PIGO mutations. Previously reported mutations are highlighted
in red. (C) Individuals ll-1 and 1I-2 carrying compound heterozygous mutations in PIGO. Their mother (I-1) carried c.1288C>T

(p-GIn430*), and their father (I-2) carried c.389C>A (p.Thr130Asn).
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II-1, such as facial dysmorphic features, hypoplasia of distal
phalanges, and elevation of serum ALP. Of interest, both
patients in our report and a patient reported by Kuki et al.
possessed missense mutations commonly in an alkaline
phosphatase—like core domain, and showed progressive
cerebral and cerebellar atrophy, and more severe intractable
epilepsy and developmental delay than the other two fami-
lies with PIGO mutations reported by Krawitz et al.>® This
fact raised a possibility that mutations in the alkaline phos-
phatase—like core domain can affect brain development and
function more specifically regardless of expression of GPI-
anchored proteins in blood granulocytes. Further accumula-
tion of patients with PIGO mutations and functional analy-
sis using neuronal cells are required for elucidating

Epilepsia, 55(2).e13~e17, 2014
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phenotype—genotype correlations in association with PIGO
mutations.

Our data expand the clinical spectrum of GPI-anchor
deficiencies to include epileptic encephalopathy. In addi-
tion, it has been recently reported that mutations in the
SLC35A2 encoding UDP-galactose transporter cause a con-
genital disorder of glycosylation in three patients, and five
of them showed seizures with hypsarrhythmia pattern on
electroencephalography.u’12 Therefore, it is likely that
abnormalities in glycosylation, including the GPI pathway,
may be one of the underlying defects in epileptic encepha-
lopathy.

In conclusion, we have described two siblings with
epileptic encephalopathy that harbor novel compound
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heterozygous mutations in PIGO. Further genetic analysis
of GPI-anchor synthesis pathway is needed for the under-
standing of epileptic encephalopathy.
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Cantu syndrome is an autosomal dominant malformation syn-
drome first described by Cantu in 1982. The hallmarks include
prenatal overgrowth, congenital hypertrichosis, characteristic facial
anomalies, and cardiomegaly [Cantu et al., 1982]. Some affected
individuals show mild osteochondrodysplasia, that is, bone under-
modeling of variable severity. Recent investigations have revealed
the causal relationship between Cantu syndrome and mutations in
ABCC9 (ATP-binding cassette, subfamily ¢, member 9; OMIM
601439), alternatively termed SURZ (sulfonylurea receptor 2)
[Harakalova et al., 2012; van Bon et al., 2012]. ABCC9 mutations
also have been found in dilated cardiomyopathy and familial atrial
fibrillation. ABCC9 encodes a K (ATP) channel (ATP-sensitive
potassium channel) named ABCCY that is mainly expressed in
cardiac and skeletal muscle as well as vascular and nonvascular
smooth muscle.

ABCC9 provides a unique feedback between cell metabolismand
electrical activity. It plays an important role in protection for
ischemic stress in the heart, protection against fiber damage in
skeletal muscle, and control of vasomotor tone in smooth muscle,
when cellular energetics are endangered [Flagg et al., 2010}. This
protective role accounts for the cardiac phenotype in Cantu syn-
drome as well as the pathogenic relation between ABCC9 and
genetic heart diseases. Moreover, as ABCC9 has affinity for sulfo-
nylurea, itis presumed to act as a sulfonylurea receptor. That maybe
the reason why it can regulate paracellular permeability in gastro-
intestinal, renal and liver tissues [Jons et al., 2006].

Here, we report on a family with Cantu syndrome. An affected
boy and his father had a novel ABCC9 mutation. The unique
manifestations in this family were craniosynostosis in the boy
and thoracic aortic aneurysm in the father.

The 4-year-old boy was the first child born to unrelated parents (a
29-year-old mother and 27-year-old father). His father was simi-
larly affected.

The pregnancy had been complicated by transient oligohydram-
nios only during the second trimester. Prenatal ultrasound during
the third trimester continuously demonstrated pericardial effusion.
Patient 1 was born by cesarean section at 37 weeks of gestation. Birth
weight was 2,000 g (—1.95 SD), length 46.5 cm (—0.5 SD), and OFC
32.5cm (—0.1 SD). Hypertrichosis, macroglossia, and umbilical
hernia with excessive skin were noted at birth. The neonatal course
was complicated by hyperbilirubinemia, hypocalcemia, and throm-
bocytopenia. Fifty days after birth he developed respiratory distress
unassociated with any respiratory infectious signs, which required
respiratory support that was continued for 2 months. Imaging
showed cardiomegaly (CTR 0.54), increasing pericardial effusion,
left ventricular dilatation (LVDd: 143% of the normal), and pul-
monary hypertension with patency of the foramen of ovale. NT-
proBNP was 13,189 pg/ml (standard range: up to 125 pg/ml). Two
months later, pulmonary hypertension ameliorated, but left ven-
tricular (LV) dilatation persisted and cardiomegaly increased. At
age 8 months, echocardiography showed normal cardiac function

and LVDd, and only a small amount of pericardial effusion. NT-
proBNP decreased (136 pg/ml). He had febrile convulsion twice at
ages 13/, and 24/, years, but electroencephalography yielded a
normal result. He underwent surgical treatment for umbilical
hernia at age 2t/ years. He had hematochezia with unknown
etiology even after anosigmoidoscopy at age 2¢/,, years.

At age 2¢/,, years, he was referred to us for evaluation of multiple
anomalies. Physical findings included generalized hypertrichosis,
muscular build, hyperpigmentation, soft “doughy” skin with deep
palmar/planter crease, and characteristic facial appearance, includ-
ing long face, full cheeks, thick eyebrows, puffy eyelids, epicanthus
folds, depressed nasal bridge, anteverted nostrils, long philtrum,
and large mouth with thick vermilion to the lips (Fig. 1A). The
hands and feet were broad with clinodactyly of the 5th fingers.
Height was 89.3 cm (—0.6 SD), weight 12.6 kg (—0.4 SD), and OFC
47 cm (—1.4 SD). Echocardiography demonstrated normal cardiac
function (LV ejection fraction; 64%) and a trace amount of
pericardial effusion. Skeletal survey showed only minimum broad-
ening of ribs (Fig. 1B). Skull radiographs and 3D-CT displayed
premature fusion of the sagittal and coronal sutures (Fig. 1C-E).
Brain MRI indicated copper beaten findings of calvaria and normal
brain structures (Fig. 1F). He was diagnosed as having mild
psychomotor delay (DQ 55 at 3¢/, years) and an autistic disorder
based on the DSM-IV.
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The father of the proband was vaginally delivered at 42 weeks of
gestation. Macrosomia (birth weight; 4,500 ¢ +3.3 SD) and con-
genital hypertrichosis were noted at birth. He was reported to have
recurrent upper respiratory tract infection in infancy. His medical
history included repeated reports of abnormal electrocardiograms
indicating incomplete right bundle branch block at health check in
school and at his place of work. He sometimes felt palpitations that
persisted for a while. He experienced several cryptogenic episodes of
hematochezia, but no particular examination was performed. He
was an enthusiastic basketball-player during high school. His
paternal grandfather had been treated with a cardiac pacemaker.
His maternal uncle was affected with dilated cardiomyopathy.

Weevaluated him when he was 30 years old. Height was 173.0 cm
(4+0.4 SD), weight 69.0 kg (+1.3 SD), and OFC 60.5 cm (42.1 SD).
He had general hypertrichosis, soft skin, and a “coarse” facial
appearance, including long face, puffy eyelids, long palpebral
fissures, broad nose with flared nares and high nasal bridge, and
thick vermilion to the lips. Radiological examinations revealed
thoracic aortic aneurysm (Fig. 2A,B). Holter electrocardiogram
yielded a normal result. Echocardiography showed almost normal
cardiac function (LV ejection fraction; 65%), other than minimum
tricuspid regurgitation. There were no signs of cardiac enlargement.
Skeletal survey and laboratory examinations were unremarkable. At
age 31 years, he underwent surgical intervention for thoracic
aneurysm.

On histologic examination of the aneurysm, the tunica media
showed diffuse mucopolysaccharide accumulation between the
smooth muscle cells, enlarging the tissue gaps and forming cysts
(cystic medial degeneration). The inner media was hypertrophic
with nodular protrusions caused by irregular and reticulated
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hyperplasia of the smooth muscle cells. Excess mucoid deposition
and hyperplasia of the collagen fibers between the smooth muscle
cells resulted in fragmentation, reduction, and separation of elastic
fibers (Fig. 3).

CYTOGENETIC AND MOLECULAR ANALYSIS

In both patients, G-banded chromosomal analysis (550 band
resolution) of blood lymphocytes yielded normal results. Copy
number analysis on the proband using an Affymetrics Cytoscan HD
array (Affymetrix, Santa Clara, CA) revealed two deletions which

were inherited from his affected father: a 46 kb-deletion at 329, and
a 49 kb-deletion at 1q31.3. However neither of the deleted regions
contained any strong candidates for a causative gene. With the
parent’s informed consent, whole exome sequencing was per-
formed on the proband (Patient 1), his affected father (Patient
2) and his unaffected mother. Genomic DNA (3 pg) was captured
using a SureSelect*” Human All Exon 50 Mb Kit (Agilent Technol-
ogies, Santa Clara, CA) and sequenced on an lumina HiSeq2000
with 108 bp pair-end reads. Image analyses and base calling were
performed by sequence control software real time analysis and
CASAVA software v1.8 (Ilumina, San Diego, CA). Reads were
aligned to GRCh37 with Novoalign (Novocraft Technologies,
Selangor, Malaysia), and duplicate reads were marked using Picard
(http://picard.sourceforge.net/) and excluded from downstream
analysis. Local realignments around indels and base quality score
recalibration were performed by the Genome Analysis Toolkit
(GATK) [DePristo et al,, 2011]. Single-nucleotide variants and
small indels were identified using the GATK UnifiedGenotyper, and
filtered according to the Broad Institute’s best-practice guidelines
v3, Variants registered in dbSNP135 (http://www.ncbi.nlm.nih.
gov/projects/SNP/), which were not flagged as clinically associated,
were filtered. Filter passed variants were annotated using ANNO-
VAR [Wang et al,, 2010].

Mean coverage depth was 125-fold. To identify the pathogenic
mutation, we excluded synonymous variants, or variants found in
132 in-house control exomes from the 2,634 filter-passed variants,
and included only variants which were shared by proband and his
affected father. Among 173 such variants, we identified a heterozy-
gous novel missense mutation (¢.3605C >T, p.T1202M) in the
ABCCS9 gene that was carried by both patients (Fig. 4). The T1202
residue is evolutionarily conserved. Two out of three web-based
prediction programs predicted this mutation to have a deleterious
effect on protein function (SIFT; tolerated, PolyPhen2; probably
damaging, MutationTaster; disease causing). The mutation has not
been identified in any of 5,400 publicly available exomes (Exome
Variant Server, National Heart, Lung, and Blood Institute (NHLBI)
Exome Sequencing Project, http://evs.gs.washington.edu/EVS/).



